Algebraic K-Theory*

D. G. Quillen

Abstract

This is an introductory course, with emphasis on concrete examples
rather than general theory. The low dimensional K-groups Ko, K1, and
K> are defined explicitly and computed in examples related to number
theory and arithmetic. There are also some discussion of the definition
and properties of the higher algebraic K-groups.
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LECTURE 1

1 Projective Modules

Definition: Let A be a ring with 1 and let P, M and M’ be A-modules. An
A-module P is projective if for every homomorphism f: P — M and for every
epimorphism p: M’ — M, there exists an homomorphism s: P — M’ such that
pos=f.

M/
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P M )

Example 1 Every free module is projective.

Proposition 1 An A-module P is projective if and only if P is a summand of
a free A-module.

PROOF: Let P be a projective module. On the commutative diagram (1) take
M' =F, M = P and f = 1p where F is a free A-module and f = 1p is the
identity on P. Let Q = ker(P), then we have the following exact sequence

0 Q F P 0.

The existence of s implies that the sequence splits and therefore F' = P & Q.

Now let F' be a free A-module such that ' = P ® Q. Let f: P - M
be a homomorphism and let p: M’ — M be an epimorphism. Considere the
following diagram

b1

P " P2Q

where i1 : P — F'is the inclusion and p;: F — P is the projection onto the first
summand. Since F' is projective, there exists s such that pos = fop;. Let
k=soi1: P— M’ then

pok=posoiy=fopioi;=f

since P1© il = lp. O



Proposition 2 The following statements are equivalent:
i) P is a finitely generated projective A-module.
ii) There exists n € N and an A-module Q such that P ® Q = A™.

it1) There ezists n € N and e € M, A, the n X n matrices with entries in A,
such that e = €? and P = A™e.

Let P4 be the category of finitely generated projective A-modules and let
Iso(P4) be the isomorphism classes of P4, Iso(P4) is an abelian monoid under
the operation

(P)+(Q) =(PoQ)

where (P) denotes the isomorphism class of the projective A-module P.

2 The Universal Group

Definition: Let I be an abelian monoid. Then there exist an abelian group
I# (unique up to isomorphism) called the universal group of I or the Grothendiek
group of I and a homomorphism ¢: I — I# which have the following universal
property: Given a homomorphism h: I — G from I to an arbitrary group G
there is a unique homomorphism of abelian groups h': I# — G such that the
following diagram is commutative

I % r#
RN R
G

2.1 Three constructions of I#

1. I*is the free abelian group with generators [a] with a € I under the
relations [« + 8] = [a] + [3].

2. Consider the relation ~ in I x I given by
(a, B) ~ (o, ") & Fvy € I such that
a+f +y=a"+8+1.

This is an equivalence relation. Then I[# = I x I/ ~ and the operation is
defined by

(@, B)+ (o, 8) = (a+a, 3+ )
with identity (0,0) and inverse —(a, 8) = (8, @).
3. Assume that there exist ag € I such that for every a € I there exists
n € N and 3 € I such that a + 8 = nag. Then I* = I x N/ ~ where
(a,n) ~ (a/,n') < Im € N such that

o+ n'ag +mag = o’ + nag + mag.



This different abelian groups all have the required universal property. In the
case of the construction 3 this is given by the following diagram

I % IxN/~ ¢(a) = (a,0)
N (a,n) = ¢(a) —ng(ao)
G Define u(a,n) = f(a) — nf(ao).

3 The Group KyA

Definition: Let KqA = Iso(P4)* i.e., the universal group of the abelian
monoid Iso(P4).

According with the different constructions of the universal group, we can
consider KyA in three different ways

1. KA is the free abelian group with generators [P] for every P € P4 subject
to the relations

(P& Q] =[P +[Q]
2. KA is the group of differences [P] — [Q)].
3. KpA is the group of differences [P] — [A™].

Example 2 Let F be a field or a skew-field, then Pg is the set of vector spaces
over F'. The equivalence classes are characterized by the dimension of the vector
spaces, therefore Iso(Pr) 2 N and KoF = Z.

Example 3 Let A = Z. Then Pz comprises the finitely generated free abelian
groups Z" for n > 0. Therefore Iso(Pz) = N and K¢Z = Z. The same holds for
principal ideal domains (P.I.D.).

Example 4 Let A a Dedekind domain, (e.g., let F' be a number field (finite
Q-extension), then A is the integral clousure of Z in F'). A fractional ideal is a
finitely generated A-submodule. Let

fractional ideals

Pic(A) = ideal cl fA=
ic(A) = ideal class group o principal fractional ideals

then we have that P € P4 if and only if P can be written as
P=a1® - Da, a; fractional ideals.
Then it turns out that

KoA =7 & Pic(A)
[A1® - @ A,] — (n,ideal class of {A;---A,})



4 Serre-Swan Theorem

Definition: A wvector bundle consists of a space F, a continuous map 7: F —
X and a structure of complex vector space on each fibre E, = 7~!{z} such that
this situation is locally trivial, i.e., there exists a covering U,, and isomorphisms

E

v. = Cp,

respecting the structure of vector space on the fibres. Here (CTULi denotes the
trivial bundle over U,

. Proj
U, x C" — U,

Definition: A wvector bundle map between two vector bundles 7: £ — X and
7' E' — X is a map ¢: E — E’ such that the following diagram commutes

E % F
N S
X

and restricted to the fibres is a linear transformation of vector spaces.

Theorem 1 (Serre-Swan) Let X be a compact Hausdorff space and let A =
C(X) the continuous complezx valued functions on X. Then P4 is equivalen to
the category of complex vector bundles over X .

To prove the theorem we need the following lemmas

Lemma 1 If e is an idempotent endomorphism of a vector bundle E over X,
then eE and e*E = (1 — e)E are vector bundles.

PRrROOF: We need to show that eF is locally trivial. Since this is a local question,
we can assume that E is the trivial bundle £ = C%. Then e is a continuous
family {e,} of idempotent matrices n x n in M, (C). Fix a point 2 in X and
put

T, = egeq, + etel : C— C.

T Txo
This is a continuous family of matrices such that
a) e;Ty = Tyey,.
b) T, =1 at = xo.

We have that b) implies that T}, ! exists for z near zg, then T = {T,.} gives
an automorphism of C" such that T~ 'eT is constant for all values e, . O

Lemma 2 Given E a vector bundle over X there exists another vector bundle
E’ such that E @ E’' is isomorphic to C% for some n.



PROOF: Since we are assuming X compact, there exists a finite open covering
U, and isomorphisms

9o Elu, = Ci2 a=1,...,N.

Choose a partition of unity {p}, i.e., a family of functions p,: X — C such
that supp po C Uq, po > 0 and > p, = 1. Let
Yo = Pa
Xe

then we have that > x2 = 1. Now define the maps i: E — @gzl C and
N N
p: D, Cyr — E by

X191
- X :g al p=(x197 " XNGN")
NIN n = 1 e N
4) a
E Dy E

a=1

then we have that

poi:ZXag(;1Xaga :ZXi =1L

Therefore E is a retract of @521 Cye. Since poi =1, then (iop)* =iop and
by Lemma 1 we have

N N N

Dcy = (iOp)(@cgz) ® (iOp)L(@cgz).

a=1 a=1 a=1

O
PROOF OF SERRE-SWAN THEOREM: Recall that A = C(X). Let Vect(X)
be the category of vector bundles over X. Let m: E — X a vector bundle in
Vect(X), we denote by I'(X, E) the set of sections of E, i.e., the set of maps
s: X — E such that mos = 1x. We have a funtor from Vect(X) to the category
of A-modules given by

Vect(X) L, A-modules
E—(X,E).

Actually, I is a funtor from Vect(X) to P4, the category of finitely generated
projective A-modules, since by lemma 2 E is a direct summand of a trivial
bundle and hence T'(E) is a direct summand of I'(X,C%) = A" which is a
finitely generated free A-module, therefore by proposition 1 T'(E) is projective.

To prove the equivalence of the categories Vect(X) and P4 we have to see
that the funtor I': Vect(X) — Py is:

fully faithfull We need to show that

Hom yeer (E, E') 2 Hom (D(E), (E')) 2)



But if this is true for the bundles £ = E; and E = E5 then it is true for
the bundle F = E; @ F> and if it is true for E, then it is true for any
summand of E (retract of an isomorphism is an isomorphism). Hence it
reduces to E trivial but in this case is clear.

surjective Let P € P4, by proposition 2 iii) there exists n € N and an idempo-
tent e € Homy (P, P) such that P = A™e. Since the funtor is fully faithfull
there exists and idempotent é € Hom yec: (C%, C%) corresponding to e un-
der the isomorphism (2). By lemma 1 éC% € Vect(X) and we have that
I'(eCy) = P. 0

LECTURE 2

5 The Group KA

Let GL,(A) denote the invertible n x n matrices over A. We have an inclusion
GL,(A) C GLyp41(A) given by oo~ (¢ 9), and we can define

GL(A) = JGL.(A).

Definition: Let e;;, (i # j) be the matrix with 1 in the i-th row, j-th column

and zero elsewhere. Let a € A, an elementary matriz ef; is a matrix of the form
6,7]' =1 —+ 6”
It is easy to check the following relations:

€€k = djkey (3)

ed b _ _a+b (4)

ij€ij = €ij
. 1 i=j
where d;; is the Kronecker delta defined by 6;; = 0 itj
L7

Definition: The commutator [z,y] of two elements z and y of a group is

defined by
[z,y] = zyz~ 'y~
It is immediate that

[z,y] 7" = [y, 2. (5)

Proposition 3 The commutator of elementary matrices satisfies the following
realtions:
1 j#£kandi#l
ek =S et ifj=kandi ]

e,;jba ifj £k andi=1.



Proor: We will check the last two cases, the other is similar. Using the rela-
tions (3) and (4) in the definition of the commutator we have:
6?;—6?; = (1 +ae;;)(1 +bey)
=1+ ae;; +bej; + abey

efjeslefja = (1 + ae;; + bej, + abe; )(1 — ae;;)
=1+ ae;; +bej + abe; — ae;;

=1+ be;; + abe;

[ef;,€h1] = (1+ bej, + abey)(1 — bey;)
=1+ be;; + abe; — be

_ _ab

For the last case we use (5) and the previous case:
[e?jaeii] = 21‘76?]']_1
= (ef2)?
= ekj
O

Definition: The elementary group E,(A) is the subgroup of GL,(A) gener-
ated by ef; for 1 <i,j < n, i # j and a € A. The inclusion GL,(A) —
GL,+1(A) restricts to the inclusion E,(A) — E,11(A) and we can define

E(A) = En(A).

Definition: A group G is called perfect if it is equal to its commutator sub-
group [G, @], i.e., [G,G] is the subgroup generated by [g, ¢'] for every g and ¢’
in G. The group G., = G/[G, G| is the maximal abelian quotient group of G.

Proposition 4 E,,(A) is perfect for n > 3.

PrOOF: Given i and k choose j such that j # i and j # k. Then by proposition 3
we have that
€ = [elilja e;k] € [EH(A)’ EH(A)]7

this shows that all generators are commutators. 0O

Lemma 3 (Whitehead) E(A) = [GL(A),GL(A)].



PRrROOF: By proposition 4 we have that for n > 3, [E(4), E(A)] =
GL(A). We only need to show that [GL(A),GLA] C E(A). Let a €
and let I be the n x n identity matrix. We have that

(o ?) car D)6 7)= (e 5)

I

E(A) C
GL,(A)

can be expressed as product of elementary matrices as

0
Q1 n41 ai,2n
. i
Qn n+1 co Qp2n = H eij” (6)
1<i<n
n+1<5<2n

. Now consider

is in Fs,(A) since
follows

and analogously for _1 I

()66 )

? _OI ) can be reduced to Iy, using elementary

G )~ )~ 1)

which is also in Ea,(A) since (
operations by rows:

-1 -1
a~t I a~t I
I Bt 1 Bt
where all the matrices in the right hand side are in Ej,,(A). Therefore the image
of [GL,(A),GL,(A)] in GL3,(A) is contained in F3,(A) and taking the union

over n we get
’ [GL(A), GL(A)] C E(A)

finishing the proof of the lemma. 0
Definition: Let K1 A = GL(A),, = GL(A)/E(A) i.e., the maximal abelian
quotient group of GL(A).

Example 5 Let F' be a field. Left multiplication by ef; add a times the j-

th row to the i-th row. It is known that E(F) = ker{GL,(F) — det, F*}
where F'* comprises the non-zero elements under the multiplication. Hence
GL,(F)/E,(F) = F~*.



6 The Group KA

Definition: Let n > 2. The Steinberg group St,(A) (also St(A)) is the group
with generators zf; with i # j and a € A subjet to the relations

a b _ _a+b
i = 7)
1 j#kandi#l
[ngyﬁzl} = x?lb if j=kandi#I (8)

a P ifj#kandi=1.

J

There is a canonical surjection

given by

o(zi;) = eij 9)

Definition: The group K> A is defined as the kernel of the canonical surjec-
tion (9) i.e.
Ky A =ker{¢: St(A) — E(A)}.

Definition: The center of a group G is defined by
Z(G) ={x € Glzg = gz Vg € G}
Lemma 4 Z(E(A)) =1

PROOF: Let « be in the center of E(A) an n suficiently big such that o € E(A)
Hence in Es,(A) we have that

(5 9)-C )6 D-6NE -1
and therefore a = I and Z(E(A)) = 1. .

Proposition 5 ker¢ = Z(St(A)).

PROOF: Firstly let show that Z(St(A)) C ker¢. Let 8 be in the center of
St(A) and v = ¢(B) € E(A), where ¢ is the canonical surjection (9). Since ¢ is
surjective, v € Z(E(A)). Hence by lemma 4 v =1 and 3 € ker ¢.

Now let show that ker ¢ C Z(St(A)). Let C,, the subgroup of St(A) gener-
ated by z¢, with ¢ #n, a € A and fixed n.

Claim The restriction of ¢ to C,

(b Chp - Cn — ¢(Cn)

18 1njective.

10



PROOF OF CLAIM:  Since [z, 25 ] = 1 C,, is abelian and any element ~ of Cy,

can be written as a finite product v = [, ,, ;. Hence

1 al
1 ag
o(v) =] et =
i£n 1 ana
1
Ap+1 1

and therefore ¢(Cp) = P,,,, A.
Consider now the following surjection

Patc,
(ai)izn — ngrlz
Since the z}! commute this product is independent of ordering if ¢ is an
homomorphism, but by (7)

. ! aita; _ a; @i _ a; aj
(ai +aj) — H Tip = H TinTin = H Zin | ] Zin

i#n i#n i#n i#n

and we get the following commutative diagram

DA L C
=N\ ¢
o(Cn)

which clearly implies the claim. O
PROOF OF THE PROPOSITION: Take a € ker ¢ and write it as a finite product
of z{;’s. Choose n different from any 4, j ocurring in the representation of a.
Then a normalizes Cp,, i.e. aCpa~! C C,, since

. _a_{xgn it k£, ]

LijLhnLs; ab,—b . _ i, (10)

LinZjn

Let v € Cy. Then aya™! € C, and ¢(aya™!) = ¢(7) because o € ker ¢.
By the claim ¢|c, is injective and aya™! = 5. Therefore o centralizes C,,.
Similarly, let R, be the subgroup of St(A) generated by xj,; with j #n, a € A
and n fixed as before. By a similar argument « centralizes R,,, but C, U R,
generates St(A) since if i # j

rj; €R, ifi=n

and zf; = [x4,,2);] € [Cp, Ry] if @ # n and j # n. Therefore o centralizes
St(A), i.e. kerp C Z(St(A)). O

11



LECTURE 3

7 Motivation

In section 5 we defined K, A as
KiA=GL(A)/E(A).
From topological K-Theory we have that
K=1(X) = [X,GL(C)]

but
Hom(X,GL(C)) = GL,(C).
1 ta

and (§ %) is a homotopy from (§9) to (§¢), so elementary matrices are ho-
motopic to the identity . Therefore K;(C(X)) is the algebraic analogue of
K=YX).

For K~2(X) we have

K2(X)=K'(8X)=[SX,GL(C)]
=[S, Hom(X,GL(C))] = [S*, GL(C(X))).

So think on “loops in GL(C(X))”. A chain of elementary matrices gives re-
lations between them. On the other hand K;A = ker¢ also gives relations
between elementary matrices.

8 Central Extensions

Definition: A central extension of a group G is an exact sequence of groups
1-K—-FE—-G—1
such that K C Z(FE), where Z(FE) denotes the center of E.

Definition: Two central extensions
1-K—-F—-G-—1
and

1-K—-F —-G—=1

are equivalent if there exists an isomorphism v : E — E’ such that the following
diagram commutes

1 K B G 1
N
1 K ol G 1



Definition: An universal central extension of a group G is a central extension
1->N->U—->G—1

such that, given any central extension
1-K—-FE—-G—1

there exists a unique homomorphism h: U — E such that the following diagram
commutes

1 N U G 1
Lo
1 K E G 1

Note that if there exists a universal central extension this is unique up to
isomorphism.

The following theorem is a well known characterization of universal central
extensions.

Theorem 2 A central extension
l1-=N-=>U—-G—1
is universal if and only if U is perfect and every central extension of U splits.

An immediate consequence of the definition of St(A) is that it is perfect.
By proposition 5 ker ¢ = Z(St(A)) and we have the canonical central extension

1 — KA — St(A) — E(A) — 1.

In fact, this is the universal central extension of E(A) and to see this by
theorem 2 it is enough to prove:

Theorem 3 Any central extension

I%C’%Yﬁﬁ(/l)%l

splits, i.e. there exists an homomorphism s such that s = identity.
Corolary 1 IfY = [Y,Y], then Y = St(A).

Basic idea Suppose y1,y2 € Y are such that ¥(y1) = ¢¥(y2) i.e. y1 = cys with
c € C. Then

— —1 1 — —1
W, 9] = [ey2,y] = ey (cy2) 'y =cyoy'ys ey = g2, y].

hence for x € St(A) [~1(z),y'] is a well defined element of Y, similarly
[~ (x),1(2')] is a well defined element of Y. Since by the relations (8)
xd = [xfn,w}U] for n # 4, j, we can define s by

s(zi;) = [~ (), 7/)71(%113')]-
The hard point is to prove that this is independent of the choose of n.

a
j

13



Lemma 5 [~ '(2%),0 " (ab)] =1ifj #k and i # 1.

ij
PRrROOF: Choose n different from k,l,i and j, then
[ (@7n), ™ @n)] C O ah ng] = ¢ ()

and therefore
e € R € ) e (i €S N e € 8 T €9 )

Choose v € Y1zt ), w € v~ (x};) and u € ¢~ (xf;). We need to prove
that
[u, [v,w]] =1

but we have that

[u, [v, w]] = u[v, w]u™* [v,w] !
= [uvu™!, vwu v, w]
= [v, w][v,w] "
=1
if wvu=! and v are congruent mod C and if wvw~! and w are congruent mod

C, but it is the case since ¥ (u) and ¥ (v) commute and also 1 (u) and (w)
commute by (10). O

Proposition 6 (Identities in any group) Let X, Y and Z elements of a
group. Then we have the following identities.

1) [X,[Y,Z]] = [XY, Z][Z,X][2,Y].
2) [XY, 7] = X, [V, Z]|[Y, Z][X, Z].
ProoOF:
(XY, Z][Z, X] = (xy)z(y o~ )zt zaz ! (11)
(X, [Y, Z]) = x(yzy 2z ey ly ) (12)

Lemma 6 Let h,i,j,k be distinct and let a,b,c € A. Then
[t (h), [0 (), ™ @5l = [ ah), o~ (@g)) o ()]

PROOF: Pick u € ¢~ (zf,;), v € ¢! (2};) and v € ¢~ ' (25,). Then by lemma 5
[u, w] =1 and we have

[u,v] C ¢711[$7Lg» x?j] = 1/1*1(3022) commutes with v and wv.
[v,w] C Y~ (x70) commutes with v and w.
[, [v,w] € [v™H (af), o~ (2 commutes with

)]} CY~Hz¥°)  w,vand w.

[[u, v], w]

14



Using the identity 1) for u, v and w and the fact that [u,w] =1 we have

PROOF OF THEOREM 3: Recall that we defined
s(ah) = W7 (2h,), 07 (@)
Rewrite lemma 6 as
[ (@he), ¥ @] = [V (255), ¥ (253)]
and putting b = c =1 we get
[ (@h), v ()] = [¢71($Zj)7¢71(33;k)]-

This proves that the definition of s is independent of n O
Another well-known result is that every perfect group G has a universal
central extension

1 —— Hy(G,7Z) G G 1
3| I
| — C Y G 1

This result combined with the fact that St(A) is the universal central ex-
tension of E(A) gives us the following relation between Hy(FE(A)) and KA

Hy(E(A)) =ker{St(A) —» E(A)} = Ks.
Other relations between group homology and algebraic K-Theory are:

KA = GL(A)/[GL(A),GL(A)] = H\(GL(A),Z)
KA = Hy(E(A),Z)
K3A = Hy(St(A),Z).

LECTURE 4
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9 Group Cohomology

Let G be a group and let M be a G-module. There are groups H,;(G, M) and
HY(G, M) called respectively the homology and cohomology groups of G' with
coefficients on M.

If C is an abelian group with trivial G-action we have the following facts:

a) H'(G,C)=C.
b) H'(G,C) = Hom(G,C) = Hom(Gap, C).

¢) H*(G,C) = set of isomorphism clases of central extensions of G by C.

10 Topological Interpretation

Any group G has a classifying space BG which is a pointed (nice) space unique
up to homotopy tipe equivalence such that:

i) n(BG) =G.

ii) The universal covering of BG is contractible.

Example 6
G=7Z BG = Sh.

It is a known fact that
H,(G,C) = H;,(BG,C)
and
H'(G.C) = H(BG,0)
By the universal coefficient theorem we have
0 — Exty(H;_1(BG,Z),C) — H(BG,C) — Hom(H;(BG,7),C) — 0

and
HY(G,C) = Hom(H,(G,Z),C)

therefore by b)
H,(G,Z) = Gap.

For ¢« = 2 we also have
0 — Ext'(H,(G,Z),C) — H*(G,C) — hom(Hy(G,7Z),C) — 0.
In particular if G is perfect i.e. G4, = 0 then

H?(G,C) = Hom(Hy(G,Z),C)

16



but by ¢) corresponding to the identity in Hom(HG, H2G) there is a central
extension

Lo
1—— C UG G 1

and given any homomorphism u € Hom(H>G, C) push-out gives a central ex-
tension of G by C

u,G = C x G/{(—u(x),i(z))|x € HyG}

so any central extension of G by C is induced by a unique homomorphism
u: HQG — C.

Proposition 7 G is perfect.

ProoOF: Counsider the following diagram

1 —— H G —— G G 1
[z | H

1—— B —— [G,G] G 1
[+ | H

1 —— HG —— G G 1

where B = HoG N [G, G]. Then i o u = identity on HaG because

ivu G =i,[G,G] = G

[

and then B = H,G and therefore [G, G] = G. 0O

Proposition 8 HoG =0, i.e. every central extension of G splits.

PrROOF: Given ~
ELGE G

where E is a perfect central extension of G. E acts in the following exact
sequence of abelian groups

1 — kerq — kerpg — kerp — 1
with the trivial action on ker ¢ and ker p, so we get a homomorphism
E — Hom/(ker p, ker q)

therefore the action of E on ker pgq is trivial.

17



So if E = G, then is a perfect central extension of G

1 —— H)G

o — QO
Q—

R

Then the universal property of G implies that G lifts into G which says

G =G x HyG 2 1,6

and since it is perfect then HoG = 0. O

Example 7 Let G = A; the group of rotations of the icosahedron. It is a
simple non-abelian group of order 60 and it is also perfect i.e. [G,G] = G.
What is G' and Ha(As)?
Consider the following exact sequence

1 —{£1} - SU(2) - SO(3) — 1.

We have that SU(2) = S is simply connected and that G = Aj is a subgroup
of SO(3) and pull-back gives us the following commutative diagram

1 Zs s3 SO(3)
| | |
1 Zs E G

The group E acts freely on S® and preservs orientation, so S3/E is an
oriented 3-manifold and it is called the Poincaré homology 3-sphere.
Because ;5% =0 for i < 2, S3/E is close to BE. For i = 2

7i(S?/E) = mi(S%) =0
and therefore
H;(S*/E) = H;(E) fori=1,2.

We have that S3/FE is an oriented 3-manifold, H;(S3/E) = Hy(E) =
and by Poincaré duality H»(S3/FE) = 0 then Hy(E) = 0. Therefore H(E)
Hy(E) = 0 implies that E = A5 and Hy(As) = Zo.

Analogy:

0

connected «— perfect

. | universal
lcléll‘e]reﬁ?a < central
v g extension
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3
0(3) D SO(3) & g3
connected universal
component covering
of 1 of identity
component

The cokernel of i is mo(O(3)) and the kernel of ¢ is m1(O(3)).

GL(A) 5 E(4) & s1(4)

largest universal

perfect central
subgroup extension

The cokernel of 7 is KyA and the kernel of ¢ is K5 A.
Or think on
O D SO  Spin.

Here 100 = KO~1(pt) and 7,0 = KO~2(pt).

LECTURE 5

11 The + Construction

Notation: In this section by a space we will mean a connected CW complex
with basepoint and also we will denote by [X, Y] the homotopy classes of base-
point preserving maps from X to Y.

Let X be a space such that m;(X) is perfect i.e. m(X),, = H1(X,Z) van-
ishes.
Problem: Construct a space X such that 7 (X*) =0and amapi: X — XT
such that N

iv: Ho(X) — Ho (XT).

Idea: Choose elements v; € m1(X), ¢ € I such that the normal subgroup they
generate is the whole group m (X).
Special case: one . Choose a loop ST = X. Let Y = X U, €2, by the van
Kampen theorem

Y = mX Xp sy m1(€?) = m X/ {Emmnadeey) = 0.

From the homology exact sequence of the pair

H;3(Y, X)
HQ(X) —_— HQ(Y) EE—— HQ(X,Y)

Hl(X) —_— Hl(Y) —_— Hl(X7Y)



we have that N
Ho(X) S Ho(Y)  n>3

and since Hi(X) = 0 because 7 X is perfect and H;(Y) = 0 because Y is
simply-connected we also have

0— Hy(X) > Hy(Y)—> (Y) = Z—0.
By Hurewicz theorem 71(Y) = 0 implies m2(Y) = H2(Y) and there is a map
52 %Y such that

HQ(S2) — HQ(Y) — 7.

o

Put X =Y U, e*. Using the homology exact sequence the pair (X*,Y)
H3(X1) = H3(XTY) = Ho(Y) = Ha(XT) = Hy(XT,Y)

and the fact that H3(X1,Y) = H3(XT/Y) = Z since XT/Y = €3/0e3 = S3
we have that the image of 0 is the class of v and

HoX = Hy Xt
H,X~2H)YY~H, X" n > 3.

Proposition 9 Let X be a space with m X perfect. Leti: X — XT be such
that 1 X+ =0 and iy: H.(X) =z H.(X™1). Then for all Y such that mY =0
we have _
_ X 5 Xt
i [ XTY] = [X,Y] NZET
Y

PROOF: Surjectivity of i*
Let u € [X,Y]. Consider the following diagram

X 4 x+t
T
Yy = Z

where Z =Y Ux XT. We have that i is a homology isomorphism and applying
Mayer-Vietoris i’ is also homology isomorphism. By van Kampen’s theorem we
have that 71 (Z) = 0 and by Whitehead theorem ¢’ is a homotopy equivalence.
Let r: Z — Y be a homotopy inverse for i’. Then

(ru')i = r(i'u) = (ri'Yu ~ (id)u = u

Injectivity of i*
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Let go,g1: X — Y be such that ggi and g14 are both homotopic to .

X 4 x+
ol Y
y & Z

where Z is as before. By the homotopy extension theorem we can deform g
and g1 so that goi = ¢g17 = .
Define

ro: Y Uy X+ (490, y

idy,g
(idy,g1)

ri:YUx XT Y.

Then 797’ = r1i’ = idy. But 7’ is a homotopy equivalence and therefore 7o ~ 7.
Since rou’ = gg and r1u’ = g; then gg ~ g1. 0O

Corolary 2 (X,i) are determined up to homotopy equivalence.
Lemma 7 Let G be perfect and let
1 - HG—G—G—1
its universal central extension. Let C' = HyG. Then one has a map of fibrations

BC —— BG —— BG

H | l

BC —— BGT —— BG

Recall that H,(G) = Hy(G) = 0 and that m (BG) = G. We have that
H*(G,C) = H*(BG,C) = [BG, KFM(C, 2)]

where KM (C,2) is an Eilenberg-McLane space. Consider the following dia-
gram

BC BC KEM(C, 1)

! ! l

BG 2 P — s KFM(C,2)

)

l ! |

BG —— BGt —%— KFM(C,2)

we have
7T2(BG+) == H2(BG+) = HQ(BG) =C
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and « induces an isomorphism in 7o
m2(BGY) = 1 (BC) — m (P) — m(BGT) =0

and therefore m1(P) = 0. The map [ is a homology isomorphism and since
m1(P) = 0 then BGT = P.
From BC — BGt — BGT we have

7T3(BG+) = 7T3(Bé+) = HS(BG+)

by Hurewicz theorem, since H(G) = Hy(G) = 0.
_ Consider now G = E(A). Since in this case G is perfect we have that
G = St(A) and HZ(G) = K2A

Claim

ma(BE(A)T)
n3(BE(A)T)

Hy(E(A)) = K2A
H3(St(A))

PRrROOF:

ra(BE(AYY) = Hy(BE(A)*) = Hy(BE(A)) = Hy(E(A)) = KzA
m3(BE(A)Y) = my(BSHA)T) = Hy(BSt(A)) = Hs(St(A))

O

Theorem 4 Let N C w1 (X) be a perfect normal subgroup. Then there is a
space X T (depending on N ) and a map i: X — X such that

a) Induces an isomorphism

7T1(X)/N — 7T1(X+).
b) For any w1 (X™T)-module L one has
ivt H(X,i*L) = H.(X,L).

The pair (XT,1) is determined up to homotopy equivalence.

Construction: Let X be the covering space corresponding to N C w1 X. Then
71X = N and since N is perfect we can apply to X the + construction described
on page 19 and get a simply-connected space X+ and a map i: X — X+ wich
induces an isomorphism on homology. By push-out in the diagram

homology
X isomorphism X+
X — Xt
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we get the desired space X+ such that m1(X*) = m(X)/N.
Let X = BGL(A). Then mX = GL(A) and N = E(A) C GL(A) is perfect.
By theorem 4 we can get BGL(A)T with
T (BGL(A)Y) = GL(A)/B(A) = K1 A
and also
H.(BGL(A), L) — H.(BGL(A)", L)

is an isomorphism for all modules over K; A
Taking the pull-back by i of the universal covering of BGL(A)" we get

homology

BE(A) =22t BQL(A)*+

| l

BGL(A) —— BGL(A)*
therefore BE(A)™T is the universal covering of BGL(A)*. Then we have
7, BGL(A)T = m, BE(A)*" n>2
1 BGL(A)T = KA
m3BGL(A)T = H3(St(A)).

Now we can define the groups K, A for every N.

Definition: K,A = m,(BGL(A)") for n > 1.

LECTURE 6

12 Acyclic Maps

Proposition 10 Let X and Y be CW complexes. For a map f: X — Y the
following statements are equivalent:

1. The homotopy-fiber F' of f is acyclic i.e. ﬁ*(F) = 0. Here homotopy-fiber
means to replace f by a Serre fibration and take the actual fiber.

2. mf: mX — mY is surjective and for any m1Y -module L we have
for Ho(X, f*L) = H,(Y, L).

3. LetY the universal covering of Y and take the pull-back by f

Then f' is a homology isomorphism.
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Definition: Call f acyclic when any of the conditions on proposition 10 hold.

Corolary 3 Acyclic maps are closed under composition, homotopy pull-back
and homotopy push-outs.

Theorem 5 Given a perfect normal subgroup N C m X, there is a unique (up
to homotopy equivalence) acyclic map f: X — Y where mY = m X/N such
that N = ker w1 (f).

Moreover for any T

T = {a € X, T)|m(a): mX — mT kills N}

Construction of Y: Let X be the covering space corresponding to N C m X.
We get Y as the push-out inthe following diagram

X acyclic ( )+

X
Let X = BGL(A). We have that E(A) is a perfect normal subgroup of
GL(A) = m(BGL(A)). Applying theorem 5 we get

— Y

—_~—

BE(A) —L— BGL(A)*
BGL(A) —L— BGL(A)*

where f is the unique acyclic map such that kerm(f) = E(A). Since f is
acyclic, f is also acyclic and we conclude that

1 BGL(A)T = myBE(A)t = Hy(BE(A)T) = Hy(E(A)) = KA
m3BGL(A)T = m3 BE(A)"T = H3(BSt(A))
K, =1, BGL(A)™" for n > 1.

Let G = ligBGLk((C*) = BGL(C) with its natural topology. Correspond-
ing to direct sum of vector bundles there is a h-space structure on G.

The space BGL(A) is not an h-space but BGL(A)™ is an h-space.

We have that the maps

GL,(C) = GLyy(C)
o (g 2)
oo (; g)
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are homotopic in the natural topology but the maps

a 0 0
a— |0 1 0
0 0 1
1 0 O
a— |0 a 0
0 0 1

are conjugates via an element of E(A).
Conjugate by elements of E(A) on BGL(A) is non trivial (provided base-
point preserving maps are considered)

m1(BGL(A)) = GL(A).

But conjugation of elements of E(A) on BGL(A)™ is trivial up to homotopy.
Hence BGL(A)" is an h-space.

Example 8 Let F be a field. We have that F[zq,za,...,z,] ~ F. Hence
K()F[J}l,.’l,‘g, e ,xn] = K()F
There is no periodicity.

Theorem 6 Let Fy, a finite fiel with order q. Then

7 n=

FqX DZg-1 N

0 n
K,F,={ Ze— n=

0

Lgs

IDEAS TO PROOF THIS: Representations in characteristic p can be lifted to
virtual representations over C

BGL(F,) 2= pu " BU  BU = Ga.

lifting

Take the homotopy fibre of BU & BU and get a map
BGL(F,) — h-fibre of (BU =% BU).

So by the universal property of the 4+ construction we get

BGL(F,)* — hfibre of (BU =% BU).
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Theorem 7 The map GLF,* — h-fibre of (BU LN BU) is a homotopy
equivalence.

Because BGL(A)™ is an h-space one knows that H,(BGL(A)",Q) is a Hopf
algebra and also by Milnor-Moore theorem

7. (BGL(A)Y ® Q) = PrimH,.(BGL(A)",Q)
= PrimH,(BGL(A),Q)
= PrimH,.(GL(A),Q).

So rational K-Theory comes from calculating group cohomology.

Example 9 Let A =7Z. Then

Z 1=0
0 i=1
0 =2
0 +=3
dimg(K;,Z ® Q) = 0 i—4 non-periodic.
Z 1=5
Z 1=9

Example 10 Let A a number field. Then A ®g R = R™ x C".

1 n=2>0
rm+re n=1
0 n =2
. T2 n=3
dimg(K,A®Q) =
0 n=4
r1+rs n=25
0 n==~6
T9 n=="T.

There is a periodicity phenomenon high-up but problems at bottom.
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