Algebraic K-Theory*

D. G. Quillen

Abstract

This is an introductory course, with emphasis on concrete examples rather than general theory. The low dimensional K-groups K_0 , K_1 , and K_2 are defined explicitly and computed in examples related to number theory and arithmetic. There are also some discussion of the definition and properties of the higher algebraic K-groups.

Contents

1	Projective Modules	2
2	The Universal Group	3
3	The Group K_0A	4
4	Serre-Swan Theorem	5
5	The Group K_1A	7
6	The Group K_2A	10
7	Motivation	12
8	Central Extensions	12
9	Group Cohomology	16
10	Topological Interpretation	16
11	The + Construction	19
12	Acyclic Maps	23

1

^{*}Course given in the LMS-EPSRC INSTRUCTIONAL CONFERENCE ON K-THEORY. From 9th to 15th July, 1995 Lancaster University. Based in lecture notes by J. L. Cisneros-Molina.

LECTURE 1

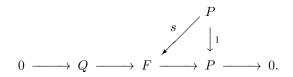
1 Projective Modules

Definition: Let A be a ring with 1 and let P, M and M' be A-modules. An A-module P is projective if for every homomorphism $f: P \to M$ and for every epimorphism $p: M' \to M$, there exists an homomorphism $s: P \to M'$ such that $p \circ s = f$.

Example 1 Every free module is projective.

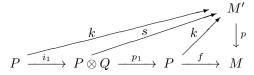
Proposition 1 An A-module P is projective if and only if P is a summand of a free A-module.

PROOF: Let P be a projective module. On the commutative diagram (1) take M' = F, M = P and $f = 1_P$ where F is a free A-module and $f = 1_P$ is the identity on P. Let $Q = \ker(P)$, then we have the following exact sequence



The existence of s implies that the sequence splits and therefore $F = P \oplus Q$.

Now let F be a free A-module such that $F = P \oplus Q$. Let $f: P \to M$ be a homomorphism and let $p: M' \to M$ be an epimorphism. Considere the following diagram



where $i_1: P \to F$ is the inclusion and $p_1: F \to P$ is the projection onto the first summand. Since F is projective, there exists s such that $p \circ s = f \circ p_1$. Let $k = s \circ i_1: P \to M'$, then

$$p \circ k = p \circ s \circ i_1 = f \circ p_1 \circ i_1 = f$$

since $p_1 \circ i_1 = 1_P$.

Proposition 2 The following statements are equivalent:

- i) P is a finitely generated projective A-module.
- ii) There exists $n \in \mathbb{N}$ and an A-module Q such that $P \oplus Q = A^n$.
- iii) There exists $n \in \mathbb{N}$ and $e \in M_n A$, the $n \times n$ matrices with entries in A, such that $e = e^2$ and $P = A^n e$.

Let \mathbb{P}_A be the category of finitely generated projective A-modules and let $\operatorname{Iso}(\mathbb{P}_A)$ be the isomorphism classes of \mathbb{P}_A , $\operatorname{Iso}(\mathbb{P}_A)$ is an abelian monoid under the operation

$$\langle P \rangle + \langle Q \rangle = \langle P \oplus Q \rangle$$

where $\langle P \rangle$ denotes the isomorphism class of the projective A-module P.

2 The Universal Group

Definition: Let I be an abelian monoid. Then there exist an abelian group $I^{\#}($ unique up to isomorphism) called *the universal group of* I or *the Grothendiek group of* I and a homomorphism $\phi: I \to I^{\#}$ which have the following *universal property:* Given a homomorphism $h: I \to G$ from I to an arbitrary group G there is a unique homomorphism of abelian groups $h': I^{\#} \to G$ such that the following diagram is commutative

$$\begin{array}{ccc} I & \stackrel{\phi}{\to} & I^{\#} \\ h \searrow & \swarrow & h' \\ G \end{array}$$

2.1 Three constructions of $I^{\#}$

- 1. $I^{\#}$ is the free abelian group with generators $[\alpha]$ with $\alpha \in I$ under the relations $[\alpha + \beta] = [\alpha] + [\beta]$.
- 2. Consider the relation \sim in $I \times I$ given by

$$(\alpha, \beta) \sim (\alpha', \beta') \Leftrightarrow \exists \gamma \in I \text{ such that}$$

 $\alpha + \beta' + \gamma = \alpha' + \beta + \gamma.$

This is an equivalence relation. Then $I^{\#} = I \times I / \sim$ and the operation is defined by

 $(\alpha, \beta) + (\alpha', \beta') = (\alpha + \alpha', \beta + \beta')$

with identity (0,0) and inverse $-(\alpha,\beta) = (\beta,\alpha)$.

3. Assume that there exist $\alpha_0 \in I$ such that for every $\alpha \in I$ there exists $n \in \mathbb{N}$ and $\beta \in I$ such that $\alpha + \beta = n\alpha_0$. Then $I^{\#} = I \times \mathbb{N}/\sim$ where

 $(\alpha, n) \sim (\alpha', n') \Leftrightarrow \exists m \in \mathbb{N} \text{ such that}$ $\alpha + n'\alpha_0 + m\alpha_0 = \alpha' + n\alpha_0 + m\alpha_0.$ This different abelian groups all have the required universal property. In the case of the construction 3 this is given by the following diagram

 $\begin{array}{ccc} I & \stackrel{\phi}{\to} & I \times \mathbb{N}/\sim & & \phi(\alpha) = (\alpha, 0) \\ f\searrow & \swarrow u & & (\alpha, n) = \phi(\alpha) - n\phi(\alpha_0) \\ G & & \text{Define } u(\alpha, n) = f(\alpha) - nf(\alpha_0). \end{array}$

3 The Group K_0A

Definition: Let $K_0A = \operatorname{Iso}(\mathbb{P}_A)^{\#}$ i.e., the universal group of the abelian monoid $\operatorname{Iso}(\mathbb{P}_A)$.

According with the different constructions of the universal group, we can consider K_0A in three different ways

1. K_0A is the free abelian group with generators [P] for every $P \in \mathbb{P}_A$ subject to the relations

$$[P \oplus Q] = [P] + [Q].$$

- 2. K_0A is the group of differences [P] [Q].
- 3. K_0A is the group of differences $[P] [A^n]$.

Example 2 Let F be a field or a skew-field, then \mathbb{P}_F is the set of vector spaces over F. The equivalence classes are characterized by the dimension of the vector spaces, therefore $\operatorname{Iso}(\mathbb{P}_F) \cong \mathbb{N}$ and $K_0F = \mathbb{Z}$.

Example 3 Let $A = \mathbb{Z}$. Then $\mathbb{P}_{\mathbb{Z}}$ comprises the finitely generated free abelian groups \mathbb{Z}^n for $n \geq 0$. Therefore $\operatorname{Iso}(\mathbb{P}_{\mathbb{Z}}) \cong \mathbb{N}$ and $K_0\mathbb{Z} = \mathbb{Z}$. The same holds for principal ideal domains (P.I.D.).

Example 4 Let A a Dedekind domain, (e.g., let F be a number field (finite \mathbb{Q} -extension), then A is the integral clousure of \mathbb{Z} in F). A *fractional ideal* is a finitely generated A-submodule. Let

$$Pic(A) = ideal class group of A = \frac{fractional ideals}{principal fractional ideals}$$

then we have that $P \in \mathbb{P}_A$ if and only if P can be written as

 $P = a_1 \oplus \cdots \oplus a_n$ a_i fractional ideals.

Then it turns out that

$$K_0 A = \mathbb{Z} \oplus Pic(A)$$
$$[A_1 \oplus \dots \oplus A_n] \mapsto (n, \text{ideal class of } \{A_1 \dots A_n\})$$

4 Serre-Swan Theorem

Definition: A vector bundle consists of a space E, a continuous map $\pi: E \to X$ and a structure of complex vector space on each fibre $E_x = \pi^{-1}\{x\}$ such that this situation is locally trivial, i.e., there exists a covering U_{α} and isomorphisms

$$E|_{U_{\alpha}} \cong \mathbb{C}^{n_{\alpha}}_{U_{\alpha}}$$

respecting the structure of vector space on the fibres. Here $\mathbb{C}_{U_{\alpha}}^{n_{\alpha}}$ denotes the trivial bundle over U_{α}

$$U_{\alpha} \times \mathbb{C}^{n_{\alpha}} \xrightarrow{\text{proj}} U_{\alpha}.$$

Definition: A vector bundle map between two vector bundles $\pi: E \to X$ and $\pi': E' \to X$ is a map $\phi: E \to E'$ such that the following diagram commutes

$$\begin{array}{cccc}
E & \stackrel{\phi}{\to} & E' \\
\pi \searrow & \swarrow & \pi' \\
X
\end{array}$$

and restricted to the fibres is a linear transformation of vector spaces.

Theorem 1 (Serre-Swan) Let X be a compact Hausdorff space and let A = C(X) the continuous complex valued functions on X. Then \mathbb{P}_A is equivalen to the category of complex vector bundles over X.

To prove the theorem we need the following lemmas

Lemma 1 If e is an idempotent endomorphism of a vector bundle E over X, then eE and $e^{\perp}E = (1 - e)E$ are vector bundles.

PROOF: We need to show that eE is locally trivial. Since this is a local question, we can assume that E is the trivial bundle $E = \mathbb{C}_X^n$. Then e is a continuous family $\{e_x\}$ of idempotent matrices $n \times n$ in $M_n(\mathbb{C})$. Fix a point x_0 in X and put

 $T_x = e_x e_{x_0} + e_x^{\perp} e_{x_0}^{\perp} \colon \mathbb{C} \to \mathbb{C}.$

This is a continuous family of matrices such that

- a) $e_x T_x = T_x e_{x_0}$.
- b) $T_x = 1$ at $x = x_0$.

We have that b) implies that T_x^{-1} exists for x near x_0 , then $T = \{T_x\}$ gives an automorphism of \mathbb{C}^n such that $T^{-1}eT$ is constant for all values e_{x_0} .

Lemma 2 Given E a vector bundle over X there exists another vector bundle E' such that $E \oplus E'$ is isomorphic to \mathbb{C}^n_X for some n.

PROOF: Since we are assuming X compact, there exists a finite open covering U_{α} and isomorphisms

$$g_{\alpha} \colon E|_{u_{\alpha}} \to \mathbb{C}^{n_{\alpha}}_{U_{\alpha}} \qquad \alpha = 1, \dots, N.$$

Choose a partition of unity $\{\rho_{\alpha}\}$, i.e., a family of functions $\rho_{\alpha} \colon X \to \mathbb{C}$ such that supp $\rho_{\alpha} \subset U_{\alpha}, \ \rho_{\alpha} \ge 0$ and $\sum \rho_{\alpha} = 1$. Let

$$\chi_{\alpha} = \frac{\rho_{\alpha}}{\sum \rho_{\alpha}^2}$$

then we have that $\sum \chi_{\alpha}^2 = 1$. Now define the maps $i: E \to \bigoplus_{\alpha=1}^N \mathbb{C}_{U_{\alpha}}^{n_{\alpha}}$ and $p: \bigoplus_{\alpha=1}^N \mathbb{C}_{U_{\alpha}}^{n_{\alpha}} \to E$ by

$$E \xrightarrow{i = \begin{pmatrix} \chi_1 g_1 \\ \vdots \\ \chi_N g_N \end{pmatrix}} \bigwedge_{\alpha = 1}^N \mathbb{C}_{U_{\alpha}}^{n_{\alpha}} \xrightarrow{p = (\chi_1 g_1^{-1}, \dots, \chi_N g_N^{-1})} E$$

then we have that

$$p \circ i = \sum \chi_{\alpha} g_{\alpha}^{-1} \chi_{\alpha} g_{\alpha} = \sum \chi_{\alpha}^{2} = 1.$$

Therefore E is a retract of $\bigoplus_{\alpha=1}^{N} \mathbb{C}_{U_{\alpha}}^{n_{\alpha}}$. Since $p \circ i = 1$, then $(i \circ p)^2 = i \circ p$ and by Lemma 1 we have

$$\bigoplus_{\alpha=1}^{N} \mathbb{C}_{U_{\alpha}}^{n_{\alpha}} = (i \circ p) \left(\bigoplus_{\alpha=1}^{N} \mathbb{C}_{U_{\alpha}}^{n_{\alpha}} \right) \oplus (i \circ p)^{\perp} \left(\bigoplus_{\alpha=1}^{N} \mathbb{C}_{U_{\alpha}}^{n_{\alpha}} \right).$$

PROOF OF SERRE-SWAN THEOREM: Recall that A = C(X). Let Vect(X) be the category of vector bundles over X. Let $\pi: E \to X$ a vector bundle in Vect(X), we denote by $\Gamma(X, E)$ the set of sections of E, i.e., the set of maps $s: X \to E$ such that $\pi \circ s = 1_X$. We have a funtor from Vect(X) to the category of A-modules given by

$$Vect(X) \xrightarrow{\Gamma} A$$
-modules
 $E \mapsto \Gamma(X, E).$

Actually, Γ is a funtor from Vect(X) to \mathbb{P}_A , the category of finitely generated projective A-modules, since by lemma 2 E is a direct summand of a trivial bundle and hence $\Gamma(E)$ is a direct summand of $\Gamma(X, \mathbb{C}_X^n) = A^n$ which is a finitely generated free A-module, therefore by proposition 1 $\Gamma(E)$ is projective.

To prove the equivalence of the categories Vect(X) and \mathbb{P}_A we have to see that the funtor $\Gamma: Vect(X) \to \mathbb{P}_A$ is:

fully faithfull We need to show that

$$\operatorname{Hom}_{Vect}(E, E') \cong \operatorname{Hom}_{A}(\Gamma(E), \Gamma(E'))$$
(2)

But if this is true for the bundles $E = E_1$ and $E = E_2$ then it is true for the bundle $E = E_1 \oplus E_2$ and if it is true for E, then it is true for any summand of E (retract of an isomorphism is an isomorphism). Hence it reduces to E trivial but in this case is clear.

surjective Let $P \in \mathbb{P}_A$, by proposition 2 iii) there exists $n \in \mathbb{N}$ and an idempotent $e \in \operatorname{Hom}_A(P, P)$ such that $P = A^n e$. Since the funtor is fully faithfull there exists and idempotent $\hat{e} \in \operatorname{Hom}_{Vect}(\mathbb{C}^n_X, \mathbb{C}^n_X)$ corresponding to e under the isomorphism (2). By lemma 1 $\hat{e}\mathbb{C}^n_X \in Vect(X)$ and we have that $\Gamma(\hat{e}\mathbb{C}^n_X) = P.$

LECTURE 2

The Group K_1A $\mathbf{5}$

Let $GL_n(A)$ denote the invertible $n \times n$ matrices over A. We have an inclusion $GL_n(A) \subset GL_{n+1}(A)$ given by $\alpha \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$, and we can define

$$GL(A) = \bigcup_{n} GL_n(A).$$

Definition: Let e_{ij} , $(i \neq j)$ be the matrix with 1 in the *i*-th row, *j*-th column and zero elsewhere. Let $a \in A$, an elementary matrix e_{ij}^a is a matrix of the form

$$e_{ij}^a = 1 + e_{ij}.$$

It is easy to check the following relations:

$$e_{ij}e_{kl} = \delta_{jk}e_{il} \tag{3}$$

$$e^{a}_{ij}e^{b}_{ij} = e^{a+b}_{ij}$$
(4)

where δ_{ij} is the Kronecker delta defined by $\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Definition: The commutator [x, y] of two elements x and y of a group is defined by

$$[x, y] = xyx^{-1}y^{-1}.$$
$$[x, y]^{-1} = [y, x].$$
 (5)

It is immediate that

Proposition 3 The commutator of elementary matrices satisfies the following realtions:

$$[e_{ij}^{a}, e_{kl}^{b}] = \begin{cases} 1 & j \neq k \text{ and } i \neq l \\ e_{il}^{ab} & \text{if } j = k \text{ and } i \neq l \\ e_{kj}^{-ba} & \text{if } j \neq k \text{ and } i = l \end{cases}$$

PROOF: We will check the last two cases, the other is similar. Using the relations (3) and (4) in the definition of the commutator we have:

$$e_{ij}^{a}e_{jl}^{b} = (1 + ae_{ij})(1 + be_{jl})$$

= 1 + ae_{ij} + be_{jl} + abe_{il}
$$e_{ij}^{a}e_{jl}^{b}e_{ij}^{-a} = (1 + ae_{ij} + be_{jl} + abe_{il})(1 - ae_{ij})$$

= 1 + ae_{ij} + be_{jl} + abe_{il} - ae_{ij}
= 1 + be_{jl} + abe_{il}
$$[e_{ij}^{a}, e_{jl}^{b}] = (1 + be_{jl} + abe_{il})(1 - be_{jl})$$

= 1 + be_{jl} + abe_{il} - be_{jl}
= e_{il}^{ab}.

For the last case we use (5) and the previous case:

.

$$\begin{split} [e^a_{ij}, e^b_{ki}] &= [e^b_{ki}, e^a_{ij}]^{-1} \\ &= (e^{ba}_{kj})^{-1} \\ &= e^{-ba}_{kj} \end{split}$$

Definition: The elementary group $E_n(A)$ is the subgroup of $GL_n(A)$ generated by e_{ij}^a for $1 \leq i, j \leq n, i \neq j$ and $a \in A$. The inclusion $GL_n(A) \hookrightarrow$ $GL_{n+1}(A)$ restricts to the inclusion $E_n(A) \hookrightarrow E_{n+1}(A)$ and we can define

$$E(A) = \bigcup_{n} E_n(A).$$

Definition: A group G is called *perfect* if it is equal to its *commutator* subgroup [G, G], i.e., [G, G] is the subgroup generated by [g, g'] for every g and g' in G. The group $G_{ab} = G/[G, G]$ is the maximal abelian quotient group of G.

Proposition 4 $E_n(A)$ is perfect for $n \ge 3$.

PROOF: Given *i* and *k* choose *j* such that $j \neq i$ and $j \neq k$. Then by proposition 3 we have that

$$e_{ik}^{a} = [e_{ij}^{a}, e_{jk}^{1}] \in [E_n(A), E_n(A)],$$

this shows that all generators are commutators.

Lemma 3 (Whitehead) E(A) = [GL(A), GL(A)].

PROOF: By proposition 4 we have that for $n \geq 3$, $[E(A), E(A)] = E(A) \subset GL(A)$. We only need to show that $[GL(A), GLA] \subset E(A)$. Let $\alpha \in GL_n(A)$ and let I be the $n \times n$ identity matrix. We have that

$$\begin{pmatrix} I & \alpha \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ -\alpha^{-I} & I \end{pmatrix} \begin{pmatrix} I & \alpha \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 & \alpha \\ -\alpha^{-I} & 0 \end{pmatrix}$$

is in $E_{2n}(A)$ since $\begin{pmatrix} I & \alpha \\ 0 & I \end{pmatrix}$ can be expressed as product of elementary matrices as follows

$$\begin{pmatrix} I & \vdots & \vdots \\ \alpha_{n,n+1} & \dots & \alpha_{n,2n} \\ \hline 0 & I \end{pmatrix} = \prod_{\substack{1 \le i \le n \\ n+1 \le j \le 2n}} e_{ij}^{\alpha_{ij}}$$
(6)

and analogously for $\begin{pmatrix} I & 0 \\ -\alpha^{-1} & I \end{pmatrix}$. Now consider

$$\begin{pmatrix} 0 & \alpha \\ -\alpha^{-1} & 0 \end{pmatrix} \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$$

which is also in $E_{2n}(A)$ since $\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$ can be reduced to I_{2n} using elementary operations by rows:

$$\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \sim \begin{pmatrix} I & -I \\ I & 0 \end{pmatrix} \sim \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}.$$

Hence

$$\begin{pmatrix} [\alpha,\beta] & & \\ & I \end{pmatrix} = \\ \begin{pmatrix} \alpha & & \\ & \alpha^{-1} & \\ & & I \end{pmatrix} \begin{pmatrix} \beta & & \\ & I & \\ & & \beta^{-1} \end{pmatrix} \begin{pmatrix} \alpha & & \\ & \alpha^{-1} & \\ & & I \end{pmatrix}^{-1} \begin{pmatrix} \beta & & \\ & I & \\ & & \beta^{-1} \end{pmatrix}^{-1}$$

where all the matrices in the right hand side are in $E_{3n}(A)$. Therefore the image of $[GL_n(A), GL_n(A)]$ in $GL_{3n}(A)$ is contained in $E_{3n}(A)$ and taking the union over n we get

$$[GL(A), GL(A)] \subset E(A)$$

finishing the proof of the lemma.

Definition: Let $K_1A = GL(A)_{ab} = GL(A)/E(A)$ i.e., the maximal abelian quotient group of GL(A).

Example 5 Let F be a field. Left multiplication by e_{ij}^a add a times the j-th row to the *i*-th row. It is known that $E(F) = \ker\{GL_n(F) \xrightarrow{\det} F^{\times}\}$ where F^{\times} comprises the non-zero elements under the multiplication. Hence $GL_n(F)/E_n(F) = F^{\times}$.

6 The Group K_2A

Definition: Let $n \ge 2$. The *Steinberg group* $St_n(A)$ (also St(A)) is the group with generators x_{ij}^a with $i \ne j$ and $a \in A$ subjet to the relations

$$x_{ij}^a x_{ij}^b = x_{ij}^{a+b} \tag{7}$$

$$[x_{ij}^{a}, x_{kl}^{b}] = \begin{cases} 1 & j \neq k \text{ and } i \neq l \\ x_{il}^{ab} & \text{if } j = k \text{ and } i \neq l \\ x_{kj}^{-ba} & \text{if } j \neq k \text{ and } i = l. \end{cases}$$
(8)

There is a canonical surjection

$$St(A) \xrightarrow{\phi} E(A)$$

given by

$$\phi(x_{ij}^a) = e_{ij}^a \tag{9}$$

Definition: The group K_2A is defined as the kernel of the canonical surjection (9) i.e.

$$K_2A = \ker\{\phi \colon St(A) \to E(A)\}.$$

Definition: The *center* of a group G is defined by

$$Z(G) = \{ x \in G | xg = gx \ \forall g \in G \}$$

Lemma 4 Z(E(A)) = 1

PROOF: Let α be in the center of E(A) an *n* sufficiently big such that $\alpha \in E(A)$ Hence in $E_{2n}(A)$ we have that

$$\begin{pmatrix} \alpha & \alpha \\ 0 & I \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} \alpha & I \\ 0 & I \end{pmatrix}$$

and therefore $\alpha = I$ and Z(E(A)) = 1.

Proposition 5 ker $\phi = Z(St(A))$.

PROOF: Firstly let show that $Z(St(A)) \subset \ker \phi$. Let β be in the center of St(A) and $\gamma = \phi(\beta) \in E(A)$, where ϕ is the canonical surjection (9). Since ϕ is surjective, $\gamma \in Z(E(A))$. Hence by lemma $4 \gamma = 1$ and $\beta \in \ker \phi$.

Now let show that ker $\phi \subset Z(St(A))$. Let C_n the subgroup of St(A) generated by x_{in}^a with $i \neq n, a \in A$ and fixed n.

Claim The restriction of ϕ to C_n

$$\phi|_{C_n} \colon C_n \to \phi(C_n)$$

is injective.

PROOF OF CLAIM: Since $[x_{in}^a, x_{jn}^b] = 1$ C_n is abelian and any element γ of C_n can be written as a finite product $\gamma = \prod_{i \neq n} x_{in}^{a_i}$. Hence

$$\phi(\gamma) = \prod_{i \neq n} e_{in}^{a_i} = \begin{pmatrix} 1 & & a_1 \\ 1 & & a_2 \\ & \ddots & & \vdots \\ & & 1 & a_{n-1} \\ & & & 1 \\ & & & a_{n+1} & 1 \end{pmatrix}$$

and therefore $\phi(C_n) \cong \bigoplus_{i \neq n} A$. Consider now the following surjection

$$\bigoplus_{i \neq n} A \xrightarrow{\psi} C_n$$
$$(a_i)_{i \neq n} \mapsto \prod_{i \neq n} x_{in}^{a_i}$$

Since the $x_{in}^{a_i}$ commute this product is independent of ordering if ψ is an homomorphism, but by (7)

$$(a_i + a'_i) \mapsto \prod_{i \neq n} x_{in}^{a_i + a'_i} = \prod_{i \neq n} x_{in}^{a_i} x_{in}^{a'_i} = \prod_{i \neq n} x_{in}^{a_i} \prod_{i \neq n} x_{in}^{a'_i}$$

and we get the following commutative diagram

which clearly implies the claim.

PROOF OF THE PROPOSITION: Take $\alpha \in \ker \phi$ and write it as a finite product of x_{ij}^a 's. Choose *n* different from any *i*, *j* ocurring in the representation of α . Then α normalizes C_n , i.e. $\alpha C_n \alpha^{-1} \subset C_n$ since

$$x_{ij}^{a} x_{kn}^{b} x_{ij}^{-a} = \begin{cases} x_{kn}^{b} & \text{if } k \neq i, j \\ x_{in}^{ab} x_{jn}^{-b} & k = j. \end{cases}$$
(10)

 \square

Let $\gamma \in C_n$. Then $\alpha \gamma \alpha^{-1} \in C_n$ and $\phi(\alpha \gamma \alpha^{-1}) = \phi(\gamma)$ because $\alpha \in \ker \phi$. By the claim $\phi|_{C_n}$ is injective and $\alpha \gamma \alpha^{-1} = \gamma$. Therefore α centralizes C_n . Similarly, let R_n be the subgroup of St(A) generated by x_{nj}^a with $j \neq n, a \in A$ and n fixed as before. By a similar argument α centralizes R_n , but $C_n \cup R_n$ generates St(A) since if $i \neq j$

$$x_{ij}^a \in C_n \text{ if } j = n$$
$$x_{ij}^a \in R_n \text{ if } i = n$$

and $x_{ij}^a = [x_{in}^a, x_{nj}^1] \in [C_n, R_n]$ if $i \neq n$ and $j \neq n$. Therefore α centralizes St(A), i.e. ker $\phi \subset Z(St(A))$.

LECTURE 3

7 Motivation

In section 5 we defined $K_1 A$ as

$$K_1A = GL(A)/E(A).$$

From topological K-Theory we have that

$$K^{-1}(X) = [X, GL(\mathbb{C})]$$

 \mathbf{but}

$$\operatorname{Hom}(X, GL(\mathbb{C})) = GL_n(\mathbb{C}).$$

and $\begin{pmatrix} 1 & ta \\ 0 & 1 \end{pmatrix}$ is a homotopy from $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, so elementary matrices are homotopic to the identity. Therefore $K_1(C(X))$ is the algebraic analogue of $K^{-1}(X)$.

For $K^{-2}(X)$ we have

$$K^{-2}(X) = K^{-1}(SX) = [SX, GL(\mathbb{C})]$$

= [S¹, Hom(X, GL(\mathbb{C}))] = [S¹, GL(C(X))].

So think on "loops in GL(C(X))". A chain of elementary matrices gives relations between them. On the other hand $K_2A = \ker \phi$ also gives relations between elementary matrices.

8 Central Extensions

Definition: A *central extension* of a group G is an exact sequence of groups

$$1 \to K \to E \to G \to 1$$

such that $K \subset Z(E)$, where Z(E) denotes the center of E.

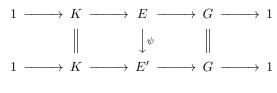
Definition: Two central extensions

$$1 \to K \to E \to G \to 1$$

and

$$1 \to K \to E' \to G \to 1$$

are equivalent if there exists an isomorphism $\psi \colon E \to E'$ such that the following diagram commutes



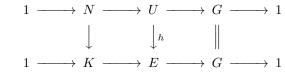
Definition: An *universal central extension* of a group G is a central extension

 $1 \to N \to U \to G \to 1$

such that, given any central extension

$$1 \to K \to E \to G \to 1$$

there exists a unique homomorphism $h \colon U \to E$ such that the following diagram commutes



Note that if there exists a universal central extension this is unique up to isomorphism.

The following theorem is a well known characterization of universal central extensions.

Theorem 2 A central extension

$$1 \to N \to U \to G \to 1$$

is universal if and only if U is perfect and every central extension of U splits.

An immediate consequence of the definition of St(A) is that it is perfect. By proposition 5 ker $\phi = Z(St(A))$ and we have the canonical central extension

$$1 \to K_2 A \to St(A) \to E(A) \to 1.$$

In fact, this is the universal central extension of E(A) and to see this by theorem 2 it is enough to prove:

Theorem 3 Any central extension

$$1 \to C \to Y \xrightarrow{\psi} St(A) \to 1$$

splits, i.e. there exists an homomorphism s such that $\psi s = identity$.

Corolary 1 If Y = [Y, Y], then $Y \xrightarrow{\sim} St(A)$.

Basic idea Suppose $y_1, y_2 \in Y$ are such that $\psi(y_1) = \psi(y_2)$ i.e. $y_1 = cy_2$ with $c \in C$. Then

$$[y, y'] = [cy_2, y'] = cy_2 y' (cy_2)^{-1} {y'}^{-1} = cy_2 y' y_2^{-1} c^{-1} {y'}^{-1} = [y_2, y'].$$

hence for $x \in St(A)$ $[\psi^{-1}(x), y']$ is a well defined element of Y, similarly $[\psi^{-1}(x), \psi^{-1}(x')]$ is a well defined element of Y. Since by the relations (8) $x_{ij}^a = [x_{in}^a, x_{nj}^1]$ for $n \neq i, j$, we can define s by

$$s(x_{ij}^a) = [\psi^{-1}(x_{in}^a), \psi^{-1}(x_{nj}^1)]$$

The hard point is to prove that this is independent of the choose of n.

Lemma 5 $[\psi^{-1}(x_{ij}^a), \psi^{-1}(x_{kl}^b)] = 1$ if $j \neq k$ and $i \neq l$.

PROOF: Choose n different from k, l, i and j, then

$$[\psi^{-1}(x_{kn}^b),\psi^{-1}(x_{nl}^1)] \subset \psi^{-1}[x_{kn}^b,x_{nl}^1] = \psi^{-1}(x_{kl}^b)$$

and therefore

$$[\psi^{-1}(x_{ij}^a),\psi^{-1}(x_{kl}^b)] = [\psi^{-1}(x_{ij}^a),[\psi^{-1}(x_{kn}^b),\psi^{-1}(x_{nl}^1)]]$$

Choose $v \in \psi^{-1}(x_{kn}^b)$, $w \in \psi^{-1}(x_{nl}^1)$ and $u \in \psi^{-1}(x_{ij}^a)$. We need to prove that

$$[u, [v, w]] = 1$$

but we have that

$$\begin{split} [u, [v, w]] &= u[v, w]u^{-1}[v, w]^{-1} \\ &= [uvu^{-1}, uwu^{-1}][v, w]^{-1} \\ &= [v, w][v, w]^{-1} \\ &= 1 \end{split}$$

if uvu^{-1} and v are congruent mod C and if wvw^{-1} and w are congruent mod C, but it is the case since $\psi(u)$ and $\psi(v)$ commute and also $\psi(u)$ and $\psi(w)$ commute by (10).

Proposition 6 (Identities in any group) Let X, Y and Z elements of a group. Then we have the following identities.

1)
$$[X, [Y, Z]] = [XY, Z][Z, X][Z, Y].$$

2) $[XY, Z] = [X, [Y, Z]][Y, Z][X, Z].$

PROOF:

$$[XY, Z][Z, X] = (xy)z(y^{-1}x^{-1})z^{-1}zxz^{-1}x^{-1}$$
(11)

$$[X, [Y, Z]] = x(yzy^{-1}z^{-1})x^{-1}(zyz^{-1}y^{-1})._{\Box}$$
(12)

Lemma 6 Let h, i, j, k be distinct and let $a, b, c \in A$. Then

$$[\psi^{-1}(x_{hi}^a), [\psi^{-1}(x_{ij}^b), \psi^{-1}(x_{jk}^c)]] = [[\psi^{-1}(x_{hi}^a), \psi^{-1}(x_{ij}^b)], \psi^{-1}(x_{jk}^c)].$$

PROOF: Pick $u \in \psi^{-1}(x_{hi}^a)$, $v \in \psi^{-1}(x_{ij}^b)$ and $v \in \psi^{-1}(x_{jk}^c)$. Then by lemma 5 [u,w] = 1 and we have

$$\begin{split} & [u,v] \subset \psi^{-1}[x_{hi}^a, x_{ij}^b] = \psi^{-1}(x_{hj}^{ab}) & \text{commutes with } u \text{ and } v. \\ & [v,w] \subset \psi^{-1}(x_{ik}^{ba}) & \text{commutes with } v \text{ and } w. \\ & [u,[v,w]] \subset [\psi^{-1}(x_{hi}^a), \psi^{-1}(x_{ik}^{ba})] \\ & [[u,v],w] \end{split} \Big\} \subset \psi^{-1}(x_{ik}^{abc}) & u, v \text{ and } w. \end{split}$$

Using the identity 1) for u, v and w and the fact that [u, w] = 1 we have

$$\begin{split} [u, [v, w]] &= [uv, w][w, v] \\ &= [[u, v]vu, w][w, v] \\ &= [vu[u, v], w][w, v] \\ &= [vu, [[u, v], w]][[u, v], w][vu, w][w, v] \\ &= [[u, v], w]vuwu^{-1}v^{-1}w^{-1}wvw^{-1}v^{-1} \\ &= [[u, v], w] \end{split}$$

PROOF OF THEOREM 3: Recall that we defined

$$s(x_{hk}^a) = [\psi^{-1}(x_{hn}^a), \psi^{-1}(x_{nk}^1)].$$

Rewrite lemma 6 as

$$[\psi^{-1}(x^a_{hi}),\psi^{-1}(x^{bc}_{ik})] = [\psi^{-1}(x^{ab}_{hj}),\psi^{-1}(x^c_{jk})]$$

and putting b = c = 1 we get

$$[\psi^{-1}(x_{hi}^a),\psi^{-1}(x_{ik}^1)] = [\psi^{-1}(x_{hj}^a),\psi^{-1}(x_{jk}^1)].$$

This proves that the definition of s is independent of n

Another well-known result is that every perfect group G has a universal central extension

$$1 \longrightarrow H_2(G, \mathbb{Z}) \longrightarrow \hat{G} \longrightarrow G \longrightarrow 1$$
$$\exists ! \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel \\ 1 \longrightarrow C \longrightarrow Y \longrightarrow G \longrightarrow 1$$

This result combined with the fact that St(A) is the universal central extension of E(A) gives us the following relation between $H_2(E(A))$ and K_2A

$$H_2(E(A)) = \ker\{St(A) \to E(A)\} = K_2$$

Other relations between group homology and algebraic K-Theory are:

$$\begin{split} &K_1A = GL(A) / [GL(A), GL(A)] = H_1(GL(A), \mathbb{Z}) \\ &K_2A = H_2(E(A), \mathbb{Z}) \\ &K_3A = H_3(St(A), \mathbb{Z}). \end{split}$$

LECTURE 4

9 Group Cohomology

Let G be a group and let M be a G-module. There are groups $H_i(G, M)$ and $H^i(G, M)$ called respectively the homology and cohomology groups of G with coefficients on M.

If C is an abelian group with trivial G-action we have the following facts:

- a) $H^0(G, C) = C$.
- b) $H^1(G, C) = \text{Hom}(G, C) = \text{Hom}(G_{ab}, C).$
- c) $H^2(G,C) =$ set of isomorphism clases of central extensions of G by C.

10 Topological Interpretation

Any group G has a *classifying space* BG which is a pointed (nice) space unique up to homotopy tipe equivalence such that:

- i) $\pi(BG) = G$.
- ii) The universal covering of BG is contractible.

Example 6

$$G = \mathbb{Z} \qquad BG = S^1.$$

It is a known fact that

$$H_i(G,C) = H_i(BG,C)$$

and

$$H^i(G.C) = H^i(BG,C)$$

By the universal coefficient theorem we have

$$0 \to \operatorname{Ext}^{1}_{\mathbb{Z}}(H_{i-1}(BG,\mathbb{Z}),C) \to H^{i}(BG,C) \to \operatorname{Hom}(H_{i}(BG,\mathbb{Z}),C) \to 0$$

and

$$H^1(G,C) \xrightarrow{\cong} \operatorname{Hom}(H_1(G,\mathbb{Z}),C)$$

therefore by b)

$$H_1(G,\mathbb{Z}) = G_{ab}.$$

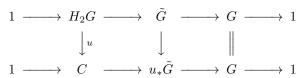
For i = 2 we also have

$$0 \to \operatorname{Ext}^{1}(H_{1}(G,\mathbb{Z}),C) \to H^{2}(G,C) \to \hom(H_{2}(G,\mathbb{Z}),C) \to 0.$$

In particular if G is perfect i.e. $G_{ab} = 0$ then

$$H^2(G,C) = \operatorname{Hom}(H_2(G,\mathbb{Z}),C)$$

but by c) corresponding to the identity in $\operatorname{Hom}(H_2G,H_2G)$ there is a central extension $\widetilde{}$



and given any homomorphism $u \in \text{Hom}(H_2G, C)$ push-out gives a central extension of G by C

$$u_*\tilde{G} = C \times \tilde{G}/\{(-u(x), i(x)) | x \in H_2G\}$$

so any central extension of G by C is induced by a unique homomorphism $u: H_2G \to C$.

Proposition 7 \tilde{G} is perfect.

PROOF: Consider the following diagram

$$1 \longrightarrow H_2G \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$$
$$\downarrow^{\exists! u} \qquad \downarrow^{\exists} \qquad \parallel$$
$$1 \longrightarrow B \longrightarrow [\tilde{G}, \tilde{G}] \longrightarrow G \longrightarrow 1$$
$$\downarrow^i \qquad \downarrow \qquad \parallel$$
$$1 \longrightarrow H_2G \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1$$

where $B = H_2 G \cap [\tilde{G}, \tilde{G}]$. Then $i \circ u =$ identity on $H_2 G$ because

$$i_*u_*\tilde{G} = i_*[\tilde{G}, \tilde{G}] = \tilde{G}$$

and then $B = H_2 G$ and therefore $[\tilde{G}, \tilde{G}] = \tilde{G}$.

Proposition 8 $H_2\tilde{G} = 0$, *i.e.* every central extension of \tilde{G} splits.

PROOF: Given

$$E \xrightarrow{q} \tilde{G} \xrightarrow{p} G$$

where E is a perfect central extension of \tilde{G} . E acts in the following exact sequence of abelian groups

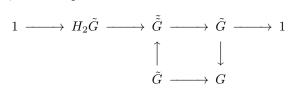
$$1 \to \ker q \to \ker pq \to \ker p \to 1$$

with the trivial action on $\ker q$ and $\ker p$, so we get a homomorphism

 $E \to \operatorname{Hom}(\ker p, \ker q)$

therefore the action of E on ker pq is trivial.

So if $E = \tilde{\tilde{G}}$, then is a perfect central extension of \tilde{G}



Then the universal property of \tilde{G} implies that \tilde{G} lifts into \tilde{G} which says

$$\tilde{\tilde{G}} = \tilde{G} \times H_2 \tilde{G} \xrightarrow{\text{proj}} H_2 \tilde{G}$$

and since it is perfect then $H_2\tilde{G}=0$.

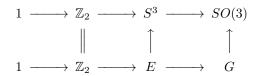
Example 7 Let $G = A_5$ the group of rotations of the icosahedron. It is a simple non-abelian group of order 60 and it is also perfect i.e. [G, G] = G.

What is G and $H_2(A_5)$?

Consider the following exact sequence

$$1 \to \{\pm 1\} \to SU(2) \to SO(3) \to 1.$$

We have that $SU(2) = S^3$ is simply connected and that $G = A_5$ is a subgroup of SO(3) and pull-back gives us the following commutative diagram



The group E acts freely on S^3 and preserves orientation, so S^3/E is an oriented 3-manifold and it is called the Poincaré homology 3-sphere.

Because $\pi_i S^3 = 0$ for $i \leq 2, S^3/E$ is close to BE. For i = 2

$$\pi_i(S^3/E) = \pi_i(S^3) = 0$$

and therefore

$$H_i(S^3/E) = H_i(E)$$
 for $i = 1, 2$.

We have that S^3/E is an oriented 3-manifold, $H_1(S^3/E) = H_1(E) = 0$ and by Poincaré duality $H_2(S^3/E) = 0$ then $H_2(E) = 0$. Therefore $H_1(E) = H_2(E) = 0$ implies that $E = \tilde{A}_5$ and $H_2(A_5) = \mathbb{Z}_2$. Analogy:

$$\begin{array}{c} \mathrm{connected} \longleftrightarrow \mathrm{perfect} \\ \mathrm{universal} \\ \mathrm{covering} \end{array} \longleftrightarrow \begin{array}{c} \mathrm{universal} \\ \mathrm{central} \\ \mathrm{extension} \end{array}$$

$$O(3) \stackrel{i}{\supset} SO(3) \xleftarrow{\varphi} S^{3}_{\substack{\text{connected}\\ \text{component}\\ \text{of 1}}} SO(3) \xleftarrow{\varphi} S^{3}_{\substack{\text{universal}\\ \text{covering}\\ \text{of identity}\\ \text{component}}}$$

The cokernel of *i* is $\pi_0(O(3))$ and the kernel of φ is $\pi_1(O(3))$.

$$GL(A) \stackrel{i}{\supset} \stackrel{E(A)}{\underset{\substack{\text{largest}\\\text{subgroup}}}{\overset{i}{\leftarrow}} St(A)} \underset{\substack{\text{universal}\\\text{central}\\\text{extension}}}{\overset{i}{\leftarrow}} St(A)$$

The cokernel of i is K_0A and the kernel of ϕ is K_2A .

 $O \supset SO \leftarrow Spin.$

Here $\pi_0 O = KO^{-1}(pt)$ and $\pi_1 O = KO^{-2}(pt)$.

LECTURE 5

11 The + Construction

Or think on

Notation: In this section by a space we will mean a connected CW complex with basepoint and also we will denote by [X, Y] the homotopy classes of basepoint preserving maps from X to Y.

Let X be a space such that $\pi_1(X)$ is perfect i.e. $\pi_1(X)_{ab} = H_1(X,\mathbb{Z})$ vanishes.

Problem: Construct a space X^+ such that $\pi_1(X^+) = 0$ and a map $i: X \to X^+$ such that

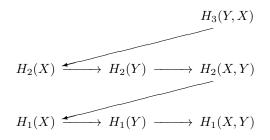
$$i_* \colon H_*(X) \xrightarrow{\cong} H_*(X^+)$$

Idea: Choose elements $\gamma_i \in \pi_1(X)$, $i \in I$ such that the normal subgroup they generate is the whole group $\pi_1(X)$.

Special case: one γ . Choose a loop $S^1 \xrightarrow{u} X$. Let $Y = X \cup_u e^2$, by the van Kampen theorem

$$\pi_1 Y = \pi_1 X \times_{\pi_1(S^1)} \pi_1(e^2) = \pi_1 X / \{ \text{normal subgroup}_{\text{generated by } \gamma} \} = 0.$$

From the homology exact sequence of the pair



we have that

$$H_n(X) \xrightarrow{\cong} H_n(Y) \qquad n \ge 3$$

and since $H_1(X) = 0$ because $\pi_1 X$ is perfect and $H_1(Y) = 0$ because Y is simply-connected we also have

$$0 \to H_2(X) \to H_2(Y) \to (Y) \to \mathbb{Z} \to 0.$$

By Hurewicz theorem $\pi_1(Y) = 0$ implies $\pi_2(Y) = H_2(Y)$ and there is a map $S^2 \xrightarrow{\nu} Y$ such that

$$H_2(S^2) \to H_2(Y) \to \mathbb{Z}.$$

Put $X^+ = Y \cup_{\nu} e^3$. Using the homology exact sequence the pair (X^+, Y)

$$H_3(X^+) \to H_3(X^+, Y) \to H_2(Y) \to H_2(X^+) \to H_2(X^+, Y)$$

and the fact that $H_3(X^+, Y) = H_3(X^+/Y) = \mathbb{Z}$ since $X^+/Y = e^3/\partial e^3 = S^3$ we have that the image of ∂ is the class of ν and

$$H_2 X \cong H_2 X^+$$
$$H_n X \cong H_n Y \cong H_n X^+ \qquad n \ge 3.$$

Proposition 9 Let X be a space with $\pi_1 X$ perfect. Let $i: X \to X^+$ be such that $\pi_1 X^+ = 0$ and $i_*: H_*(X) \xrightarrow{\cong} H_*(X^+)$. Then for all Y such that $\pi_1 Y = 0$ we have

$$i^* \colon [X^+, Y] \xrightarrow{\cong} [X, Y] \qquad \begin{array}{c} X \xrightarrow{i} X^+ \\ \searrow \swarrow \\ Y \end{array}$$

PROOF: Surjectivity of i^*

Let $u \in [X, Y]$. Consider the following diagram

$$\begin{array}{cccc} X & \stackrel{i}{\to} & X^+ \\ u \downarrow & & \downarrow u' \\ Y & \stackrel{i'}{\xleftarrow} & Z \\ r \end{array}$$

where $Z = Y \cup_X X^+$. We have that *i* is a homology isomorphism and applying Mayer-Vietoris *i'* is also homology isomorphism. By van Kampen's theorem we have that $\pi_1(Z) = 0$ and by Whitehead theorem *i'* is a homotopy equivalence. Let $r: Z \to Y$ be a homotopy inverse for *i'*. Then

$$(ru')i = r(i'u) = (ri')u \sim (id)u = u$$

Injectivity of i^*

Let $g_0, g_1 \colon X^+ \to Y$ be such that $g_0 i$ and $g_1 i$ are both homotopic to u.

$$\begin{array}{cccc} X & \stackrel{i}{\to} & X^+ \\ u \downarrow & \stackrel{g_0}{\swarrow} & \downarrow u' \\ Y & \stackrel{i'}{\to} & Z \end{array}$$

where Z is as before. By the homotopy extension theorem we can deform g_0 and g_1 so that $g_0 i = g_1 i = u$.

Define

$$r_0 \colon Y \cup_X X^+ \xrightarrow{(id_Y,g_0)} Y$$
$$r_1 \colon Y \cup_X X^+ \xrightarrow{(id_Y,g_1)} Y.$$

Then $r_0i' = r_1i' = id_Y$. But i' is a homotopy equivalence and therefore $r_0 \sim r_1$. Since $r_0u' = g_0$ and $r_1u' = g_1$ then $g_0 \sim g_1$.

Corolary 2 (X^+, i) are determined up to homotopy equivalence.

$$1 \to H_2 G \to \tilde{G} \to G \to 1$$

its universal central extension. Let $C = H_2G$. Then one has a map of fibrations

Recall that $H_1(G) = H_2(\tilde{G}) = 0$ and that $\pi_1(BG) = G$. We have that

$$H^{2}(G,C) = H^{2}(BG,C) = [BG, K^{EM}(C,2)]$$

where $K^{EM}(C,2)$ is an Eilenberg-McLane space. Consider the following diagram $EC = EC = K^{EM}(C,1)$

$$BC = BC = K^{EM}(C, 1)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B\tilde{G} \xrightarrow{\beta} P \longrightarrow K^{EM}(C, 2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$BG \longrightarrow BG^{+} \xrightarrow{\alpha} K^{EM}(C, 2)$$

we have

$$\pi_2(BG^+) = H_2(BG^+) = H_2(BG) = C$$

and α induces an isomorphism in π_2

$$\pi_2(BG^+) \to \pi_1(BC) \to \pi_1(P) \to \pi_1(BG^+) = 0$$

and therefore $\pi_1(P) = 0$. The map β is a homology isomorphism and since $\pi_1(P) = 0$ then $BG^+ \simeq P$. From $BC \to B\tilde{G}^+ \to BG^+$ we have

$$\pi_3(BG^+) = \pi_3(B\tilde{G}^+) = H_3(B\tilde{G}^+)$$

by Hurewicz theorem, since $H_1(\tilde{G}) = H_2(\tilde{G}) = 0$.

Consider now G = E(A). Since in this case G is perfect we have that $\tilde{G} = St(A)$ and $H_2(G) = K_2A$.

Claim

$$\pi_2(BE(A)^+) = H_2(E(A)) = K_2A$$

$$\pi_3(BE(A)^+) = H_3(St(A))$$

Proof:

$$\pi_2(BE(A)^+) = H_2(BE(A)^+) = H_2(BE(A)) = H_2(E(A)) = K_2A$$

$$\pi_3(BE(A)^+) = \pi_3(BSt(A)^+) = H_3(BSt(A)) = H_3(St(A))$$

Theorem 4 Let $N \subset \pi_1(X)$ be a perfect normal subgroup. Then there is a space X^+ (depending on N) and a map $i: X \to X^+$ such that

a) Induces an isomorphism

$$\pi_1(X)/N \to \pi_1(X^+).$$

b) For any $\pi_1(X^+)$ -module L one has

$$i_* \colon H_*(X, i^*L) \xrightarrow{\cong} H_*(X, L).$$

The pair (X^+, i) is determined up to homotopy equivalence.

Construction: Let \tilde{X} be the covering space corresponding to $N \subset \pi_1 X$. Then $\pi_1 \tilde{X} = N$ and since N is perfect we can apply to \tilde{X} the + construction described on page 19 and get a simply-connected space \tilde{X}^+ and a map $\tilde{i}: \tilde{X} \to \tilde{X}^+$ wich induces an isomorphism on homology. By push-out in the diagram

$$\begin{array}{cccc}
\tilde{X} & \xrightarrow{\text{homology}} & \tilde{X}^+ \\
\downarrow & & \downarrow \\
X & \longrightarrow & X^+ \\
\end{array}$$
22

we get the desired space X^+ such that $\pi_1(X^+) = \pi_1(X)/N$.

Let X = BGL(A). Then $\pi_1 X = GL(A)$ and $N = E(A) \subset GL(A)$ is perfect. By theorem 4 we can get $BGL(A)^+$ with

$$\pi_1(BGL(A)^+) = GL(A)/E(A) = K_1A$$

and also

$$H_*(BGL(A), L) \to H_*(BGL(A)^+, L)$$

is an isomorphism for all modules over K_1A

Taking the pull-back by i of the universal covering of $BGL(A)^+$ we get

$$\begin{array}{ccc} BE(A) & \xrightarrow{\text{homology}} & B\widetilde{GL(A)}^+ \\ & & & \downarrow \\ BGL(A) & \longrightarrow & BGL(A)^+ \end{array}$$

therefore $BE(A)^+$ is the universal covering of $BGL(A)^+$. Then we have

$$\pi_n BGL(A)^+ = \pi_n BE(A)^+ \qquad n \ge 2$$

$$\pi_2 BGL(A)^+ = K_2 A$$

$$\pi_3 BGL(A)^+ = H_3(St(A)).$$

Now we can define the groups $K_n A$ for every N.

Definition: $K_n A = \pi_n (BGL(A)^+)$ for $n \ge 1$.

LECTURE 6

12 Acyclic Maps

Proposition 10 Let X and Y be CW complexes. For a map $f: X \to Y$ the following statements are equivalent:

- 1. The homotopy-fiber F of f is acyclic i.e. $\tilde{H}_*(F) = 0$. Here homotopy-fiber means to replace f by a Serre fibration and take the actual fiber.
- 2. $\pi_1 f: \pi_1 X \to \pi_1 Y$ is surjective and for any $\pi_1 Y$ -module L we have

$$f_* \colon H_*(X, f^*L) \xrightarrow{\sim} H_*(Y, L).$$

3. Let \tilde{Y} the universal covering of Y and take the pull-back by f

$$\begin{array}{cccc} X \times_Y \tilde{Y} & \stackrel{f'}{\longrightarrow} & \tilde{Y} \\ & & \downarrow & & \downarrow \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

Then f' is a homology isomorphism.

Definition: Call *f* acyclic when any of the conditions on proposition 10 hold.

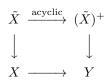
Corolary 3 Acyclic maps are closed under composition, homotopy pull-back and homotopy push-outs.

Theorem 5 Given a perfect normal subgroup $N \subset \pi_1 X$, there is a unique (up to homotopy equivalence) acyclic map $f: X \to Y$ where $\pi_1 Y = \pi_1 X/N$ such that $N = \ker \pi_1(f)$.

Moreover for any T

$$f^*: [Y,T] \xrightarrow{\sim} \{ \alpha \in [X,T] | \pi_1(\alpha) \colon \pi_1 X \to \pi_1 T \text{ kills } N \}$$

Construction of Y: Let \tilde{X} be the covering space corresponding to $N \subset \pi_1 X$. We get Y as the push-out in the following diagram



Let X = BGL(A). We have that E(A) is a perfect normal subgroup of $GL(A) = \pi_1(BGL(A))$. Applying theorem 5 we get

$$\begin{array}{cccc} BE(A) & \stackrel{\tilde{f}}{\longrightarrow} & \widetilde{BGL(A)^{+}} \\ & & & \downarrow \\ BGL(A) & \stackrel{f}{\longrightarrow} & BGL(A)^{+} \end{array}$$

where f is the unique acyclic map such that ker $\pi_1(f) = E(A)$. Since f is acyclic, \tilde{f} is also acyclic and we conclude that

$$\pi_2 BGL(A)^+ = \pi_2 BE(A)^+ = H_2(BE(A)^+) = H_2(E(A)) = K_2 A$$

$$\pi_3 BGL(A)^+ = \pi_3 BE(A)^+ = H_3(BSt(A))$$

$$K_n = \pi_n BGL(A)^+ \quad \text{for } n \ge 1.$$

Let $G_{\infty} = \varinjlim BGL_k(\mathbb{C}^*) = BGL(\mathbb{C})$ with its natural topology. Corresponding to direct sum of vector bundles there is a h-space structure on G_{∞} .

The space BGL(A) is not an h-space but $BGL(A)^+$ is an h-space.

We have that the maps

$$GL_n(\mathbb{C}) \to GL_{2n}(\mathbb{C})$$
$$\alpha \mapsto \begin{pmatrix} \alpha & 0\\ 0 & 1 \end{pmatrix}$$
$$\alpha \mapsto \begin{pmatrix} 1 & 0\\ 0 & \alpha \end{pmatrix}$$

are homotopic in the natural topology but the maps

$$\begin{aligned} \alpha \mapsto \begin{pmatrix} \alpha & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \alpha \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

are conjugates via an element of E(A).

Conjugate by elements of E(A) on BGL(A) is non trivial (provided basepoint preserving maps are considered)

$$\pi_1(BGL(A)) = GL(A)$$

But conjugation of elements of E(A) on $BGL(A)^+$ is trivial up to homotopy. Hence $BGL(A)^+$ is an h-space.

Example 8 Let F be a field. We have that $F[x_1, x_2, \ldots, x_n] \sim F$. Hence

$$K_0F[x_1, x_2, \dots, x_n] = K_0F.$$

There is no periodicity.

Theorem 6 Let F_q a finite fiel with order q. Then

$$K_n F_q = \begin{cases} \mathbb{Z} & n = 0\\ F_q^{\times} \simeq \mathbb{Z}_{q-1} & n = 1\\ 0 & n = 2\\ \mathbb{Z}_{q^2 - 1} & n = 3\\ 0\\ \mathbb{Z}_{q^3}\\ \vdots \end{cases}$$

IDEAS TO PROOF THIS: Representations in characteristic p can be lifted to virtual representations over $\mathbb C$

$$BGL(F_q) \xrightarrow[\text{Brower}]{\text{Brower}} BU \xrightarrow{\psi^q - 1} BU \qquad BU = G_{\infty}.$$

Take the homotopy fibre of $BU \xrightarrow{\psi^q - 1} BU$ and get a map

$$BGL(F_q) \to \text{h-fibre of } (BU \xrightarrow{\psi^q - 1} BU).$$

So by the universal property of the + construction we get

 $BGL(F_q)^+ \to \text{h-fibre of } (BU \xrightarrow{\psi^q - 1} BU).$

Theorem 7 The map $GLF_q^+ \rightarrow h$ -fibre of $(BU \xrightarrow{\psi^q - 1} BU)$ is a homotopy equivalence.

Because $BGL(A)^+$ is an h-space one knows that $H_*(BGL(A)^+, \mathbb{Q})$ is a Hopf algebra and also by Milnor-Moore theorem

$$\pi_*(BGL(A)^+ \otimes \mathbb{Q}) = PrimH_*(BGL(A)^+, \mathbb{Q})$$
$$= PrimH_*(BGL(A), \mathbb{Q})$$
$$= PrimH_*(GL(A), \mathbb{Q}).$$

So rational K-Theory comes from calculating group cohomology.

Example 9 Let $A = \mathbb{Z}$. Then

$$\dim_{\mathbb{Q}}(K_{i}\mathbb{Z}\otimes\mathbb{Q}) = \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i = 1 \\ 0 & i = 2 \\ 0 & i = 3 \\ 0 & i = 4 \\ \mathbb{Z} & i = 5 \\ \vdots \\ \mathbb{Z} & i = 9 \end{cases} \quad \text{non-periodic.}$$

Example 10 Let A a number field. Then $A \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$.

$$\dim_{\mathbb{Q}}(K_n A \otimes \mathbb{Q}) = \begin{cases} 1 & n = 0 \\ r_1 + r_2 & n = 1 \\ 0 & n = 2 \\ r_2 & n = 3 \\ 0 & n = 4 \\ r_1 + r_2 & n = 5 \\ 0 & n = 6 \\ r_2 & n = 7. \end{cases}$$

There is a periodicity phenomenon high-up but problems at bottom.