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Abstract
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LECTURE 1

1 Projective Modules

Definition: Let A be a ring with 1 and let P , M and M ′ be A-modules. An
A-module P is projective if for every homomorphism f : P → M and for every
epimorphism p : M ′ →M , there exists an homomorphism s : P →M ′ such that
p ◦ s = f .

M ′yp
P

f−−−−→ M
�

�
���

s

(1)

Example 1 Every free module is projective.

Proposition 1 An A-module P is projective if and only if P is a summand of
a free A-module.

Proof: Let P be a projective module. On the commutative diagram (1) take
M ′ = F , M = P and f = 1P where F is a free A-module and f = 1P is the
identity on P . Let Q = ker(P ), then we have the following exact sequence

Py1

0 −−−−→ Q −−−−→ F −−−−→ P −−−−→ 0.

�
�

�	

s

The existence of s implies that the sequence splits and therefore F = P ⊕Q.
Now let F be a free A-module such that F = P ⊕ Q. Let f : P → M

be a homomorphism and let p : M ′ → M be an epimorphism. Considere the
following diagram

M ′yp
P

i1−−−−→ P ⊗Q p1−−−−→ P
f−−−−→ M

�
�
��k

����������1

s

��������������:

k

where i1 : P → F is the inclusion and p1 : F → P is the projection onto the first
summand. Since F is projective, there exists s such that p ◦ s = f ◦ p1. Let
k = s ◦ i1 : P →M ′, then

p ◦ k = p ◦ s ◦ i1 = f ◦ p1 ◦ i1 = f

since p1 ◦ i1 = 1P . 2
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Proposition 2 The following statements are equivalent:

i) P is a finitely generated projective A-module.

ii) There exists n ∈ N and an A-module Q such that P ⊕Q = An.

iii) There exists n ∈ N and e ∈ MnA, the n × n matrices with entries in A,
such that e = e2 and P = Ane.

Let PA be the category of finitely generated projective A-modules and let
Iso(PA) be the isomorphism classes of PA, Iso(PA) is an abelian monoid under
the operation

⟨P ⟩+ ⟨Q⟩ = ⟨P ⊕Q⟩
where ⟨P ⟩ denotes the isomorphism class of the projective A-module P .

2 The Universal Group

Definition: Let I be an abelian monoid. Then there exist an abelian group
I#(unique up to isomorphism) called the universal group of I or the Grothendiek
group of I and a homomorphism ϕ : I → I# which have the following universal
property: Given a homomorphism h : I → G from I to an arbitrary group G
there is a unique homomorphism of abelian groups h′ : I# → G such that the
following diagram is commutative

I
ϕ→ I#

h↘ ↙h′

G

2.1 Three constructions of I#

1. I#is the free abelian group with generators [α] with α ∈ I under the
relations [α+ β] = [α] + [β].

2. Consider the relation ∼ in I × I given by

(α, β) ∼ (α′, β′)⇔ ∃γ ∈ I such that

α+ β′ + γ = α′ + β + γ.

This is an equivalence relation. Then I# = I × I/ ∼ and the operation is
defined by

(α, β) + (α′, β′) = (α+ α′, β + β′)

with identity (0, 0) and inverse −(α, β) = (β, α).

3. Assume that there exist α0 ∈ I such that for every α ∈ I there exists
n ∈ N and β ∈ I such that α+ β = nα0. Then I

# = I × N/ ∼ where

(α, n) ∼ (α′, n′)⇔ ∃m ∈ N such that

α+ n′α0 +mα0 = α′ + nα0 +mα0.

3



This different abelian groups all have the required universal property. In the
case of the construction 3 this is given by the following diagram

I
ϕ→ I × N/ ∼

f↘ ↙u

G

ϕ(α) = (α, 0)

(α, n) = ϕ(α)− nϕ(α0)

Define u(α, n) = f(α)− nf(α0).

3 The Group K0A

Definition: Let K0A = Iso(PA)# i.e., the universal group of the abelian
monoid Iso(PA).

According with the different constructions of the universal group, we can
consider K0A in three different ways

1. K0A is the free abelian group with generators [P ] for every P ∈ PA subject
to the relations

[P ⊕Q] = [P ] + [Q].

2. K0A is the group of differences [P ]− [Q].

3. K0A is the group of differences [P ]− [An].

Example 2 Let F be a field or a skew-field, then PF is the set of vector spaces
over F . The equivalence classes are characterized by the dimension of the vector
spaces, therefore Iso(PF ) ∼= N and K0F = Z.

Example 3 Let A = Z. Then PZ comprises the finitely generated free abelian
groups Zn for n ≥ 0. Therefore Iso(PZ) ∼= N and K0Z = Z. The same holds for
principal ideal domains (P.I.D.).

Example 4 Let A a Dedekind domain, (e.g., let F be a number field (finite
Q-extension), then A is the integral clousure of Z in F ). A fractional ideal is a
finitely generated A-submodule. Let

Pic(A) = ideal class group of A =
fractional ideals

principal fractional ideals

then we have that P ∈ PA if and only if P can be written as

P = a1 ⊕ · · · ⊕ an ai fractional ideals.

Then it turns out that

K0A = Z⊕ Pic(A)

[A1 ⊕ · · · ⊕An] 7→ (n, ideal class of {A1 · · ·An})
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4 Serre-Swan Theorem

Definition: A vector bundle consists of a space E, a continuous map π : E →
X and a structure of complex vector space on each fibre Ex = π−1{x} such that
this situation is locally trivial, i.e., there exists a covering Uα and isomorphisms

E|Uα
∼= Cnα

Uα

respecting the structure of vector space on the fibres. Here Cnα

Uα
denotes the

trivial bundle over Uα

Uα × Cnα
proj−−→ Uα.

Definition: A vector bundle map between two vector bundles π : E → X and
π′ : E′ → X is a map ϕ : E → E′ such that the following diagram commutes

E
ϕ→ E′

π↘ ↙π′

X

and restricted to the fibres is a linear transformation of vector spaces.

Theorem 1 (Serre-Swan) Let X be a compact Hausdorff space and let A =
C(X) the continuous complex valued functions on X. Then PA is equivalen to
the category of complex vector bundles over X.

To prove the theorem we need the following lemmas

Lemma 1 If e is an idempotent endomorphism of a vector bundle E over X,
then eE and e⊥E = (1− e)E are vector bundles.

Proof: We need to show that eE is locally trivial. Since this is a local question,
we can assume that E is the trivial bundle E = CnX . Then e is a continuous
family {ex} of idempotent matrices n × n in Mn(C). Fix a point x0 in X and
put

Tx = exex0
+ e⊥x e

⊥
x0

: C→ C.

This is a continuous family of matrices such that

a) exTx = Txex0
.

b) Tx = 1 at x = x0.

We have that b) implies that T−1
x exists for x near x0, then T = {Tx} gives

an automorphism of Cn such that T−1eT is constant for all values ex0
. 2

Lemma 2 Given E a vector bundle over X there exists another vector bundle
E′ such that E ⊕ E′ is isomorphic to CnX for some n.
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Proof: Since we are assuming X compact, there exists a finite open covering
Uα and isomorphisms

gα : E|uα
→ Cnα

Uα
α = 1, . . . , N.

Choose a partition of unity {ρα}, i.e., a family of functions ρα : X → C such
that supp ρα ⊂ Uα, ρα ≥ 0 and

∑
ρα = 1. Let

χα =
ρα∑
ρ2α

then we have that
∑
χ2
α = 1. Now define the maps i : E →

⊕N
α=1 C

nα

Uα
and

p :
⊕N

α=1 C
nα

Uα
→ E by

E

i=

(
χ1g1

...
χNgN

)
−−−−−−−−−→

N⊕
α=1

Cnα

Uα

p=(χ1g
−1
1 ,...,χNg

−1
N )

−−−−−−−−−−−−−→ E

then we have that

p ◦ i =
∑

χαg
−1
α χαgα =

∑
χ2
α = 1.

Therefore E is a retract of
⊕N

α=1 C
nα

Uα
. Since p ◦ i = 1, then (i ◦ p)2 = i ◦ p and

by Lemma 1 we have

N⊕
α=1

Cnα

Uα
= (i ◦ p)

( N⊕
α=1

Cnα

Uα

)
⊕ (i ◦ p)⊥

( N⊕
α=1

Cnα

Uα

)
.

2
Proof of Serre-Swan Theorem: Recall that A = C(X). Let Vect(X)
be the category of vector bundles over X. Let π : E → X a vector bundle in
Vect(X), we denote by Γ(X,E) the set of sections of E, i.e., the set of maps
s : X → E such that π◦s = 1X . We have a funtor from Vect(X) to the category
of A-modules given by

Vect(X)
Γ−→ A-modules

E 7→ Γ(X,E).

Actually, Γ is a funtor from Vect(X) to PA, the category of finitely generated
projective A-modules, since by lemma 2 E is a direct summand of a trivial
bundle and hence Γ(E) is a direct summand of Γ(X,CnX) = An which is a
finitely generated free A-module, therefore by proposition 1 Γ(E) is projective.

To prove the equivalence of the categories Vect(X) and PA we have to see
that the funtor Γ: Vect(X)→ PA is:

fully faithfull We need to show that

HomVect(E,E
′) ∼= HomA(Γ(E),Γ(E′)) (2)
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But if this is true for the bundles E = E1 and E = E2 then it is true for
the bundle E = E1 ⊕ E2 and if it is true for E, then it is true for any
summand of E (retract of an isomorphism is an isomorphism). Hence it
reduces to E trivial but in this case is clear.

surjective Let P ∈ PA, by proposition 2 iii) there exists n ∈ N and an idempo-
tent e ∈ HomA(P, P ) such that P = Ane. Since the funtor is fully faithfull
there exists and idempotent ê ∈ HomVect(CnX ,CnX) corresponding to e un-
der the isomorphism (2). By lemma 1 êCnX ∈ Vect(X) and we have that
Γ(êCnX) = P . 2

LECTURE 2

5 The Group K1A

Let GLn(A) denote the invertible n× n matrices over A. We have an inclusion
GLn(A) ⊂ GLn+1(A) given by α 7→

(
α 0
0 1

)
, and we can define

GL(A) =
⋃
n

GLn(A).

Definition: Let eij , (i ̸= j) be the matrix with 1 in the i-th row, j-th column
and zero elsewhere. Let a ∈ A, an elementary matrix eaij is a matrix of the form

eaij = 1 + eij .

It is easy to check the following relations:

eijekl = δjkeil (3)

eaije
b
ij = ea+bij (4)

where δij is the Kronecker delta defined by δij =

{
1 i = j

0 i ̸= j

Definition: The commutator [x, y] of two elements x and y of a group is
defined by

[x, y] = xyx−1y−1.

It is immediate that
[x, y]−1 = [y, x]. (5)

Proposition 3 The commutator of elementary matrices satisfies the following
realtions:

[eaij , e
b
kl] =


1 j ̸= k and i ̸= l

eabil if j = k and i ̸= l

e−bakj if j ̸= k and i = l.
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Proof: We will check the last two cases, the other is similar. Using the rela-
tions (3) and (4) in the definition of the commutator we have:

eaije
b
jl = (1 + aeij)(1 + bejl)

= 1 + aeij + bejl + abeil

eaije
b
jle

−a
ij = (1 + aeij + bejl + abeil)(1− aeij)

= 1 + aeij + bejl + abeil − aeij
= 1 + bejl + abeil

[eaij , e
b
jl] = (1 + bejl + abeil)(1− bejl)

= 1 + bejl + abeil − bejl
= eabil .

For the last case we use (5) and the previous case:

[eaij , e
b
ki] = [ebki, e

a
ij ]

−1

= (ebakj)
−1

= e−bakj

2

Definition: The elementary group En(A) is the subgroup of GLn(A) gener-
ated by eaij for 1 ≤ i , j ≤ n, i ̸= j and a ∈ A. The inclusion GLn(A) ↪→
GLn+1(A) restricts to the inclusion En(A) ↪→ En+1(A) and we can define

E(A) =
⋃
n

En(A).

Definition: A group G is called perfect if it is equal to its commutator sub-
group [G,G], i.e., [G,G] is the subgroup generated by [g, g′] for every g and g′

in G. The group Gab = G/[G,G] is the maximal abelian quotient group of G.

Proposition 4 En(A) is perfect for n ≥ 3.

Proof: Given i and k choose j such that j ̸= i and j ̸= k. Then by proposition 3
we have that

eaik = [eaij , e
1
jk] ∈ [En(A), En(A)],

this shows that all generators are commutators. 2

Lemma 3 (Whitehead) E(A) = [GL(A), GL(A)].
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Proof: By proposition 4 we have that for n ≥ 3, [E(A), E(A)] = E(A) ⊂
GL(A). We only need to show that [GL(A), GLA] ⊂ E(A). Let α ∈ GLn(A)
and let I be the n× n identity matrix. We have that(

I α
0 I

)(
I 0
−α−I I

)(
I α
0 I

)
=

(
0 α

−α−I 0

)
is in E2n(A) since

(
I α
0 I

)
can be expressed as product of elementary matrices as

follows  I

α1,n+1 ... α1,2n

...
...

αn,n+1 ... αn,2n

0 I

 =
∏

1≤i≤n
n+1≤j≤2n

e
αij

ij (6)

and analogously for
(

I 0
−α−1 I

)
. Now consider(

0 α
−α−1 0

)(
0 −I
I 0

)
=

(
α 0
0 α−1

)
which is also in E2n(A) since

(
0 −I
I 0

)
can be reduced to I2n using elementary

operations by rows: (
0 −I
I 0

)
∼
(
I −I
I 0

)
∼
(
I 0
0 I

)
.

Hence[α, β]
I

I

 =

α α−1

I

β I
β−1

α α−1

I

−1β I
β−1

−1

where all the matrices in the right hand side are in E3n(A). Therefore the image
of [GLn(A), GLn(A)] in GL3n(A) is contained in E3n(A) and taking the union
over n we get

[GL(A), GL(A)] ⊂ E(A)

finishing the proof of the lemma. 2

Definition: Let K1A = GL(A)ab = GL(A)/E(A) i.e., the maximal abelian
quotient group of GL(A).

Example 5 Let F be a field. Left multiplication by eaij add a times the j-

th row to the i-th row. It is known that E(F ) = ker{GLn(F )
det−−→ F×}

where F× comprises the non-zero elements under the multiplication. Hence
GLn(F )/En(F ) = F×.
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6 The Group K2A

Definition: Let n ≥ 2. The Steinberg group Stn(A) (also St(A)) is the group
with generators xaij with i ̸= j and a ∈ A subjet to the relations

xaijx
b
ij = xa+bij (7)

[xaij , x
b
kl] =


1 j ̸= k and i ̸= l

xabil if j = k and i ̸= l

x−bakj if j ̸= k and i = l.

(8)

There is a canonical surjection

St(A)
ϕ−→ E(A)

given by

ϕ(xaij) = eaij (9)

Definition: The group K2A is defined as the kernel of the canonical surjec-
tion (9) i.e.

K2A = ker{ϕ : St(A)→ E(A)}.

Definition: The center of a group G is defined by

Z(G) = {x ∈ G|xg = gx ∀g ∈ G}

Lemma 4 Z(E(A)) = 1

Proof: Let α be in the center of E(A) an n suficiently big such that α ∈ E(A)
Hence in E2n(A) we have that(

α α
0 I

)
=

(
α 0
0 I

)(
I I
0 I

)
=

(
I I
0 I

)(
α 0
0 I

)
=

(
α I
0 I

)
and therefore α = I and Z(E(A)) = 1. 2

Proposition 5 kerϕ = Z(St(A)).

Proof: Firstly let show that Z(St(A)) ⊂ kerϕ. Let β be in the center of
St(A) and γ = ϕ(β) ∈ E(A), where ϕ is the canonical surjection (9). Since ϕ is
surjective, γ ∈ Z(E(A)). Hence by lemma 4 γ = 1 and β ∈ kerϕ.

Now let show that kerϕ ⊂ Z(St(A)). Let Cn the subgroup of St(A) gener-
ated by xain with i ̸= n, a ∈ A and fixed n.

Claim The restriction of ϕ to Cn

ϕ|Cn
: Cn → ϕ(Cn)

is injective.
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Proof of claim: Since [xain, x
b
jn] = 1 Cn is abelian and any element γ of Cn

can be written as a finite product γ =
∏
i̸=n x

ai
in. Hence

ϕ(γ) =
∏
i̸=n

eaiin =



1 a1
1 a2

. . .
...

1 an−1

1
an+1 1


and therefore ϕ(Cn) ∼=

⊕
i̸=nA.

Consider now the following surjection⊕
i̸=n

A
ψ−→ Cn

(ai)i̸=n 7→
∏
i̸=n

xaiin.

Since the xaiin commute this product is independent of ordering if ψ is an
homomorphism, but by (7)

(ai + a′i) 7→
∏
i̸=n

x
ai+a

′
i

in =
∏
i̸=n

xaiinx
a′i
in =

∏
i̸=n

xaiin
∏
i̸=n

x
a′i
in

and we get the following commutative diagram⊕
i̸=nA

ψ−→ Cn
∼=↘ ↙ϕ

ϕ(Cn)

which clearly implies the claim. 2
Proof of the proposition: Take α ∈ kerϕ and write it as a finite product
of xaij ’s. Choose n different from any i, j ocurring in the representation of α.

Then α normalizes Cn, i.e. αCnα
−1 ⊂ Cn since

xaijx
b
knx

−a
ij =

{
xbkn if k ̸= i, j

xabinx
−b
jn k = j.

(10)

Let γ ∈ Cn. Then αγα−1 ∈ Cn and ϕ(αγα−1) = ϕ(γ) because α ∈ kerϕ.
By the claim ϕ|Cn

is injective and αγα−1 = γ. Therefore α centralizes Cn.
Similarly, let Rn be the subgroup of St(A) generated by xanj with j ̸= n, a ∈ A
and n fixed as before. By a similar argument α centralizes Rn, but Cn ∪ Rn
generates St(A) since if i ̸= j

xaij ∈ Cn if j = n

xaij ∈ Rn if i = n

and xaij = [xain, x
1
nj ] ∈ [Cn, Rn] if i ̸= n and j ̸= n. Therefore α centralizes

St(A), i.e. kerϕ ⊂ Z(St(A)). 2
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LECTURE 3

7 Motivation

In section 5 we defined K1A as

K1A = GL(A)/E(A).

From topological K-Theory we have that

K−1(X) = [X,GL(C)]

but
Hom(X,GL(C)) = GLn(C).

and
(
1 ta
0 1

)
is a homotopy from

(
1 0
0 1

)
to
(
1 a
0 1

)
, so elementary matrices are ho-

motopic to the identity . Therefore K1(C(X)) is the algebraic analogue of
K−1(X).

For K−2(X) we have

K−2(X) = K−1(SX) = [SX,GL(C)]
= [S1,Hom(X,GL(C))] = [S1, GL(C(X))].

So think on “loops in GL(C(X))”. A chain of elementary matrices gives re-
lations between them. On the other hand K2A = kerϕ also gives relations
between elementary matrices.

8 Central Extensions

Definition: A central extension of a group G is an exact sequence of groups

1→ K → E → G→ 1

such that K ⊂ Z(E), where Z(E) denotes the center of E.

Definition: Two central extensions

1→ K → E → G→ 1

and

1→ K → E′ → G→ 1

are equivalent if there exists an isomorphism ψ : E → E′ such that the following
diagram commutes

1 −−−−→ K −−−−→ E −−−−→ G −−−−→ 1∥∥∥ yψ ∥∥∥
1 −−−−→ K −−−−→ E′ −−−−→ G −−−−→ 1

12



Definition: An universal central extension of a group G is a central extension

1→ N → U → G→ 1

such that, given any central extension

1→ K → E → G→ 1

there exists a unique homomorphism h : U → E such that the following diagram
commutes

1 −−−−→ N −−−−→ U −−−−→ G −−−−→ 1y yh ∥∥∥
1 −−−−→ K −−−−→ E −−−−→ G −−−−→ 1

Note that if there exists a universal central extension this is unique up to
isomorphism.

The following theorem is a well known characterization of universal central
extensions.

Theorem 2 A central extension

1→ N → U → G→ 1

is universal if and only if U is perfect and every central extension of U splits.

An immediate consequence of the definition of St(A) is that it is perfect.
By proposition 5 kerϕ = Z(St(A)) and we have the canonical central extension

1→ K2A→ St(A)→ E(A)→ 1.

In fact, this is the universal central extension of E(A) and to see this by
theorem 2 it is enough to prove:

Theorem 3 Any central extension

1→ C → Y
ψ−→ St(A)→ 1

splits, i.e. there exists an homomorphism s such that ψs = identity.

Corolary 1 If Y = [Y, Y ], then Y
∼−→ St(A).

Basic idea Suppose y1, y2 ∈ Y are such that ψ(y1) = ψ(y2) i.e. y1 = cy2 with
c ∈ C. Then

[y, y′] = [cy2, y
′] = cy2y

′(cy2)
−1y′

−1
= cy2y

′y−1
2 c−1y′

−1
= [y2, y

′].

hence for x ∈ St(A) [ψ−1(x), y′] is a well defined element of Y , similarly
[ψ−1(x), ψ−1(x′)] is a well defined element of Y . Since by the relations (8)
xaij = [xain, x

1
nj ] for n ̸= i, j, we can define s by

s(xaij) = [ψ−1(xain), ψ
−1(x1nj)].

The hard point is to prove that this is independent of the choose of n.
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Lemma 5 [ψ−1(xaij), ψ
−1(xbkl)] = 1 if j ̸= k and i ̸= l.

Proof: Choose n different from k,l,i and j, then

[ψ−1(xbkn), ψ
−1(x1nl)] ⊂ ψ−1[xbkn, x

1
nl] = ψ−1(xbkl)

and therefore

[ψ−1(xaij), ψ
−1(xbkl)] = [ψ−1(xaij), [ψ

−1(xbkn), ψ
−1(x1nl)]].

Choose v ∈ ψ−1(xbkn), w ∈ ψ−1(x1nl) and u ∈ ψ−1(xaij). We need to prove
that

[u, [v, w]] = 1

but we have that

[u, [v, w]] = u[v, w]u−1[v, w]−1

= [uvu−1, uwu−1][v, w]−1

= [v, w][v, w]−1

= 1

if uvu−1 and v are congruent mod C and if wvw−1 and w are congruent mod
C, but it is the case since ψ(u) and ψ(v) commute and also ψ(u) and ψ(w)
commute by (10). 2

Proposition 6 (Identities in any group) Let X, Y and Z elements of a
group. Then we have the following identities.

1) [X, [Y, Z]] = [XY,Z][Z,X][Z, Y ].

2) [XY,Z] = [X, [Y,Z]][Y, Z][X,Z].

Proof:

[XY,Z][Z,X] = (xy)z(y−1x−1)z−1zxz−1x−1 (11)

[X, [Y, Z]] = x(yzy−1z−1)x−1(zyz−1y−1).2 (12)

Lemma 6 Let h, i, j, k be distinct and let a, b, c ∈ A. Then

[ψ−1(xahi), [ψ
−1(xbij), ψ

−1(xcjk)]] = [[ψ−1(xahi), ψ
−1(xbij)], ψ

−1(xcjk)].

Proof: Pick u ∈ ψ−1(xahi), v ∈ ψ−1(xbij) and v ∈ ψ−1(xcjk). Then by lemma 5
[u,w] = 1 and we have

[u, v] ⊂ ψ−1[xahi, x
b
ij ] = ψ−1(xabhj) commutes with u and v.

[v, w] ⊂ ψ−1(xbaik ) commutes with v and w.

[u, [v, w]] ⊂ [ψ−1(xahi), ψ
−1(xbaik )]

[[u, v], w]

}
⊂ ψ−1(xabcik )

commutes with
u, v and w.

14



Using the identity 1) for u, v and w and the fact that [u,w] = 1 we have

[u, [v, w]] = [uv,w][w, v]

= [[u, v]vu,w][w, v]

= [vu[u, v], w][w, v]

= [vu, [[u, v], w]][[u, v], w][vu,w][w, v]

= [[u, v], w]vuwu−1v−1w−1wvw−1v−1

= [[u, v], w]

2
Proof of theorem 3: Recall that we defined

s(xahk) = [ψ−1(xahn), ψ
−1(x1nk)].

Rewrite lemma 6 as

[ψ−1(xahi), ψ
−1(xbcik)] = [ψ−1(xabhj), ψ

−1(xcjk)]

and putting b = c = 1 we get

[ψ−1(xahi), ψ
−1(x1ik)] = [ψ−1(xahj), ψ

−1(x1jk)].

This proves that the definition of s is independent of n 2
Another well-known result is that every perfect group G has a universal

central extension

1 −−−−→ H2(G,Z) −−−−→ Ĝ −−−−→ G −−−−→ 1

∃!
y y ∥∥∥

1 −−−−→ C −−−−→ Y −−−−→ G −−−−→ 1

This result combined with the fact that St(A) is the universal central ex-
tension of E(A) gives us the following relation between H2(E(A)) and K2A

H2(E(A)) = ker{St(A)→ E(A)} = K2.

Other relations between group homology and algebraic K-Theory are:

K1A = GL(A)/[GL(A), GL(A)] = H1(GL(A),Z)
K2A = H2(E(A),Z)
K3A = H3(St(A),Z).

LECTURE 4
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9 Group Cohomology

Let G be a group and let M be a G-module. There are groups Hi(G,M) and
Hi(G,M) called respectively the homology and cohomology groups of G with
coefficients on M .

If C is an abelian group with trivial G-action we have the following facts:

a) H0(G,C) = C.

b) H1(G,C) = Hom(G,C) = Hom(Gab, C).

c) H2(G,C) = set of isomorphism clases of central extensions of G by C.

10 Topological Interpretation

Any group G has a classifying space BG which is a pointed (nice) space unique
up to homotopy tipe equivalence such that:

i) π(BG) = G.

ii) The universal covering of BG is contractible.

Example 6
G = Z BG = S1.

It is a known fact that

Hi(G,C) = Hi(BG,C)

and

Hi(G.C) = Hi(BG,C)

By the universal coefficient theorem we have

0→ Ext1Z(Hi−1(BG,Z), C)→ Hi(BG,C)→ Hom(Hi(BG,Z), C)→ 0

and

H1(G,C)
∼=−→ Hom(H1(G,Z), C)

therefore by b)
H1(G,Z) = Gab.

For i = 2 we also have

0→ Ext1(H1(G,Z), C)→ H2(G,C)→ hom(H2(G,Z), C)→ 0.

In particular if G is perfect i.e. Gab = 0 then

H2(G,C) = Hom(H2(G,Z), C)

16



but by c) corresponding to the identity in Hom(H2G,H2G) there is a central
extension

1 −−−−→ H2G −−−−→ G̃ −−−−→ G −−−−→ 1yu y ∥∥∥
1 −−−−→ C −−−−→ u∗G̃ −−−−→ G −−−−→ 1

and given any homomorphism u ∈ Hom(H2G,C) push-out gives a central ex-
tension of G by C

u∗G̃ = C × G̃/{(−u(x), i(x))|x ∈ H2G}

so any central extension of G by C is induced by a unique homomorphism
u : H2G→ C.

Proposition 7 G̃ is perfect.

Proof: Consider the following diagram

1 −−−−→ H2G −−−−→ G̃ −−−−→ G −−−−→ 1y∃!u
y∃

∥∥∥
1 −−−−→ B −−−−→ [G̃, G̃] −−−−→ G −−−−→ 1yi y ∥∥∥
1 −−−−→ H2G −−−−→ G̃ −−−−→ G −−−−→ 1

where B = H2G ∩ [G̃, G̃]. Then i ◦ u = identity on H2G because

i∗u∗G̃ = i∗[G̃, G̃] = G̃

and then B = H2G and therefore [G̃, G̃] = G̃. 2

Proposition 8 H2G̃ = 0, i.e. every central extension of G̃ splits.

Proof: Given
E

q−→ G̃
p−→ G

where E is a perfect central extension of G̃. E acts in the following exact
sequence of abelian groups

1→ ker q → ker pq → ker p→ 1

with the trivial action on ker q and ker p, so we get a homomorphism

E → Hom(ker p, ker q)

therefore the action of E on ker pq is trivial.

17



So if E = ˜̃G, then is a perfect central extension of G̃

1 −−−−→ H2G̃ −−−−→ ˜̃G −−−−→ G̃ −−−−→ 1x y
G̃ −−−−→ G

Then the universal property of G̃ implies that G̃ lifts into ˜̃G which says

˜̃G = G̃×H2G̃
proj−−→ H2G̃

and since it is perfect then H2G̃ = 0. 2

Example 7 Let G = A5 the group of rotations of the icosahedron. It is a
simple non-abelian group of order 60 and it is also perfect i.e. [G,G] = G.

What is G̃ and H2(A5)?
Consider the following exact sequence

1→ {±1} → SU(2)→ SO(3)→ 1.

We have that SU(2) = S3 is simply connected and thatG = A5 is a subgroup
of SO(3) and pull-back gives us the following commutative diagram

1 −−−−→ Z2 −−−−→ S3 −−−−→ SO(3)∥∥∥ x x
1 −−−−→ Z2 −−−−→ E −−−−→ G

The group E acts freely on S3 and preservs orientation, so S3/E is an
oriented 3-manifold and it is called the Poincaré homology 3-sphere.

Because πiS
3 = 0 for i ≤ 2, S3/E is close to BE. For i = 2

πi(S
3/E) = πi(S

3) = 0

and therefore
Hi(S

3/E) = Hi(E) for i = 1, 2.

We have that S3/E is an oriented 3-manifold, H1(S
3/E) = H1(E) = 0

and by Poincaré duality H2(S
3/E) = 0 then H2(E) = 0. Therefore H1(E) =

H2(E) = 0 implies that E = Ã5 and H2(A5) = Z2.
Analogy:

connected←→ perfect

universal
covering

←→
universal
central
extension
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O(3)
i
⊃ SO(3)

connected
component

of 1

φ←− S3

universal

covering

of identity

component

The cokernel of i is π0(O(3)) and the kernel of φ is π1(O(3)).

GL(A)
i
⊃ E(A)

largest

perfect

subgroup

ϕ←− St(A)
universal

central

extension

The cokernel of i is K0A and the kernel of ϕ is K2A.
Or think on

O ⊃ SO ← Spin.

Here π0O = KO−1(pt) and π1O = KO−2(pt).

LECTURE 5

11 The + Construction

Notation: In this section by a space we will mean a connected CW complex
with basepoint and also we will denote by [X,Y ] the homotopy classes of base-
point preserving maps from X to Y .

Let X be a space such that π1(X) is perfect i.e. π1(X)ab = H1(X,Z) van-
ishes.
Problem: Construct a space X+ such that π1(X

+) = 0 and a map i : X → X+

such that
i∗ : H∗(X)

∼=−→ H∗(X
+).

Idea: Choose elements γi ∈ π1(X), i ∈ I such that the normal subgroup they
generate is the whole group π1(X).

Special case: one γ. Choose a loop S1 u−→ X. Let Y = X ∪u e2, by the van
Kampen theorem

π1Y = π1X ×π1(S1) π1(e
2) = π1X/{normal subgroup

generated by γ } = 0.

From the homology exact sequence of the pair

H3(Y,X)

H2(X) −−−−→ H2(Y ) −−−−→ H2(X,Y )

H1(X) −−−−→ H1(Y ) −−−−→ H1(X,Y )

������������9

������������9
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we have that
Hn(X)

∼=−→ Hn(Y ) n ≥ 3

and since H1(X) = 0 because π1X is perfect and H1(Y ) = 0 because Y is
simply-connected we also have

0→ H2(X)→ H2(Y )→ (Y )→ Z→ 0.

By Hurewicz theorem π1(Y ) = 0 implies π2(Y ) = H2(Y ) and there is a map

S2 ν−→ Y such that

H2(S
2)→ H2(Y )→ Z.

∼=
*

Put X+ = Y ∪ν e3. Using the homology exact sequence the pair (X+, Y )

H3(X
+)→ H3(X

+, Y )→ H2(Y )→ H2(X
+)→ H2(X

+, Y )

and the fact that H3(X
+, Y ) = H3(X

+/Y ) = Z since X+/Y = e3/∂e3 = S3

we have that the image of ∂ is the class of ν and

H2X ∼= H2X
+

HnX ∼= HnY ∼= HnX
+ n ≥ 3.

Proposition 9 Let X be a space with π1X perfect. Let i : X → X+ be such

that π1X
+ = 0 and i∗ : H∗(X)

∼=−→ H∗(X
+). Then for all Y such that π1Y = 0

we have

i∗ : [X+, Y ]
∼=−→ [X,Y ]

X
i−→ X+

↘ ↙∃!

Y

Proof: Surjectivity of i∗

Let u ∈ [X,Y ]. Consider the following diagram

X
i−→ X+

u↓ ↓u′

Y
i′

⇄
r

Z

where Z = Y ∪X X+. We have that i is a homology isomorphism and applying
Mayer-Vietoris i′ is also homology isomorphism. By van Kampen’s theorem we
have that π1(Z) = 0 and by Whitehead theorem i′ is a homotopy equivalence.
Let r : Z → Y be a homotopy inverse for i′. Then

(ru′)i = r(i′u) = (ri′)u ∼ (id)u = u

Injectivity of i∗
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Let g0, g1 : X
+ → Y be such that g0i and g1i are both homotopic to u.

X
i−→ X+

u↓ g0↙ ↓u′

Y
i′−→ Z

where Z is as before. By the homotopy extension theorem we can deform g0
and g1 so that g0i = g1i = u.

Define

r0 : Y ∪X X+ (idY ,g0)−−−−−→ Y

r1 : Y ∪X X+ (idY ,g1)−−−−−→ Y.

Then r0i
′ = r1i

′ = idY . But i
′ is a homotopy equivalence and therefore r0 ∼ r1.

Since r0u
′ = g0 and r1u

′ = g1 then g0 ∼ g1. 2

Corolary 2 (X+, i) are determined up to homotopy equivalence.

Lemma 7 Let G be perfect and let

1→ H2G→ G̃→ G→ 1

its universal central extension. Let C = H2G. Then one has a map of fibrations

BC −−−−→ BG̃ −−−−→ BG∥∥∥ y y
BC −−−−→ BG̃+ −−−−→ BG

Recall that H1(G) = H2(G̃) = 0 and that π1(BG) = G. We have that

H2(G,C) = H2(BG,C) = [BG,KEM (C, 2)]

where KEM (C, 2) is an Eilenberg-McLane space. Consider the following dia-
gram

BC BC KEM (C, 1)y y y
BG̃

β−−−−→ P −−−−→ KEM (C, 2)y y y
BG −−−−→ BG+ α−−−−→ KEM (C, 2)

we have
π2(BG

+) = H2(BG
+) = H2(BG) = C
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and α induces an isomorphism in π2

π2(BG
+)→ π1(BC)→ π1(P )→ π1(BG

+) = 0

and therefore π1(P ) = 0. The map β is a homology isomorphism and since
π1(P ) = 0 then BG+ ⋍ P .

From BC → BG̃+ → BG+ we have

π3(BG
+) = π3(BG̃

+) = H3(BG̃
+)

by Hurewicz theorem, since H1(G̃) = H2(G̃) = 0.
Consider now G = E(A). Since in this case G is perfect we have that

G̃ = St(A) and H2(G) = K2A.

Claim

π2(BE(A)+) = H2(E(A)) = K2A

π3(BE(A)+) = H3(St(A))

Proof:

π2(BE(A)+) = H2(BE(A)+) = H2(BE(A)) = H2(E(A)) = K2A

π3(BE(A)+) = π3(BSt(A)
+) = H3(BSt(A)) = H3(St(A))

2

Theorem 4 Let N ⊂ π1(X) be a perfect normal subgroup. Then there is a
space X+ (depending on N) and a map i : X → X+ such that

a) Induces an isomorphism

π1(X)/N → π1(X
+).

b) For any π1(X
+)-module L one has

i∗ : H∗(X, i
∗L)

∼=−→ H∗(X,L).

The pair (X+, i) is determined up to homotopy equivalence.

Construction: Let X̃ be the covering space corresponding to N ⊂ π1X. Then
π1X̃ = N and since N is perfect we can apply to X̃ the + construction described
on page 19 and get a simply-connected space X̃+ and a map ĩ : X̃ → X̃+ wich
induces an isomorphism on homology. By push-out in the diagram

X̃

homology

isomorphism−−−−−−−→ X̃+y y
X −−−−→ X+
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we get the desired space X+ such that π1(X
+) = π1(X)/N .

Let X = BGL(A). Then π1X = GL(A) and N = E(A) ⊂ GL(A) is perfect.
By theorem 4 we can get BGL(A)+ with

π1(BGL(A)
+) = GL(A)/E(A) = K1A

and also
H∗(BGL(A), L)→ H∗(BGL(A)

+, L)

is an isomorphism for all modules over K1A
Taking the pull-back by i of the universal covering of BGL(A)+ we get

BE(A)

homology

isomorphism−−−−−−−→ ˜BGL(A)+y y
BGL(A) −−−−→ BGL(A)+

therefore BE(A)+ is the universal covering of BGL(A)+. Then we have

πnBGL(A)
+ = πnBE(A)+ n ≥ 2

π2BGL(A)
+ = K2A

π3BGL(A)
+ = H3(St(A)).

Now we can define the groups KnA for every N .

Definition: KnA = πn(BGL(A)
+) for n ≥ 1.

LECTURE 6

12 Acyclic Maps

Proposition 10 Let X and Y be CW complexes. For a map f : X → Y the
following statements are equivalent:

1. The homotopy-fiber F of f is acyclic i.e. H̃∗(F ) = 0. Here homotopy-fiber
means to replace f by a Serre fibration and take the actual fiber.

2. π1f : π1X → π1Y is surjective and for any π1Y -module L we have

f∗ : H∗(X, f
∗L)

∼−→ H∗(Y,L).

3. Let Ỹ the universal covering of Y and take the pull-back by f

X ×Y Ỹ
f ′

−−−−→ Ỹy y
X

f−−−−→ Y

Then f ′ is a homology isomorphism.
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Definition: Call f acyclic when any of the conditions on proposition 10 hold.

Corolary 3 Acyclic maps are closed under composition, homotopy pull-back
and homotopy push-outs.

Theorem 5 Given a perfect normal subgroup N ⊂ π1X, there is a unique (up
to homotopy equivalence) acyclic map f : X → Y where π1Y = π1X/N such
that N = kerπ1(f).

Moreover for any T

f∗ : [Y, T ]
∼−→ {α ∈ [X,T ]|π1(α) : π1X → π1T kills N}

Construction of Y : Let X̃ be the covering space corresponding to N ⊂ π1X.
We get Y as the push-out inthe following diagram

X̃
acyclic−−−−→ (X̃)+y y

X −−−−→ Y

Let X = BGL(A). We have that E(A) is a perfect normal subgroup of
GL(A) = π1(BGL(A)). Applying theorem 5 we get

BE(A)
f̃−−−−→ ˜BGL(A)+y y

BGL(A)
f−−−−→ BGL(A)+

where f is the unique acyclic map such that kerπ1(f) = E(A). Since f is
acyclic, f̃ is also acyclic and we conclude that

π2BGL(A)
+ = π2BE(A)+ = H2(BE(A)+) = H2(E(A)) = K2A

π3BGL(A)
+ = π3BE(A)+ = H3(BSt(A))

Kn = πnBGL(A)
+ for n ≥ 1.

Let G∞ = lim−→BGLk(C∗) = BGL(C) with its natural topology. Correspond-
ing to direct sum of vector bundles there is a h-space structure on G∞.

The space BGL(A) is not an h-space but BGL(A)+ is an h-space.
We have that the maps

GLn(C)→ GL2n(C)

α 7→
(
α 0
0 1

)
α 7→

(
1 0
0 α

)

24



are homotopic in the natural topology but the maps

α 7→

α 0 0
0 1 0
0 0 1


α 7→

1 0 0
0 α 0
0 0 1


are conjugates via an element of E(A).

Conjugate by elements of E(A) on BGL(A) is non trivial (provided base-
point preserving maps are considered)

π1(BGL(A)) = GL(A).

But conjugation of elements of E(A) on BGL(A)+ is trivial up to homotopy.
Hence BGL(A)+ is an h-space.

Example 8 Let F be a field. We have that F [x1, x2, . . . , xn] ∼ F . Hence

K0F [x1, x2, . . . , xn] = K0F.

There is no periodicity.

Theorem 6 Let Fq a finite fiel with order q. Then

KnFq =



Z n = 0

F×
q ⋍ Zq−1 n = 1

0 n = 2

Zq2−1 n = 3

0

Zq3
...

Ideas to proof this: Representations in characteristic p can be lifted to
virtual representations over C

BGL(Fq)
Brower−−−−→
lifting

BU
ψq−1−−−→ BU BU = G∞.

Take the homotopy fibre of BU
ψq−1−−−→ BU and get a map

BGL(Fq)→ h-fibre of (BU
ψq−1−−−→ BU).

So by the universal property of the + construction we get

BGL(Fq)
+ → h-fibre of (BU

ψq−1−−−→ BU).
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Theorem 7 The map GLFq
+ → h-fibre of (BU

ψq−1−−−→ BU) is a homotopy
equivalence.

Because BGL(A)+ is an h-space one knows that H∗(BGL(A)
+,Q) is a Hopf

algebra and also by Milnor-Moore theorem

π∗(BGL(A)
+ ⊗Q) = PrimH∗(BGL(A)

+,Q)

= PrimH∗(BGL(A),Q)

= PrimH∗(GL(A),Q).

So rational K-Theory comes from calculating group cohomology.

Example 9 Let A = Z. Then

dimQ(KiZ⊗Q) =



Z i = 0

0 i = 1

0 i = 2

0 i = 3

0 i = 4

Z i = 5
...

Z i = 9

non-periodic.

Example 10 Let A a number field. Then A⊗Q R = Rr1 × Cr2 .

dimQ(KnA⊗Q) =



1 n = 0

r1 + r2 n = 1

0 n = 2

r2 n = 3

0 n = 4

r1 + r2 n = 5

0 n = 6

r2 n = 7.

There is a periodicity phenomenon high-up but problems at bottom.
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