| 
    Home Cover Printing Instances
 
 Contact 
    Details   David Romero Universidad Nacional Autónoma de 
    México (UNAM) Email: 
    davidr@matcuer.unam.mx   
     UNAM     |  | 
     Contents:   
    1. Instances Format 
    2. Solutions Format 
    3. Datasets        
    3.1 Instances from several sources        
    3.2 Instances without costs        
    3.3 Instances with known optima        
    3.4 Random instances from [1]         
    3.5 Random instances from [14]             
     1. Instances Format The instance files have the following format. 
    All numbers, 
    with the exception of 
    the cost per impression and cost per grid are always integers, all intra-line 
    separators are spaces. First line:Number of covers;
 Second line:Grid size;
 One line for each cover:Demand of cover;
 Last line:Cost per impression; Cost per grid;
 For example, for an instance having three covers with demand 4500, 9000 and 
    16000, respectively, with a grid size of 4, with an impression cost 13.44 and a 
    grid cost 18676, the file would have 
    the following format: 3 4
 4500
 9000
 16000
 13.44 18676
 2. Solutions Format The solution file has the following format. All numbers, excepting 
    the total cost are always integers (all intra-line 
    separators are spaces). The files have the extension .out and a plain 
    text format. First line:Number of grids (Ng);
 One line for each grid:Grid composition, namely, and m-vector whose elements are non-negative 
    integers summing up to t (gridsize), all integers separated by spaces.
 Next line:Number of imprints of each grid; Ng integers separated by 
    spaces.
 This line has a vector of size Ng, the first integer 
    is the number of imprints of the first grid, the second integer is the number 
    of imprints of the second grid, and so on.   Last line:Total cost, computed as the total number of imprints times the impression cost, plus the number of grids multiplied by the grid cost.
 As an example takes the above input file with 3 covers, then a possible solution in the output file could be: 2 0  1  3 2  2  0 5334  2250  139280.96 The first line indicates that in this solution two grids are to be 
    composed. The second and third lines describe the composition of the first 
    and second grids, respectively; namely the first grid is composed by one plate 
    of the second cover and three plates of the third cover. the second grid is 
    composed by  two plates of the first cover and two plates of the second 
    cover. The fourth line indicates that the first grid is to be printed 5334 
    times and the second grid 2250 times. The total cost is: Tc = 13.44 * (5334 + 2250) + 2 * 18676 = 101928.93 + 37352 = 
    139280.96 which is the last line in the file. 
    3. Datasets The source for instances below is indicated in brackets. All 
    files instances have extension .in and plain text format. You can download 
    all instances here: Download all instances. This page contains five sets of instances, each in one separate table. The first set 
    comes from several sources. 
    The second set corresponds to cases where no cost is given 
    because the objective function is to minimize the paper wasted. The 
    third set of instances was generated with known optimal solutions. The 
    fourth set contains random instances from [1], and the fifth set contains 
    random 
    instances from [14].
 
    3.1 Instances from several sources The next table provides thirteen instances where m is the number of covers and
    t is the gridsize. The first column contains the instance file and 
    the source in brackets. The second and third columns contain the size of m 
    and t, respectively. In the fourth column, we give in brackets the 
    source for the best known solutions, and an asterisk (*) indicates that the value 
    corresponds to the global optimum. The fifth column contains the solution 
    file. 
      
        | Instance | m | t | Best  known solution | Solution file |  
        |   I001.in  [12] | 3 | 4 | 136,472*      
        [1,10,12,14] | I001.out |  
        | I002.in  
        [12] | 4 | 4 | 247,916*      
        [1,3,10,12,14] | I002.out |  
        | I003.in  
        [12] | 5 | 4 | 1,851,948*      
        [1,14] | I003.out |  
        | I004.in  
        [12] | 8 | 4 | 264,348*      
        [1,3,12,14] | I004.out |  
        | I005.in    
        [8] | 12 | 4 | 269,584*      
        [1,14] | I005.out |  
        | I006.in  
        [12] | 15 | 4 | 515,256*      
        [1,14] | I006.out |  
        | I007.in  
        [15] | 9 | 8 |        
        5,283.53*   [1]  | I007.out |  
        | I008.in  
        [15] | 17 | 8 | 11,475.52    [1] | I008.out |  
        | I009.in  
        [15] | 18 | 7 | 11,191.6     [1] | I009.out |  
        | I013.in  
        [14] | 30 | 4 | 1,759,240       
        [14] | I013.out |  
        | I014.in  
        [14] | 40 | 4 | 2,575,832       
        [1] | I014.out |  
        | I015.in  
        [14] | 50 | 4 | 6,534,556       
        [1] | I015.out |  
        |   I016.in    [1] | 100 | 25 | 265,918       
        [1] | I016.out |      
    3.2 Instances without costs The next table 
    provides 
    eight instances where the cost per impression and the cost 
    per grid are unknown. In these instances one looks for minimizing the paper waste 
    for a prescribed number of grids. The waste is computed as one hundred multiplied by 
    the total 
    surplus divided by the total demand. In these instances the solution 
    file contains the percentage of waste 
    instead of the total cost. The first column contains the instance file and 
    the source in brackets. The second and third columns contain the size 
    of m and t, respectively. The fourth column is the prescribed 
    number of grids. In the fifth column of this table, the brackets indicated the source where the best solutions 
    were obtained, an asterisk (*) indicates that the value corresponds to the 
    global optimum.    
    3.3 Instances with known 
    optima This table contains 60 instances generated in 
    [1], and whose optimal solutions were previously 
    determined. See [1] for a description of the optimal solutions. These 
    instances were heuristically solved as it is described in [1], yielding the 
    results shown in the last three columns of the table. The fourth column 
    corresponds to the 
    optimal cost.   
      
        | Instance | m | t | Optimal cost | Obtained cost [1] | CPU Time (seconds) | Solution file |  
        | E001.in | 13 | 6 | 51,750 | 54,750 | 1 | E001.out |  
        | E002.in | 13 | 6 | 51,606 | 54,606 | 1 | E002.out |  
        | E003.in | 13 | 6 | 56,686 | 56,686 | 1 | E003.out |  
        | E004.in | 13 | 6 | 51,257 | 54,257 | 1 | E004.out |  
        | E005.in | 13 | 6 | 56,322 | 56,322 | 1 | E005.out |  
        | E006.in | 13 | 6 | 51,803 | 54,803 | 2 | E006.out |  
        | E007.in | 13 | 6 | 56,272 | 59,272 | 2 | E007.out |  
        | E008.in | 13 | 6 | 59,104 | 59,104 | 1 | E008.out |  
        | E009.in | 13 | 6 | 52,855 | 52,855 | 1 | E009.out |  
        | E010.in | 13 | 6 | 53,778 | 53,778 | 1 | E010.out |  
        | E011.in | 25 | 8 | 80,749 | 84,005 | 5 | E011.out |  
        | E012.in | 25 | 8 | 78,369 | 78,684 | 0 | E012.out |  
        | E013.in | 25 | 8 | 83,369 | 83,704 | 1 | E013.out |  
        | E014.in | 25 | 8 | 71,417 | 77,494 | 3 | E014.out |  
        | E015.in | 25 | 8 | 75,762 | 81,464 | 4 | E015.out |  
        | E016.in | 25 | 8 | 82,608 | 88,970 | 0 | E016.out |  
        | E017.in | 25 | 8 | 85,839 | 86,134 | 0 | E017.out |  
        | E018.in | 25 | 8 | 74,488 | 78,311 | 4 | E018.out |  
        | E019.in | 25 | 8 | 77,548 | 83,991 | 3 | E019.out |  
        | E020.in | 25 | 8 | 77,670 | 84,019 | 0 | E020.out |  
        | E021.in | 41 | 10 | 110,779 | 117,319 | 33 | E021.out |  
        | E022.in | 41 | 10 | 115,729 | 122,591 | 29 | E022.out |  
        | E023.in | 41 | 10 | 112,568 | 116,775 | 28 | E023.out |  
        | E024.in | 41 | 10 | 118,169 | 124,564 | 29 | E024.out |  
        | E025.in | 41 | 10 | 103,499 | 106,863 | 23 | E025.out |  
        | E026.in | 41 | 10 | 100,873 | 105,407 | 18 | E026.out |  
        | E027.in | 41 | 10 | 105,308 | 111,470 | 22 | E027.out |  
        | E028.in | 41 | 10 | 106,658 | 110,383 | 26 | E028.out |  
        | E029.in | 41 | 10 | 98,331 | 104,552 | 21 | E029.out |  
        | E030.in | 41 | 10 | 109,138 | 112,839 | 25 | E030.out |  
        | E031.in | 61 | 12 | 145,705 | 153,481 | 98 | E031.out |  
        | E032.in | 61 | 12 | 149,415 | 158,751 | 67 | E032.out |  
        | E033.in | 61 | 12 | 143,983 | 150,500 | 69 | E033.out |  
        | E034.in | 61 | 12 | 143,305 | 147,910 | 102 | E034.out |  
        | E035.in | 61 | 12 | 138,134 | 144,670 | 66 | E035.out |  
        | E036.in | 61 | 12 | 151,318 | 157,823 | 75 | E036.out |  
        | E037.in | 61 | 12 | 142,725 | 152,127 | 59 | E037.out |  
        | E038.in | 61 | 12 | 138,358 | 141,690 | 65 | E038.out |  
        | E039.in | 61 | 12 | 142,520 | 148,396 | 70 | E039.out |  
        | E040.in | 61 | 12 | 143,932 | 150,316 | 91 | E040.out |  
        | E041.in | 85 | 14 | 184,266 | 188,739 | 174 | E041.out |  
        | E042.in | 85 | 14 | 181,953 | 188,797 | 162 | E042.out |  
        | E043.in | 85 | 14 | 180,216 | 187,595 | 9 | E043.out |  
        | E044.in | 85 | 14 | 187,387 | 194,373 | 263 | E044.out |  
        | E045.in | 85 | 14 | 162,654 | 169,008 | 150 | E045.out |  
        | E046.in | 85 | 14 | 177,954 | 185,086 | 10 | E046.out |  
        | E047.in | 85 | 14 | 183,011 | 189,472 | 204 | E047.out |  
        | E048.in | 85 | 14 | 188,604 | 190,223 | 50 | E048.out |  
        | E049.in | 85 | 14 | 190,843 | 194,012 | 102 | E049.out |  
        | E050.in | 85 | 14 | 175,522 | 182,728 | 212 | E050.out |  
        | E051.in | 113 | 16 | 230,934 | 239,792 | 22 | E051.out |  
        | E052.in | 113 | 16 | 216,732 | 224,021 | 178 | E052.out |  
        | E053.in | 113 | 16 | 239,502 | 247,076 | 19 | E053.out |  
        | E054.in | 113 | 16 | 217,150 | 221,105 | 20 | E054.out |  
        | E055.in | 113 | 16 | 220,353 | 222,348 | 18 | E055.out |  
        | E056.in | 113 | 16 | 218,323 | 224,692 | 22 | E056.out |  
        | E057.in | 113 | 16 | 209,618 | 215,806 | 213 | E057.out |  
        | E058.in | 113 | 16 | 220,605 | 227,740 | 29 | E058.out |  
        | E059.in | 113 | 16 | 232,452 | 240,263 | 24 | E059.out |  
        | E060.in | 113 | 16 | 232,409 | 240,615 | 31 | E060.out |  3.4 Random 
    instances from [1] The next table corresponds to 120 random instances generated in [1]. 
    These instances were heuristically solved as it is described in [1], 
    yielding the results shown in the last three columns of the table. 
      
        | Instance | m | t | Obtained cost [1] | CPU Time (seconds) | Solution 
        file |  
        | R001.in | 10 | 6 | 112,431 |              
        0 | R001.out |  
        | R002.in | 10 | 6 | 95,990 | 2 | R002.out |  
        | R003.in | 10 | 6 | 89,566 | 0 | R003.out |  
        | R004.in | 10 | 6 | 91,024 | 1 | R004.out |  
        | R005.in | 10 | 6 | 124,168 | 0 | R005.out |  
        | R006.in | 10 | 6 | 95,290 | 0 | R006.out |  
        | R007.in | 10 | 6 | 89,476 | 1 | R007.out |  
        | R008.in | 10 | 6 | 64,539 | 1 | R008.out |  
        | R009.in | 10 | 6 | 107,766 | 0 | R009.out |  
        | R010.in | 10 | 6 | 106,115 | 0 | R010.out |  
        | R011.in | 10 | 8 | 82,792 | 1 | R011.out |  
        | R012.in | 10 | 8 | 87,978 | 0 | R012.out |  
        | R013.in | 10 | 8 | 78,361 | 0 | R013.out |  
        | R014.in | 10 | 8 | 77,106 | 0 | R014.out |  
        | R015.in | 10 | 8 | 66,712 | 0 | R015.out |  
        | R016.in | 10 | 8 | 76,878 | 0 | R016.out |  
        | R017.in | 10 | 8 | 62,817 | 0 | R017.out |  
        | R018.in | 10 | 8 | 74,172 | 0 | R018.out |  
        | R019.in | 10 | 8 | 88,894 | 0 | R019.out |  
        | R020.in | 10 | 8 | 76,921 | 0 | R020.out |  
        | R021.in | 25 | 12 | 128,601 | 0 | R021.out |  
        | R022.in | 25 | 12 | 124,816 | 1 | R022.out |  
        | R023.in | 25 | 12 | 120,665 | 1 | R023.out |  
        | R024.in | 25 | 12 | 134,819 | 3 | R024.out |  
        | R025.in | 25 | 12 | 132,306 | 0 | R025.out |  
        | R026.in | 25 | 12 | 127,978 | 2 | R026.out |  
        | R027.in | 25 | 12 | 116,859 | 0 | R027.out |  
        | R028.in | 25 | 12 | 122,974 | 1 | R028.out |  
        | R029.in | 25 | 12 | 139,761 | 3 | R029.out |  
        | R030.in | 25 | 12 | 152,855 | 6 | R030.out |  
        | R031.in | 25 | 16 | 101,560 | 1 | R031.out |  
        | R032.in | 25 | 16 | 107,327 | 2 | R032.out |  
        | R033.in | 25 | 16 | 108,926 | 0 | R033.out |  
        | R034.in | 25 | 16 | 117,534 | 1 | R034.out |  
        | R035.in | 25 | 16 | 90,293 | 1 | R035.out |  
        | R036.in | 25 | 16 | 92,473 | 1 | R036.out |  
        | R037.in | 25 | 16 | 92,256 | 1 | R037.out |  
        | R038.in | 25 | 16 | 106,009 | 0 | R038.out |  
        | R039.in | 25 | 16 | 107,913 | 2 | R039.out |  
        | R040.in | 25 | 16 | 96,324 | 0 | R040.out |  
        | R041.in | 50 | 16 | 189,253 | 21 | R041.out |  
        | R042.in | 50 | 16 | 195,627 | 22 | R042.out |  
        | R043.in | 50 | 16 | 196,666 | 13 | R043.out |  
        | R044.in | 50 | 16 | 201,876 | 12 | R044.out |  
        | R045.in | 50 | 16 | 222,999 | 17 | R045.out |  
        | R046.in | 50 | 16 | 186,412 | 11 | R046.out |  
        | R047.in | 50 | 16 | 185,067 | 13 | R047.out |  
        | R048.in | 50 | 16 | 184,252 | 12 | R048.out |  
        | R049.in | 50 | 16 | 210,386 | 12 | R049.out |  
        | R050.in | 50 | 16 | 202,643 | 10 | R050.out |  
        | R051.in | 50 | 20 | 145,113 | 13 | R051.out |  
        | R052.in | 50 | 20 | 151,544 | 16 | R052.out |  
        | R053.in | 50 | 20 | 145,687 | 20 | R053.out |  
        | R054.in | 50 | 20 | 162,260 | 14 | R054.out |  
        | R055.in | 50 | 20 | 172,883 | 16 | R055.out |  
        | R056.in | 50 | 20 | 145,464 | 15 | R056.out |  
        | R057.in | 50 | 20 | 145,331 | 15 | R057.out |  
        | R058.in | 50 | 20 | 169,324 | 16 | R058.out |  
        | R059.in | 50 | 20 | 167,109 | 14 | R059.out |  
        | R060.in | 50 | 20 | 159,751 | 15 | R060.out |  
        | R061.in | 100 | 12 | 501,975 | 87 | R061.out |  
        | R062.in | 100 | 12 | 484,739 | 92 | R062.out |  
        | R063.in | 100 | 12 | 532,763 | 136 | R063.out |  
        | R064.in | 100 | 12 | 483,623 | 136 | R064.out |  
        | R065.in | 100 | 12 | 549,673 | 93 | R065.out |  
        | R066.in | 100 | 12 | 499,255 | 95 | R066.out |  
        | R067.in | 100 | 12 | 527,716 | 138 | R067.out |  
        | R068.in | 100 | 12 | 503,971 | 138 | R068.out |  
        | R069.in | 100 | 12 | 531,249 | 115 | R069.out |  
        | R070.in | 100 | 12 | 492,351 | 155 | R070.out |  
        | R071.in | 100 | 16 | 383,644 | 193 | R071.out |  
        | R072.in | 100 | 16 | 385,382 | 172 | R072.out |  
        | R073.in | 100 | 16 | 350,177 | 223 | R073.out |  
        | R074.in | 100 | 16 | 393,316 | 142 | R074.out |  
        | R075.in | 100 | 16 | 377,347 | 199 | R075.out |  
        | R076.in | 100 | 16 | 384,201 | 203 | R076.out |  
        | R077.in | 100 | 16 | 362,790 | 136 | R077.out |  
        | R078.in | 100 | 16 | 383,286 | 249 | R078.out |  
        | R079.in | 100 | 16 | 380,421 | 146 | R079.out |  
        | R080.in | 100 | 16 | 408,601 | 398 | R080.out |  
        | R081.in | 100 | 25 | 254,163 | 242 | R081.out |  
        | R082.in | 100 | 25 | 255,910 | 252 | R082.out |  
        | R083.in | 100 | 25 | 265,873 | 285 | R083.out |  
        | R084.in | 100 | 25 | 260,092 | 321 | R084.out |  
        | R085.in | 100 | 25 | 251,314 | 267 | R085.out |  
        | R086.in | 100 | 25 | 233,874 | 269 | R086.out |  
        | R087.in | 100 | 25 | 253,448 | 249 | R087.out |  
        | R088.in | 100 | 25 | 246,531 | 306 | R088.out |  
        | R089.in | 100 | 25 | 246,524 | 210 | R089.out |  
        | R090.in | 100 | 25 | 249,321 | 295 | R090.out |  
        | R091.in | 25 | 8 | 195,326 | 2 | R091.out |  
        | R092.in | 25 | 8 | 183,406 | 0 | R092.out |  
        | R093.in | 25 | 8 | 192,144 | 0 | R093.out |  
        | R094.in | 25 | 8 | 213,047 | 2 | R094.out |  
        | R095.in | 25 | 8 | 154,142 | 2 | R095.out |  
        | R096.in | 25 | 8 | 184,489 | 0 | R096.out |  
        | R097.in | 25 | 8 | 212,729 | 0 | R097.out |  
        | R098.in | 25 | 8 | 172,726 | 2 | R098.out |  
        | R099.in | 25 | 8 | 195,025 | 2 | R099.out |  
        | R100.in | 25 | 8 | 207,749 | 1 | R100.out |  
        | R101.in | 50 | 12 | 259,020 | 22 | R101.out |  
        | R102.in | 50 | 12 | 259,208 | 26 | R102.out |  
        | R103.in | 50 | 12 | 246,165 | 9 | R103.out |  
        | R104.in | 50 | 12 | 255,621 | 11 | R104.out |  
        | R105.in | 50 | 12 | 257,999 | 14 | R105.out |  
        | R106.in | 50 | 12 | 245,518 | 11 | R106.out |  
        | R107.in | 50 | 12 | 273,008 | 27 | R107.out |  
        | R108.in | 50 | 12 | 281,626 | 29 | R108.out |  
        | R109.in | 50 | 12 | 255,731 | 24 | R109.out |  
        | R110.in | 50 | 12 | 275,057 | 25 | R110.out |  
        | R111.in | 100 | 20 | 298,734 | 320 | R111.out |  
        | R112.in | 100 | 20 | 306,723 | 166 | R112.out |  
        | R113.in | 100 | 20 | 327,041 | 256 | R113.out |  
        | R114.in | 100 | 20 | 293,234 | 177 | R114.out |  
        | R115.in | 100 | 20 | 299,499 | 197 | R115.out |  
        | R116.in | 100 | 20 | 296,731 | 203 | R116.out |  
        | R117.in | 100 | 20 | 314,614 | 214 | R117.out |  
        | R118.in | 100 | 20 | 327,867 | 213 | R118.out |  
        | R119.in | 100 | 20 | 286,527 | 205 | R119.out |  
        | R120.in | 100 | 20 | 313,083 | 296 | R120.out |  3.5 Random 
    instances from [14] The next table contains 75 random instances, kindly provided and 
    heuristically solved [14] by Daniel Tuyttens of the University of Mons, 
    Faculté Polytechnique, Belgium. The fourth column is the obtained cost in 
    [14], the fifth and sixth columns are the obtained cost in [1] and the 
    needed CPU time, respectively. The seventh column indicates the file containing the best 
    known solution.   
      
        | Instance | m | t | 
        Obtained cost  [14] | 
        Obtained cost [1] | CPU Time (seconds) | File of the best solution |  
        | T001.in | 30 | 4 | 2,268,224 | 2,252,096 | 1 | T001.out |  
        | T002.in | 30 | 4 | 2,164,736 | 2,145,920 | 1 | T002.out |  
        | T003.in | 30 | 4 | 2,408,000 | 2,413,376 | 1 | T003.out |  
        | T004.in | 30 | 4 | 2,977,856 | 2,937,536 | 1 | T004.out |  
        | T005.in | 30 | 4 | 3,116,288 | 3,082,688 | 2 | T005.out |  
        | T006.in | 40 | 4 | 4,956,448 | 4,931,696 | 1 | T006.out |  
        | T007.in | 40 | 4 | 4,287,136 | 4,235,504 | 3 | T007.out |  
        | T008.in | 40 | 4 | 4,937,632 | 4,863,824 | 2 | T008.out |  
        | T009.in | 40 | 4 | 6,137,824 | 6,097,168 | 1 | T009.out |  
        | T010.in | 40 | 4 | 5,789,168 | 5,717,936 | 3 | T010.out |  
        | T011.in | 50 | 4 | 6,911,632 | 6,863,248 | 2 | T011.out |  
        | T012.in | 50 | 4 | 8,683,248 | 8,655,024 | 1 | T012.out |  
        | T013.in | 50 | 4 | 9,748,144 | 9,607,920 | 6 | T013.out |  
        | T014.in | 50 | 4 | 10,351,712 | 10,255,168 | 7 | T014.out |  
        | T015.in | 50 | 4 | 10,832,080 | 10,673,040 | 13 | T015.out |  
        | T016.in | 30 | 4 | 1,969,408 | 1,950,312 | 1 | T016.out |  
        | T017.in | 30 | 4 | 1,860,264 | 1,833,384 | 1 | T017.out |  
        | T018.in | 30 | 4 | 2,109,184 | 2,103,528 | 1 | T018.out |  
        | T019.in | 30 | 4 | 2,676,072 | 2,626,736 | 1 | T019.out |  
        | T020.in | 30 | 4 | 2,768,920 | 2,741,648 | 1 | T020.out |  
        | T021.in | 40 | 4 | 4,569,712 | 4,520,824 | 2 | T021.out |  
        | T022.in | 40 | 4 | 3,857,392 | 3,824,632 | 3 | T022.out |  
        | T023.in | 40 | 4 | 4,467,848 | 4,407,368 | 2 | T023.out |  
        | T024.in | 40 | 4 | 5,679,576 | 5,611,592 | 1 | T024.out |  
        | T025.in | 40 | 4 | 5,322,352 | 5,268,872 | 2 | T025.out |  
        | T026.in | 50 | 4 | 6,355,328 | 6,327,104 | 2 | T026.out |  
        | T027.in | 50 | 4 | 8,122,968 | 8,070,272 | 2 | T027.out |  
        | T028.in | 50 | 4 | 9,750,776 | 9,047,640 | 5 | T028.out |  
        | T029.in | 50 | 4 | 9,711,520 | 9,655,632 | 7 | T029.out |  
        | T030.in | 50 | 4 | 10,158,792 | 10,082,240 | 13 | T030.out |  
        | T031.in | 30 | 4 | 1,804,656 | 1,778,056 | 1 | T031.out |  
        | T032.in | 30 | 4 | 1,684,648 | 1,662,929 | 1 | T032.out |  
        | T033.in | 30 | 4 | 1,931,132 | 1,915,004 | 1 | T033.out |  
        | T034.in | 30 | 4 | 2,452,464 | 2,436,476 | 1 | T034.out |  
        | T035.in | 30 | 4 | 2,563,484 | 2,549,372 | 2 | T035.out |  
        | T036.in | 40 | 4 | 4,298,700 | 4,275,320 | 2 | T036.out |  
        | T037.in | 40 | 4 | 3,594,444 | 3,569,244 | 2 | T037.out |  
        | T038.in | 40 | 4 | 4,182,976 | 4,148,172 | 2 | T038.out |  
        | T039.in | 40 | 4 | 5,396,468 | 5,368,524 | 2 | T039.out |  
        | T040.in | 40 | 4 | 5,021,492 | 5,001,612 | 1 | T040.out |  
        | T041.in | 50 | 4 | 6,056,512 | 6,028,288 | 3 | T041.out |  
        | T042.in | 50 | 4 | 7,800,744 | 7,771,456 | 2 | T042.out |  
        | T043.in | 50 | 4 | 8,770,692 | 8,720,040 | 4 | T043.out |  
        | T044.in | 50 | 4 | 9,336,516 | 9,317,840 | 8 | T044.out |  
        | T045.in | 50 | 4 | 9,766,596 | 9,725,744 | 13 | T045.out |  
        | T046.in | 30 | 4 | 1,692,600 | 1,678,558 | 1 | T046.out |  
        | T047.in | 30 | 4 | 1,585,080 | 1,569,549 | 1 | T047.out |  
        | T048.in | 30 | 4 | 1,818,866 | 1,810,200 | 1 | T048.out |  
        | T049.in | 30 | 4 | 2,338,994 | 2,326,296 | 1 | T049.out |  
        | T050.in | 30 | 4 | 2,445,170 | 2,437,778 | 2 | T050.out |  
        | T051.in | 40 | 4 | 4,155,732 | 4,144,588 | 1 | T051.out |  
        | T052.in | 40 | 4 | 3,451,546 | 3,429,174 | 2 | T052.out |  
        | T053.in | 40 | 4 | 4,033,428 | 4,008,102 | 2 | T053.out |  
        | T054.in | 40 | 4 | 5,236,308 | 5,220,992 | 2 | T054.out |  
        | T055.in | 40 | 4 | 4,862,746 | 4,858,784 | 3 | T055.out |  
        | T056.in | 50 | 4 | 5,873,224 | 5,859,784 | 2 | T056.out |  
        | T057.in | 50 | 4 | 7,625,870 | 7,615,048 | 1 | T057.out |  
        | T058.in | 50 | 4 | 8,571,836 | 8,551,956 | 4 | T058.out |  
        | T059.in | 50 | 4 | 9,140,418 | 9,124,962 | 9 | T059.out |  
        | T060.in | 50 | 4 | 9,570,288 | 9,538,984 | 13 | T060.out |  
        | T061.in | 30 | 4 | 1,634,521 | 1,626,492 | 1 | T061.out |  
        | T062.in | 30 | 4 | 1,529,052 | 1,522,668 | 1 | T062.out |  
        | T063.in | 30 | 4 | 1,757,462 | 1,752,121 | 1 | T063.out |  
        | T064.in | 30 | 4 | 2,274,902 | 2,267,545 | 1 | T064.out |  
        | T065.in | 30 | 4 | 2,381,008 | 2,374,358 | 2 | T065.out |  
        | T066.in | 40 | 4 | 4,071,690 | 4,067,658 | 2 | T066.out |  
        | T067.in | 40 | 4 | 3,370,689 | 3,359,139 | 2 | T067.out |  
        | T068.in | 40 | 4 | 3,949,386 | 3,938,067 | 3 | T068.out |  
        | T069.in | 40 | 4 | 5,151,559 | 5,141,514 | 1 | T069.out |  
        | T070.in | 40 | 4 | 4,779,908 | 4,771,879 | 2 | T070.out |  
        | T071.in | 50 | 4 | 5,777,086 | 5,766,404 | 2 | T071.out |  
        | T072.in | 50 | 4 | 7,532,987 | 7,521,668 | 3 | T072.out |  
        | T073.in | 50 | 4 | 8,465,723 | 8,455,006 | 4 | T073.out |  
        | T074.in | 50 | 4 | 9,033,458 | 9,026,843 | 9 | T074.out |  
        | T075.in | 50 | 4 | 9,458,232 | 9,441,467 | 12 | T075.out |    References [1] D. Romero, F. Alonso-Pecina, Ad hoc Heuristic for the Cover 
    Printing Problem, submitted to Elsevier [2] Q.-S. Hua, Y. Wang, D. Yu, and F.C.M. Lau, Dynamic programming based 
    algorithms for set multicover and multiset multicover problems, Theoretical 
    Computer Science 411 (2010) 2467--2474. [3] A. Ekici, O. Ergun, P. Keskinocak, and M.G. Lagoudakis, Optimal 
    Job Splitting on a Multi-Slot Machine with Applications in the Printing 
    Industry, Naval Research Logistics 57 (2010) 237--251. [4] M. Balinski, A printing shop problem, personal 
    communication, 1974. [5] M. Naya, Problème du mariage des couvertures posé par 
    la S.A. Casterman, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 
    1986. [6] C. Antoniadis, Problème du mariage des couvertures: 
    Résolution par la méthode du recuit simulé, Graduate Thesis, Université de 
    Mons-Hainaut, Belgium, 1992.  [7] C. Carrein, Problème du mariage des couvertures par 
    la méthode tabou, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 
    1994.  [8] G. Fasbender, A branch and price algorithm for the 
    book cover printing problem, Graduate Thesis, Université Libre de Bruxelles, Belgium, 2000.  [9] L.E. Carrera, Algoritmo para encontrar el óptimo a 
    una simplificación de un problema combinatorio presente en la industria 
    editorial, Graduate Thesis, Mathematics Department, Cinvestav, Mexico City, 
    2006. (in Spanish) [10] J. Teghem, M. Pirlot, C. Antoniadis, Embedding of linear 
    programming in simulated annealing algorithm for solving a mixed integer 
    production planning problem, Journal of Computational and Applied 
    Mathematics 64 (1995), 91-102.  [11] K.F.C. Yiu, K.L. Mak, H.Y.K. Lau, A heuristic for the label printing 
    problem, Computers and Operations Research 34 (2007), 2576-2588 [12] S. Elaoud, J. Teghem, B. Bouaziz, Genetic algorithm to solve the 
    cover printing problem, Computers & Operations Research 34 
    (2007), 3346-3361.  [13] S.R. Mohan, S.K. Neogy, A. Seth, N.K. Garg, S. Mittal, An 
    optimization model to determine master designs and runs for advertisement 
    printing, Journal of Mathematical Modelling and Algorithms 6 
    (2007), 259-271. [14] D. Tuyttens, A. Vandaele, Using a greedy random adaptative search 
    procedure to solve the cover printing problem, Computers & Operations 
    Research, Volume 37, (2010) Issue 4, 640-648.  [15] L. Trilling, Personal Communication, 2006.  
 |