On foliations by curves in the projective plane having a very special subscheme of its singularities.

Jorge Olivares

Abstract

Let \mathbb{P}^2 denote the complex projective plane and $\Omega_{\mathbb{P}^2}^1$ and $\Theta_{\mathbb{P}^2}$ its cotangent and tangent sheaves, respectively. A foliation by curves with singularities (a *foliation* in the sequel) of degree r on \mathbb{P}^2 is the class

$$\mathcal{F} = [\Omega] \in \mathbb{P}\mathrm{H}^0(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(r+2)) \text{ (or } [\alpha] \in \mathbb{P}\mathrm{H}^0(\mathbb{P}^2, \Theta_{\mathbb{P}^2}(r-1)))$$

of a global section $\Omega \in \mathrm{H}^0(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(r+2))$. In affine coordinates (X_0, X_1, X_2) of \mathbb{C}^3 , the section Ω corresponds to a 1-form $\Omega = \sum_{i=0}^2 A_i dX_i$, where A_i are homogeneous polynomials of degree r+1 satisfying the Euler condition $\sum_{i=0}^2 X_i A_i = 0$.

The singular scheme $S(\mathcal{F})$ of \mathcal{F} is the scheme of zeroes of a section $\Omega \in \mathcal{F}$ and we say that \mathcal{F} has isolated singularities if $S(\mathcal{F})$ is zero-dimensional.

A foliation with isolated singularities is determined by its singular scheme in the following sense: Let \mathcal{F} and \mathcal{F}' be two foliations of degree $r \geq 2$, on \mathbb{P}^2 . If \mathcal{F} has isolated singularities and $S(\mathcal{F}') \supseteq S(\mathcal{F})$, then $\mathcal{F}' = \mathcal{F}$ (see [1]).

Assume that \mathcal{F} has isolated singularities. If moreover $S(\mathcal{F})$ is reduced, then there exist proper subschemes $Z \subset S(\mathcal{F})$ which still determine \mathcal{F} in the sense above: if $S(\mathcal{F}') \supseteq Z$, then $\mathcal{F}' = \mathcal{F}$. Such subschemes were called *special* in [2].

A very special subscheme $\hat{Z} \subset S(\mathcal{F})$ is one that determines \mathcal{F} in the sense above and whose degree $\deg \hat{Z}$ is minimal with respect to this property.

In the talk we will compute the minimal degree $\mu(2, r-1)$ from above and will prove that the set of foliations of degree r whose singular scheme contains a very special subscheme contains a non-empty open set.

Most of this work is join with A. Campillo.

- A. Campillo, J. Olivares. On sections with isolated singularities of twisted bundles and applications to foliations by curves, Math. Res. Lett., 10, 2003, 651-658.
- 2. A. Campillo, J. Olivares. Special subschemes of the scheme of singularities of a plane foliation, C. R. Math. Acad. Sci. Paris, 344, 2007, 9, 581-585.