Instances of the Cover Printing Problem

Home Cover Printing


Instances
 

Contact Details

 

David Romero

Universidad Nacional Autónoma de México (UNAM)

Email: davidr@matcuer.unam.mx

 

UNAM

 

free counters

Contents:

 

1. Instances Format

2. Solutions Format

3. Datasets

       3.1 Instances from several sources

       3.2 Instances without costs

       3.3 Instances with known optima

       3.4 Random instances from [1]

       3.5 Random instances from [14]

           

1. Instances Format

The instance files have the following format. All numbers, with the exception of the cost per impression and cost per grid are always integers, all intra-line separators are spaces.

First line:
Number of covers;

Second line:
Grid size;

One line for each cover:
Demand of cover;

Last line:
Cost per impression; Cost per grid;

For example, for an instance having three covers with demand 4500, 9000 and 16000, respectively, with a grid size of 4, with an impression cost 13.44 and a grid cost 18676, the file would have the following format:

3
4
4500
9000
16000
13.44 18676

2. Solutions Format

The solution file has the following format. All numbers, excepting the total cost are always integers (all intra-line separators are spaces). The files have the extension .out and a plain text format.

First line:
Number of grids (Ng);

One line for each grid:
Grid composition, namely, and m-vector whose elements are non-negative integers summing up to t (gridsize), all integers separated by spaces.

Next line:
Number of imprints of each grid; Ng integers separated by spaces.

This line has a vector of size Ng, the first integer is the number of imprints of the first grid, the second integer is the number of imprints of the second grid, and so on.

 

Last line:
Total cost, computed as the total number of imprints times the impression cost, plus the number of grids multiplied by the grid cost.

As an example takes the above input file with 3 covers, then a possible solution in the output file could be:

2

0  1  3

2  2  0

5334  2250

139280.96

The first line indicates that in this solution two grids are to be composed. The second and third lines describe the composition of the first and second grids, respectively; namely the first grid is composed by one plate of the second cover and three plates of the third cover. the second grid is composed by two plates of the first cover and two plates of the second cover. The fourth line indicates that the first grid is to be printed 5334 times and the second grid 2250 times. The total cost is:

Tc = 13.44 * (5334 + 2250) + 2 * 18676 = 101928.93 + 37352 = 139280.96

which is the last line in the file.

3. Datasets

The source for instances below is indicated in brackets. All files instances have extension .in and plain text format. You can download all instances here: Download all instances.

This page contains five sets of instances, each in one separate table. The first set comes from several sources. The second set corresponds to cases where no cost is given because the objective function is to minimize the paper wasted. The third set of instances was generated with known optimal solutions. The fourth set contains random instances from [1], and the fifth set contains random instances from [14].
 

3.1 Instances from several sources

The next table provides thirteen instances where m is the number of covers and t is the gridsize. The first column contains the instance file and the source in brackets. The second and third columns contain the size of m and t, respectively. In the fourth column, we give in brackets the source for the best known solutions, and an asterisk (*) indicates that the value corresponds to the global optimum. The fifth column contains the solution file.

Instance

m

t

Best  known solution

Solution file

  I001.in  [12]

3 4      136,472*      [1,10,12,14]

I001.out

  I002.in  [12] 4 4      247,916*      [1,3,10,12,14] I002.out
  I003.in  [12] 5 4    1,851,948*      [1,14] I003.out
  I004.in  [12] 8 4      264,348*      [1,3,12,14] I004.out
  I005.in    [8] 12 4      269,584*      [1,14] I005.out
  I006.in  [12] 15 4      515,256*      [1,14] I006.out
  I007.in  [15] 9 8

       5,283.53*   [1]

I007.out
  I008.in  [15] 17 8       11,475.52    [1] I008.out
  I009.in  [15] 18 7       11,191.6     [1] I009.out
  I013.in  [14] 30 4    1,759,240       [14]

I013.out

  I014.in  [14] 40 4    2,575,832       [1]

I014.out

  I015.in  [14] 50 4    6,534,556       [1]

I015.out

  I016.in    [1]

100 25      265,918       [1]

I016.out

 

 

3.2 Instances without costs

The next table provides eight instances where the cost per impression and the cost per grid are unknown. In these instances one looks for minimizing the paper waste for a prescribed number of grids. The waste is computed as one hundred multiplied by the total surplus divided by the total demand. In these instances the solution file contains the percentage of waste instead of the total cost. The first column contains the instance file and the source in brackets. The second and third columns contain the size of m and t, respectively. The fourth column is the prescribed number of grids. In the fifth column of this table, the brackets indicated the source where the best solutions were obtained, an asterisk (*) indicates that the value corresponds to the global optimum.

Instance

m

t

  Number of grids

Waste of the best known solution

Solution file

    I010.in [13]

6 4 2       7.533%*     [1,13] I010A.out

    I010.in [13]

6 4 3       1.095%*     [1] I010B.out
    I011.in [11] 18 14 3       5.119%      [1] I011A.out
    I011.in [11] 18 14 4       0.771%      [1] I011B.out
    I011.in [11] 18 14 5       0.437%      [1] I011C.out
    I012.in [11] 22 15 3       6.392%      [1] I012A.out
    I012.in [11] 22 15 4       2.452%      [1] I012B.out
    I012.in [11] 22 15 5       0.482%      [1] I012C.out

 

3.3 Instances with known optima

This table contains 60 instances generated in [1], and whose optimal solutions were previously determined. See [1] for a description of the optimal solutions. These instances were heuristically solved as it is described in [1], yielding the results shown in the last three columns of the table. The fourth column corresponds to the optimal cost. 

Instance

m

t

Optimal cost Obtained cost [1] CPU Time (seconds) Solution file
E001.in 13 6      51,750       54,750             1 E001.out
E002.in 13 6      51,606       54,606             1 E002.out
E003.in 13 6      56,686       56,686             1 E003.out
E004.in 13 6      51,257       54,257             1 E004.out
E005.in 13 6      56,322       56,322             1 E005.out
E006.in 13 6      51,803       54,803             2 E006.out
E007.in 13 6      56,272       59,272             2 E007.out
E008.in 13 6      59,104       59,104             1 E008.out
E009.in 13 6      52,855       52,855             1 E009.out
E010.in 13 6      53,778       53,778             1 E010.out
E011.in 25 8      80,749       84,005             5 E011.out
E012.in 25 8      78,369       78,684             0 E012.out
E013.in 25 8      83,369       83,704             1 E013.out
E014.in 25 8      71,417       77,494             3 E014.out
E015.in 25 8      75,762       81,464             4 E015.out
E016.in 25 8      82,608       88,970             0 E016.out
E017.in 25 8      85,839       86,134             0 E017.out
E018.in 25 8      74,488       78,311             4 E018.out
E019.in 25 8      77,548       83,991             3 E019.out
E020.in 25 8      77,670       84,019             0 E020.out
E021.in 41 10     110,779      117,319            33 E021.out
E022.in 41 10     115,729      122,591            29 E022.out
E023.in 41 10     112,568      116,775            28 E023.out
E024.in 41 10     118,169      124,564            29 E024.out
E025.in 41 10     103,499      106,863            23 E025.out
E026.in 41 10     100,873      105,407            18 E026.out
E027.in 41 10     105,308      111,470            22 E027.out
E028.in 41 10     106,658      110,383            26 E028.out
E029.in 41 10      98,331      104,552            21 E029.out
E030.in 41 10     109,138      112,839            25 E030.out
E031.in 61 12     145,705      153,481            98 E031.out
E032.in 61 12     149,415      158,751            67 E032.out
E033.in 61 12     143,983      150,500            69 E033.out
E034.in 61 12     143,305      147,910           102 E034.out
E035.in 61 12     138,134      144,670            66 E035.out
E036.in 61 12     151,318      157,823            75 E036.out
E037.in 61 12     142,725      152,127            59 E037.out
E038.in 61 12     138,358      141,690            65 E038.out
E039.in 61 12     142,520      148,396            70 E039.out
E040.in 61 12     143,932      150,316            91 E040.out
E041.in 85 14     184,266      188,739           174 E041.out
E042.in 85 14     181,953      188,797           162 E042.out
E043.in 85 14     180,216      187,595             9 E043.out
E044.in 85 14     187,387      194,373           263 E044.out
E045.in 85 14     162,654      169,008           150 E045.out
E046.in 85 14     177,954      185,086            10 E046.out
E047.in 85 14     183,011      189,472           204 E047.out
E048.in 85 14     188,604      190,223            50 E048.out
E049.in 85 14     190,843      194,012           102 E049.out
E050.in 85 14     175,522      182,728           212 E050.out
E051.in 113 16     230,934      239,792            22 E051.out
E052.in 113 16     216,732      224,021           178 E052.out
E053.in 113 16     239,502      247,076            19 E053.out
E054.in 113 16     217,150      221,105            20 E054.out
E055.in 113 16     220,353      222,348            18 E055.out
E056.in 113 16     218,323      224,692            22 E056.out
E057.in 113 16     209,618      215,806           213 E057.out
E058.in 113 16     220,605      227,740            29 E058.out
E059.in 113 16     232,452      240,263            24 E059.out
E060.in 113 16     232,409      240,615            31 E060.out

3.4 Random instances from [1]

The next table corresponds to 120 random instances generated in [1]. These instances were heuristically solved as it is described in [1], yielding the results shown in the last three columns of the table.

Instance

m

t

Obtained cost [1] CPU Time (seconds) Solution file
R001.in 10 6      112,431

             0

R001.out
R002.in 10 6       95,990              2 R002.out
R003.in 10 6       89,566              0 R003.out
R004.in 10 6       91,024              1 R004.out
R005.in 10 6      124,168              0 R005.out
R006.in 10 6       95,290              0 R006.out
R007.in 10 6       89,476              1 R007.out
R008.in 10 6       64,539              1 R008.out
R009.in 10 6      107,766              0 R009.out
R010.in 10 6      106,115              0 R010.out
R011.in 10

8

      82,792              1 R011.out
R012.in 10 8       87,978              0 R012.out
R013.in 10

8

      78,361              0 R013.out
R014.in 10 8       77,106              0 R014.out
R015.in 10

8

      66,712              0 R015.out
R016.in 10 8       76,878              0 R016.out
R017.in 10

8

      62,817              0 R017.out
R018.in 10 8       74,172              0 R018.out
R019.in 10

8

      88,894              0 R019.out
R020.in 10 8       76,921              0 R020.out
R021.in 25 12      128,601              0 R021.out
R022.in 25 12      124,816              1 R022.out
R023.in 25 12      120,665              1 R023.out
R024.in 25 12      134,819              3 R024.out
R025.in 25 12      132,306              0 R025.out
R026.in 25 12      127,978              2 R026.out
R027.in 25 12      116,859              0 R027.out
R028.in 25 12      122,974              1 R028.out
R029.in 25 12      139,761              3 R029.out

R030.in

25 12      152,855              6

R030.out

R031.in 25 16      101,560              1 R031.out
R032.in 25 16      107,327              2 R032.out
R033.in 25 16      108,926              0 R033.out
R034.in 25 16      117,534              1 R034.out
R035.in 25 16       90,293              1 R035.out
R036.in 25 16       92,473              1 R036.out
R037.in 25 16       92,256              1 R037.out
R038.in 25 16      106,009              0 R038.out
R039.in 25 16      107,913              2 R039.out
R040.in 25 16       96,324              0 R040.out
R041.in 50 16      189,253             21 R041.out
R042.in 50 16      195,627             22 R042.out
R043.in 50 16      196,666             13 R043.out
R044.in 50 16      201,876             12 R044.out
R045.in 50 16      222,999             17 R045.out
R046.in 50 16      186,412             11 R046.out
R047.in 50 16      185,067             13 R047.out
R048.in 50 16      184,252             12 R048.out
R049.in 50 16      210,386             12 R049.out
R050.in 50 16      202,643             10 R050.out
R051.in 50 20      145,113             13 R051.out
R052.in 50 20      151,544             16 R052.out
R053.in 50 20      145,687             20 R053.out
R054.in 50 20      162,260             14 R054.out
R055.in 50 20      172,883             16 R055.out
R056.in 50 20      145,464             15 R056.out
R057.in 50 20      145,331             15 R057.out
R058.in 50 20      169,324             16 R058.out
R059.in 50 20      167,109             14 R059.out
R060.in 50 20      159,751             15 R060.out
R061.in 100 12      501,975             87 R061.out
R062.in 100 12      484,739             92 R062.out
R063.in 100 12      532,763            136 R063.out
R064.in 100 12      483,623            136 R064.out
R065.in 100 12      549,673             93 R065.out
R066.in 100 12      499,255             95 R066.out
R067.in 100 12      527,716            138 R067.out
R068.in 100 12      503,971            138 R068.out
R069.in 100 12      531,249            115 R069.out
R070.in 100 12      492,351            155 R070.out
R071.in 100 16      383,644            193 R071.out
R072.in 100 16      385,382            172 R072.out
R073.in 100 16      350,177            223 R073.out
R074.in 100 16      393,316            142 R074.out
R075.in 100 16      377,347            199 R075.out
R076.in 100 16      384,201            203 R076.out
R077.in 100 16      362,790            136 R077.out
R078.in 100 16      383,286            249 R078.out
R079.in 100 16      380,421            146 R079.out
R080.in 100 16      408,601            398 R080.out
R081.in 100 25      254,163            242 R081.out
R082.in 100 25      255,910            252 R082.out
R083.in 100 25      265,873            285 R083.out
R084.in 100 25      260,092            321 R084.out
R085.in 100 25      251,314            267 R085.out
R086.in 100 25      233,874            269 R086.out
R087.in 100 25      253,448            249 R087.out
R088.in 100 25      246,531            306 R088.out
R089.in 100 25      246,524            210 R089.out
R090.in 100 25      249,321            295 R090.out
R091.in 25

8

     195,326              2 R091.out
R092.in 25 8      183,406              0 R092.out
R093.in 25

8

     192,144              0 R093.out
R094.in 25 8      213,047              2 R094.out
R095.in 25

8

     154,142              2 R095.out
R096.in 25 8      184,489              0 R096.out
R097.in 25

8

     212,729              0 R097.out
R098.in 25 8      172,726              2 R098.out
R099.in 25

8

     195,025              2 R099.out
R100.in 25 8      207,749              1 R100.out
R101.in 50 12      259,020             22 R101.out
R102.in 50 12      259,208             26 R102.out
R103.in 50 12      246,165              9 R103.out
R104.in 50 12      255,621             11 R104.out
R105.in 50 12      257,999             14 R105.out
R106.in 50 12      245,518             11 R106.out
R107.in 50 12      273,008             27 R107.out
R108.in 50 12      281,626             29 R108.out
R109.in 50 12      255,731             24 R109.out
R110.in 50 12      275,057             25 R110.out
R111.in 100 20      298,734            320 R111.out
R112.in 100 20      306,723            166 R112.out
R113.in 100 20      327,041            256 R113.out
R114.in 100 20      293,234            177 R114.out
R115.in 100 20      299,499            197 R115.out
R116.in 100 20      296,731            203 R116.out
R117.in 100 20      314,614            214 R117.out
R118.in 100 20      327,867            213 R118.out
R119.in 100 20      286,527            205 R119.out
R120.in 100 20      313,083            296 R120.out

3.5 Random instances from [14]

The next table contains 75 random instances, kindly provided and heuristically solved [14] by Daniel Tuyttens of the University of Mons, Faculté Polytechnique, Belgium. The fourth column is the obtained cost in [14], the fifth and sixth columns are the obtained cost in [1] and the needed CPU time, respectively. The seventh column indicates the file containing the best known solution. 

Instance

m

t

Obtained cost  [14]

Obtained cost [1]

CPU Time (seconds)

File of the best solution
T001.in 30 4     2,268,224      2,252,096         1 T001.out
T002.in 30 4     2,164,736      2,145,920         1 T002.out
T003.in 30 4     2,408,000      2,413,376         1 T003.out
T004.in 30 4     2,977,856      2,937,536         1 T004.out
T005.in 30 4     3,116,288      3,082,688         2 T005.out
T006.in 40 4     4,956,448      4,931,696         1 T006.out
T007.in 40 4     4,287,136      4,235,504         3 T007.out
T008.in 40 4     4,937,632      4,863,824         2 T008.out
T009.in 40 4     6,137,824      6,097,168         1 T009.out
T010.in 40 4     5,789,168      5,717,936         3 T010.out
T011.in 50 4     6,911,632      6,863,248         2 T011.out
T012.in 50 4     8,683,248      8,655,024         1 T012.out
T013.in 50 4     9,748,144      9,607,920         6 T013.out
T014.in 50 4    10,351,712     10,255,168         7 T014.out
T015.in 50 4    10,832,080     10,673,040        13 T015.out
T016.in 30 4     1,969,408      1,950,312         1 T016.out
T017.in 30 4     1,860,264      1,833,384         1 T017.out
T018.in 30 4     2,109,184      2,103,528         1 T018.out
T019.in 30 4     2,676,072      2,626,736         1 T019.out
T020.in 30 4     2,768,920      2,741,648         1 T020.out
T021.in 40 4     4,569,712      4,520,824         2 T021.out
T022.in 40 4     3,857,392      3,824,632         3 T022.out
T023.in 40 4     4,467,848      4,407,368         2 T023.out
T024.in 40 4     5,679,576      5,611,592         1 T024.out
T025.in 40 4     5,322,352      5,268,872         2 T025.out
T026.in 50 4     6,355,328      6,327,104         2 T026.out
T027.in 50 4     8,122,968      8,070,272         2 T027.out
T028.in 50 4     9,750,776      9,047,640         5 T028.out
T029.in 50 4     9,711,520      9,655,632         7 T029.out
T030.in 50 4    10,158,792     10,082,240        13 T030.out
T031.in 30 4     1,804,656      1,778,056         1 T031.out
T032.in 30 4     1,684,648      1,662,929         1 T032.out
T033.in 30 4     1,931,132      1,915,004         1 T033.out
T034.in 30 4     2,452,464      2,436,476         1 T034.out
T035.in 30 4     2,563,484      2,549,372         2 T035.out
T036.in 40 4     4,298,700      4,275,320         2 T036.out
T037.in 40 4     3,594,444      3,569,244         2 T037.out
T038.in 40 4     4,182,976      4,148,172         2 T038.out
T039.in 40 4     5,396,468      5,368,524         2 T039.out
T040.in 40 4     5,021,492      5,001,612         1 T040.out
T041.in 50 4     6,056,512      6,028,288         3 T041.out
T042.in 50 4     7,800,744      7,771,456         2 T042.out
T043.in 50 4     8,770,692      8,720,040         4 T043.out
T044.in 50 4     9,336,516      9,317,840         8 T044.out
T045.in 50 4     9,766,596      9,725,744        13 T045.out
T046.in 30 4     1,692,600      1,678,558         1 T046.out
T047.in 30 4     1,585,080      1,569,549         1 T047.out
T048.in 30 4     1,818,866      1,810,200         1 T048.out
T049.in 30 4     2,338,994      2,326,296         1 T049.out
T050.in 30 4     2,445,170      2,437,778         2 T050.out
T051.in 40 4     4,155,732      4,144,588         1 T051.out
T052.in 40 4     3,451,546      3,429,174         2 T052.out
T053.in 40 4     4,033,428      4,008,102         2 T053.out
T054.in 40 4     5,236,308      5,220,992         2 T054.out
T055.in 40 4     4,862,746      4,858,784         3 T055.out
T056.in 50 4     5,873,224      5,859,784         2 T056.out
T057.in 50 4     7,625,870      7,615,048         1 T057.out
T058.in 50 4     8,571,836      8,551,956         4 T058.out
T059.in 50 4     9,140,418      9,124,962         9 T059.out
T060.in 50 4     9,570,288      9,538,984        13 T060.out
T061.in 30 4     1,634,521      1,626,492         1 T061.out
T062.in 30 4     1,529,052      1,522,668         1 T062.out
T063.in 30 4     1,757,462      1,752,121         1 T063.out
T064.in 30 4     2,274,902      2,267,545         1 T064.out
T065.in 30 4     2,381,008      2,374,358         2 T065.out
T066.in 40 4     4,071,690      4,067,658         2 T066.out
T067.in 40 4     3,370,689      3,359,139         2 T067.out
T068.in 40 4     3,949,386      3,938,067         3 T068.out
T069.in 40 4     5,151,559      5,141,514         1 T069.out
T070.in 40 4     4,779,908      4,771,879         2 T070.out
T071.in 50 4     5,777,086      5,766,404         2 T071.out
T072.in 50 4     7,532,987      7,521,668         3 T072.out
T073.in 50 4     8,465,723      8,455,006         4 T073.out
T074.in 50 4     9,033,458      9,026,843         9 T074.out
T075.in 50 4     9,458,232      9,441,467        12 T075.out

 

References

[1] D. Romero, F. Alonso-Pecina, Ad hoc Heuristic for the Cover Printing Problem, submitted to Elsevier

[2] Q.-S. Hua, Y. Wang, D. Yu, and F.C.M. Lau, Dynamic programming based algorithms for set multicover and multiset multicover problems, Theoretical Computer Science 411 (2010) 2467--2474.

[3] A. Ekici, O. Ergun, P. Keskinocak, and M.G. Lagoudakis, Optimal Job Splitting on a Multi-Slot Machine with Applications in the Printing Industry, Naval Research Logistics 57 (2010) 237--251.

[4] M. Balinski, A printing shop problem, personal communication, 1974.

[5] M. Naya, Problème du mariage des couvertures posé par la S.A. Casterman, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1986.

[6] C. Antoniadis, Problème du mariage des couvertures: Résolution par la méthode du recuit simulé, Graduate Thesis, Université de Mons-Hainaut, Belgium, 1992.

[7] C. Carrein, Problème du mariage des couvertures par la méthode tabou, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1994.

[8] G. Fasbender, A branch and price algorithm for the book cover printing problem, Graduate Thesis, Université Libre de Bruxelles, Belgium, 2000.

[9] L.E. Carrera, Algoritmo para encontrar el óptimo a una simplificación de un problema combinatorio presente en la industria editorial, Graduate Thesis, Mathematics Department, Cinvestav, Mexico City, 2006. (in Spanish)

[10] J. Teghem, M. Pirlot, C. Antoniadis, Embedding of linear programming in simulated annealing algorithm for solving a mixed integer production planning problem, Journal of Computational and Applied Mathematics 64 (1995), 91-102.

[11] K.F.C. Yiu, K.L. Mak, H.Y.K. Lau, A heuristic for the label printing problem, Computers and Operations Research 34 (2007), 2576-2588

[12] S. Elaoud, J. Teghem, B. Bouaziz, Genetic algorithm to solve the cover printing problem, Computers & Operations Research 34 (2007), 3346-3361.

[13] S.R. Mohan, S.K. Neogy, A. Seth, N.K. Garg, S. Mittal, An optimization model to determine master designs and runs for advertisement printing, Journal of Mathematical Modelling and Algorithms 6 (2007), 259-271.

[14] D. Tuyttens, A. Vandaele, Using a greedy random adaptative search procedure to solve the cover printing problem, Computers & Operations Research, Volume 37, (2010) Issue 4, 640-648.

[15] L. Trilling, Personal Communication, 2006.