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Motivation

A Classic Problem in Operator Theory:

@ Perturbation Theory
@ Spectral Theory

More precisely, suppose we are given an unperturbed operator Hy, and an
additive perturbation V/, consider H = Hy + V.

Basic Problem of (Perturbative) Spectral Theory: Given spectral properties
of the unperturbed operator Hy, determine spectral properties of H.

(This is a fundamental problem, but one that's a lot easier formulated than
solved!)

Standard Example: Two-Body Quantum Mechanics
Hp models kinetic energy
V' models potential energy

H = Hy + V represents the total Hamiltonian
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Motivation

A Classic Problem in Operator Theory (contd.):

Spectral Theory: Typically is divided into two parts:

(i) A study of the discrete spectrum: Searching for eigenvalues (think
bound states in quantum systems).

(i) A study of the (absolutely) continuous spectrum: Leading toward

scattering theory (think scattering amplitudes, cross sections, etc.).

There are also eigenvalues embedded in the continuous spectrum, but that's
for another day.

Today, spectral theory is a vast area in operator theory! We will just scratch a
bit at its surface in these lectures.
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A Bit of Notation:

@ H denotes a (separable, complex ) Hilbert space, /3 represents the identity
operator in H.

o If Ais a closed (typically, self-adjoint) operator in H, then

@ p(A) C C denotes the resolvent set of A; z € p(A) <= A—zlyisa
bijection.

@ o(A) = C\p(A) denotes the spectrum of A.
@ 0,(A) denotes the point spectrum (i.e., the set of eigenvalues) of A.

@ 04(A) denotes the discrete spectrum of A (i.e., isolated eigenvalues of finite
(algebraic) multiplicity).

o If Ais closable in #, then A denotes the operator closure of A in H.

Note. All operators will be linear in this course.
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Notation

A Bit of Notation (contd.):

@ B(H) is the set of bounded operators defined on H.
Bp(H), 1 < p < oo denotes the pth trace ideal of B(H),
(e, TE€Bp(H) <= > jcr N ((T*T)Y2)P < oo, where J C N is an
appropriate index set, and the eigenvalues \;j(T) of T are repeated
according to their algebraic multiplicity),

B1(H) is the set of trace class operators,
Ba(H) is the set of Hilbert—Schmidt operators,
Boo(H) is the set of compact operators.

o try(A) = > ;c 7 Ai(A) denotes the trace of A € Bi(H).

o dety(ly — A) = [[;c7[1 — A;(A)] denotes the Fredholm determinant,
defined for A € Bi(H).

o dety 3(h — B) = [[jes[1 — Aj(B)]eV® denotes the modified
Fredholm determinant, defined for B € By(H).
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The Spectral Shift Function: Basics

The Krein—Lifshitz spectral shift function

“On the shoulders of giants”:

llya Mikhailovich Lifshitz (January 13, 1917 — October 23, 1982):

Well-known Theoretical Physicist: Worked in solid
state physics, electron theory of metals, disordered sys-
tems, Lifshitz tails, Lifshitz singularity, the theory of poly-
mers; introduced the concept of the spectral shift
function for rank one perturbations in 1952.

Mathematician Extraordinaire:
One of the giants of 20th century
mathematics, Wolf Prize in Math-
ematics in 1982; introduced the
theory of the spectral shift func-
tion in the period of 1953-1963.
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The Spectral Shift Function: Basics

A Short Course on the Spectral Shift Function

Given two self-adjoint operators H, Hy in H, think of H as an additive
perturbation of Hy by the operator V/, that is,

H=Hy"+" V.

We assume that the “perturbation” V = H — H; satisfies one of the following:

e Trace class perturbations: V =[H — Hy] € By(H).

e Relative trace class: V/(Hy — z )~ € B1(H) for some (hence, all) z € C\R.
e Resolvent comparable: [(H — z )™t — (Ho — z ) 7Y] € Bi(H).

Perhaps, the best way to formally introduce the Krein—Lifshitz spectral shift
function £(-; H, Hp) is to show what it can do: It computes traces!

More precisely, the spectral shift function (SSF) is a real-valued function on R
that satisfies the trace formula

tl";.[(f( —f HO /f )\ H, H()) dA,

for “appropriate” functions f.
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

For example, take the resolvent function (- — z)~1, z € C\R,
(N H, Ho) dX
/ « O , zeC\R,

or the exponential function e~ t", t > 0, assuming Ho, H to be bounded from
below, Hy > cly for some ¢ € R,

try ((H—ZIH) (HO_ZI’,L[

try (et —e7t0) = —t/ e (N H, Ho)dX, t>0.

[e,00)
Here ¢ = min{inf(c(H)), inf(c(Ho))}

The general trace formula works, e.g., for f € C*(R) with /() = [, e~ "**do(s)
and do a finite signed measure;

fA)=(\—2)7%
or, f € LY(R; (1 4+ |p|)dp) (implies f € C*(R)), etc.

V. Peller has necessary conditions on f, and also sufficient conditions on f in
terms of certain Besov spaces. These spaces are not that far apart .......
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The Spectral Shift Function: Basi

Possible Applications:

Spectral Theory (eigenvalue counting functions, inverse spectral problems,
trace formulas, spectral averaging, localization for random Hamiltonians, etc.)

o Scattering Theory (sum rules, such as Levinson's Theorem, time delay, fixed
energy scattering matrices, etc.)

@ Quantum Mechanics (Solid State Physics: Friedel's sum rule, etc.)

o Statistical Mechanics (convexity of trace functionals, density-functional
theory, density matrices, etc.).

@ Index Theory (Fredholm and Witten indices.)

@ Almost everywhere where traces and/or determinants involving
pairs of self-adjoint operators are relevant.
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The Spectral Shift Function: Basics

The Spectral Shift Function : Examples

We start with some Examples:

Here's a non-serious one:

e H,Hy € R (really, a joke!), the trace formula then becomes the

Newton—Leibniz “trace” formula, a.k.a., the fundamental theorem of
calculus (FTC):

f(H)—f(HO):/ F1(\) dA

[H07H]
and thus,

(- H, Ho) = X{H,,H(+) = characteristic function of the interval [Ho, H].
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The Spectral Shift Function: Basics

The Spectral Shift Function : Examples (contd.)

For our next example, the finite-dimensional case, we first recall the spectral
theorem for self-adjoint matrices A = A* in C™:

Let o(A) = {Aj(A) }i<j<m, m < n, be the eigenvalues of A, and denote by P;(A)
the associated projection onto the eigenspace corresponding to Aj(A), 1 <j < m.
Then

A= NAPIA),  PA)Y =D (- ek
j=1 k=1

where (fj i, fi¢)cr = 0ke, 1 < k, £ < mj, with m; the multiplicity of the eigenvalue
Aj(A) of A. Introducing

Ea((—00, M) = Y Pi(A), XeR,
Jst A (A<

then (employing the Stieltjes integral)

m

A= MR = [ NEQ). F(A) = 3 FOANRA) = [ £ dEa()

Jj=1

for bounded measurable functions f on R.
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The Spectral Shift Function: sics

The Spectral Shift Function : Examples (contd.)

e H, Hp self-adjoint matrices in C” (I. M. Lifshitz trace formula):

U@UUO—H%»:U@<AfQM5mU—AfQMEMM>
—tres ([ FOVAEN) ~ Eu() ) = [ A )dren (E4(3) ~ (1)

:_AFQWOEMM—EMMWA

implies
E()\' H7 HO) = _trC”(EH()‘) - EHO()‘))a AeR.

WARNING: Generally, &(-; H, Hy) = —try(En(-) — Eny () is NOT correct if
dim(#H) = oo!

M. Krein constructed a simple example where [E(-) — Ep,(-)] is NOT
necessarily of trace class even for V' = [H — Hy] of rank one! (He used half-line
Laplacians with different boundary conditions.)
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

Recall the Trace and the Determinant: Let A\;(T), j € J (J € N an index set)
denote the eigenvalues of T € B (), counting algebraic multiplicity.

K € Bi(H), then Y-, Xi((K*K)!/?) < oo and

try(K) =Y N(K),  dety(hy— K) = [][1 = N(K)].
jeJ JjeJ

The Perturbation Determinant: H and Hj self-adjoint in H, H = Hy + V,
DH/HO(Z) = dety ((H —Z I'H)(Ho —Z /7.[)71) = detq.[(lq.[ + V(HO —Z IH)il).
In the matrix case, view D4, (2) as the quotient

detH(H -z /7.[)

D = .
H/Ho (Z) detfH(Ho —Z I’H)

Example. If Hy = —(d?/dx?), H = —(d?/dx?)+ V() in L*(R; dx),
V € LY(R; (1 + |x|)dx), real-valued, then

Dy /1, (z) = Jost function = Evans function.
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

The general Krein trace formula for the trace class perturbations V/, i.e.,
V= [H — HO] € Bl(H)

&\ H, Hy) = % L'fc] Im(In(Dp /i, (A + i€))) for ae. A € R, (%)

where

Dy (2) = dety (H — z ) (Ho — z ) ™") = dety (b + V(Ho — z ) ).

Then
(- H, Ho) € LN(R; d)),

and

/ IE(A H, Ho)[ dA < ||H — Holl s, (31)
R

/Rf(/\; H. Ho) dX = try(H — Ho).
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

Note. Formula (x) remains valid in the relative trace class case, where
V(Ho — zl) ™! € B1(H). But in this case one only has

|E(X; H, Ho)| dA
/ 142 <0

(and no longer £(-; H, Hp) € LY(R; d))).

Similar, but slightly more involved formulas also work in the most general case
where H and Hj are only resolvent comparable, i.e.,

[(H=zh) " = (Ho—z k)" "] € Bi(H).
Note. The physicist llya Lifshitz introduced £( -; H, Hp) first for rank-one

perturbations V. Mark Krein then treated the trace class case, V € By(H),
“one rank at a time”.
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

If dim(ran(Ep,(a — €, b+ €))) < oo, then
&(b—0;H, Hy)—&(a+0; H, Hy) = dim(ran(Ep,(a, b)))—dim(ran(Ex(a, b))). ()

Note. Again, formula (*x) remains valid in the relative trace class case, where
V(HQ — ZI’;.L)_1 S Bl(H)

Away from oess(Ho) = dess(H), £(N\; H, Hp) is piecewise constant:

Counting multiplicity: Suppose A\g € R\{0ess(Ho)}. Then,

£(Xo +0; H, Ho) — £(Ao — 05 H, Ho) = m(Ho; Ao) — m(H; Ao),

where m(T,\) € NU {0} denotes the multiplicity of the eigenvalue A € R of
T=Tx

Thus, for energies A away from cess(Ho), (A\; H, Ho) represents the difference of
two eigenvalue counting functions.
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

The spectral shift function is only determined up to a constant.
Assuming Hy, H to be bounded from below
Ho > cly,
the standard way to fix the constant is to impose the normalization
E(N\H,Hy) =0, X <inf(o(Hy)Uo(H)).
Moreover, in the semibounded case, one has the “chain rule”,

E(N\; Ho, Ho) = &£(A; Ho, Hi) + E(X; Hi, Ho).
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The Spectral Shift Function: Basics

A Short Course on the SSF  (contd.):

Scattering theory: The Birman—Krein formula
Let S(H, Hp) be the scattering operator for the pair (H, Hp). Then

®
S(H, Hy) = / SO H, Ho) d,
o'ac(HO)
where S(\; H, Hp) is the fixed energy scattering operator (sweeping spectral
multiplicity issues of Hy under the rug!). Then the Birman—Krein formula holds,

1
&N\ H, Hp) = —2—In(det(5()\; H, Hp)) for a.e. A € ac(Ho)-

i
Example. If Hy = —(d?/dx?), H = —(d?/dx?)+ V(-) in L3(]0, 00); dx),
V € LY([0,00); (1 + |x|)dx), real-valued, then
Dy /1, (z) = the half-line Jost function,
and

&(\; H, Hp) equals the scattering phase shift function for a.e. A € g,.(Ho).
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The Spectral Shift Function: Basics

Connections Between , Traces, and Determinants

Suppose Hy and H are self-adjoint in H and satisfy
[(H—=zhy) " = (Ho — z )] € B1(H) for some (hence, all) z € p(Ho) N p(H).

Since V " =" H — Hy is self-adjoint, we can always factor it as V = AB = BA
(e.g., using the spectral theorem), assuming

B(Ho — z ly)™Y, (Ho — z ly) 1A € Bx(H), z € C\R,

and either:

(i) B(Ho — zhy)"tA € Bi(H), z€ C\R, or
(II) B(Ho — Z/H)_lA S B2(H), VS (C\R

One can then define perturbation determinants for z € C\R,
(i) Dyijmy(2) = detyy (b + B(Ho — z )1 A) (Fredholm det.),
(1) Do/mo(2) = det2’H(IH + B(Hy — z IH)—lA) (modified Fredholm det.).
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The Spectral Shift Function: Basics

Connections Between ¢, Traces, and Dets. (contd.)

In these cases,

—%In(DH/HO(z)) =try ((H —zhy) ™" — (Ho — zhy) ™)

/5/\HH0

—%In(Dz’H/HO(z)) =try((H — zhy) ™" = (Ho — zhy) ™"
Ho—ZIH) V(Ho—ZI'H) )

and

/5 (A H, Ho 22 d\ -+ try ((Ho — 2 hy) P V(Ho — z ) 7Y).
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Applications to Schrodinger Operators in d = 1,2, 3

Applications to 1d Schrodinger Operators

Consider the Laplacian Hp and a quadratic form perturbation H of it in L?(R; dx):
Ho = —A, dom(Hp) = H*(R), H=-A+4,V,

where V € L1(RR; dx) is real-valued. Here -+, abbreviates the form sum.
Next, we factor

V(x) = u(x)v(x), where v(x)= |V(X)|1/2, u(x) = v(x)sgn[V(x)], xeR.
Then (with [ := ILz(R;dX)).

(i) u(Ho —z1)~1v € By(L*(R;dx)), z € C\[0,00).
(i) H and Hp have a trace class resolvent difference,

[(H=zl)"' = (Ho—z )] € Bi(L*(R; dx)), z € R\a(H).
(iii) (Ho—z1)7*V(Ho — z1)7! € B (L3(R; dx)), z € C\[0,00).
(iv) For z € C\o(H),

tr(H—zl)™' —(Ho—zl)™) = —%In(det(l + u(Ho — z1)~1v)).
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Applications to Schrodinger Operators in d = 1,2, 3

Applications to 2d and 3d Schrodinger Operators

Again, consider the Laplacian Hy and a quadratic form perturbation H of it in
L?(R"; d"x), n=2,3:

Ho = —4A, dom(Hp) = H*(R"), H=-A+,V, n=23,

where V is real-valued and V € R, s for some § >0 and n =2, and
V € R3 N LY(R3; d3x) for n = 3 and

Ras = {V :R?> = R, measurable| VI (14]-]°)V € L}(R* d°x)},

Rz = {\/ ' R® - R, measurable

/ d®*x &< |V V(X)||]x — x| 72 < oo},
R6
Rollnik potentials in R3.

Again, + abbreviates the form sum.
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Applications to Schrodinger Operators in d = 1,2, 3

Appls. to 2d and 3d Schrodinger Operators (contd.)

Again, we factor

V() = u(v(x),  v(x) = V2, u(x) = vi)sgnlV(x)], x €R", n=2,3.
Then (with | := lj2(gngng), n = 2,3),

(i) u(Ho—z1)=1v € By(L*(R";d"x)), z € C\[0,00), n=2,3.
(ii) H and Hy have a trace class resolvent difference,

[(H=z1)"" = (Ho—z1)7'] € Bi(L*(R";d"x)), z€R\o(H), n=2,3.

(iii) (Ho—z/I)™*V(Ho — zI)™! € Bi(L*(R";d"x)), z € C\[0,00), n=2,3.
(iv) For z € C\o(H),

tr(H—zl) ™' —(Ho—zl) "+ (Ho—z1)""V(Ho — z1)™1)

= —%In(detg(/ +W))-
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Applications to Schrodinger Operators in d = 1,2, 3
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals and Continuity of

Spectral Shift Functions: Motivation

In our attempt to study the Witten index for higher-dimensional massless
Dirac-type operators, we needed various approximation results which were not
available in the literature. More importantly, those results should prove useful in a
variety of other situations.

The following is based on:
A. Carey, F.G., G. Levitina, R. Nichols, D. Potapov, and F. Sukochev, J.
Spectral Theory 6, 747-779 (2016).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Motivation (contd.)

To describe the first such result, assume that A, B, A,, B,,, n € N, are self-adjoint
operators in a complex, separable Hilbert space H, and suppose that

s-lim(A, — z0h) ™t = (A — zol3) 7"
n—oo

)

s-lim(B, — zohy) ™! = (B — zol3) 7*
n—oo

for some zp € C\R. Fix m € N, m odd, p € [1,00), and assume that for all
a € R\{0},

T(a,m):= [(A—aily)™™ — (B — aily)~™] € By(H),

To(a,m) = [(A, — aily)™™ — (B, — aily)™™] € By(H),
lim [|T,,(a, m) — T(a, m)|s,) = 0.

n— o0

Then for any function f in the class §,(R) D C5°(R) (details later),

lim [|[£(An) = £(Ba)] = [F(A) = (Bl 3,5,

n— o0
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Motivation (contd.)

Moreover, for each f € F,(R), p € [1,00), we prove the existence of constants
a1, ap € R\{0} and C = C(f, m, a1, a2) € (0,00) such that

1F(A) = £(B)ls,y < C||(A— arily)™™ — (B — avily)~
+ H(A — aziIH)_m — (B — 321./7.[)_

"5, 00
"lls,00)):

which permits the use of differences of higher powers m € N of resolvents to
control the [| - |[3,(3)-norm of the left-hand side [f(A) — f(B)] for f € Fn(R).

Here, the class of functions §,(R), m € N (introduced by Yafaev '05), is given by

Fm(R) == {f € C3(R) | f*) € L(R); there exists ¢ > 0 and fo = fo(f) € C
such that (d“/d\)[F(A) — HA™"] N O(IA[~=™¢), £¢=0,1,2}.
—00

(It is implied that fy = fo(f) is the same as A — £00.) One observes that
Sm(R) D G°(R), me N,

FN) [ Z AT+ O(IA~™9),  f e Fm(R).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Motivation (contd.)

Our second result concerns the continuity of spectral shift functions &( -; B, By)
associated with a pair of self-adjoint operators (B, By) in H w.r.t. the operator
parameter B. Assume that Ay and By are fixed self-adjoint operators in H, and
there exists m € N, m € N odd, such that,

[(Bo — zly)™™ — (Ao — zly)™™] € B1(H), z € C\R. For T self-adjoint in H we
denote by I',,(T) the set of all self-adjoint operators S in H for which the
containment, [(§ — zly)™™ — (T — zly)™™] € Bi(H), z € C\R, (m € N odd is
fixed), holds.

Suppose that By € [',(By) and let {B;}.cpo,1] C ['m(Bo) denote a continuous
path (in a suitable topology on I',,(Bp), details later) from By to By in [(Bp). If
f € L(R), then

tim [€C-: Br, Ao)f = &(+ Bo, Ao)Fll i mi(lwim+141)-100) = 0.

The fact that higher powers m € N, m > 2, of resolvents are involved, permits
applications of this circle of ideas to elliptic partial differential operators in R”,
n € N. The proofs of these results rest on double operator integral (DOI)
techniques.

No spectral gaps are assumed to exist in By, B.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

A 5 min. Course on Double Operator Integrals (DOI):

\A brief timeout on DOIs:‘

Daletskij and S. G. Krein (1960’), Birman and Solomyak (1960-70’),
Peller, dePagter, Sukochev (1990-05), and others.

Our main goals: (i) Given self-adjoint operators A and B and a Borel function f,
represent f(A) — f(B) as a double Stieltjes integral with respect to the spectral
measures dEx(\) and dEg(p).

(i) Construct a \ bounded transformer \ to the effect, for a bounded Borel
function ¢(X, 1) we would like to define 77" : By(H) — Bi(#) so that

TE(T) = / / (A1) dEa(N) T dEs(n), T € By(H) (or B(H)).

Fritz Gesztesy (Baylor University, Waco) The Spectral Shift Function Cuernavaca, May 29, 2017 30 / 54



Approximations in Trace Ideals and Continuity of Spectral Shift Functions

A 5 min. Course on DOI (contd.):

If A, B are self-adjoint matrices in C”, then A = Zj’,’zl AjEA({)\j}) and
B =3y tkEs({p}) imply:

f(A) - £(B) = Z Z[f(/\j) — Fu)Ea({A ) Es ({11 })

= ZZ ) £ (O Oy — 1) Es (e
- ZZ
< EA(VD) (ZA EAO D) = 30 (i) ) Eel()

k'=1

Syoy =) M=) g, 3, 1)00 - Byt

j=1 k=1
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

A 5 min. Course on DOI (contd.):

The Birman—Solomyak formula:

o) - [ [ 110

dEA()\) (A— B)dEg(u).

More generally: For a bounded Borel function ¢(\, 1) we would like to define a
bounded transformer \ jqf"B : B1(H) — Bi(H) so that

TAE(T) = / / (A 1) dEAQN) T dEs(), T € By(H).

TE(T) = /R a(\) dEA(N) T /R B(11) dEs (1) for $(, ) = a(X) Aw),

j(/f\’B(T) = /Ras(A) T Bs(B) v(s)ds for

o) = [ 0x(0) Aul) v(s) .

where as, S5 are bounded Borel functions, [, [|cs||oo |15l ¥(s) ds < 0.

The (Wiener) class of such ¢'s is denoted by 2.
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Approximations in Trace ldeals:

Denote by j(/) ’

the linear mapping defined by the double operator integral

TT) = [ [ 60 dEA) T dEali), T € BE)
R JR
where Ex, Eg are spectral measures corresponding to the self-adjoint operators
A, B.

If (A, 1) = a1(N)ax(p), (A, 1) € R?, for some bounded functions a; and a, on R,
then

TE(T) = ay(A) TaxA(B).

Depending on ¢, the operator JOA’B(T) can be bounded. Below we describe a
class of functions ¢ such that

TNE Ba(H) = Bo(H), pe[Llo0), JT°F:B(H) = B(H),
is a bounded operator. We introduce
M, = {¢ € L(R% dp) | T;"° € B(By(H))},  p € [1,00),
M = {¢ € L=(R?% dp) | T"® € B(B(H))},

where p = pa ® pp denotes the product measure of ps and pg, the latter are
suitable (scalar-valued) control measures for E4 and Eg, respectively.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

E.g.. pa(") =2 ;c (€ Ea() &), with {e;}jcs a complete orthonormal system in
‘H, J C N an appropriate index set, and analogously for pg. In addition, we set

I 6llon, 2= 172" s, > P € 000D Nbllone = 1T L ey
We denote 01 := My = Mo, and ||9||on = ||@]|lon, = |@]lon, & € TN,
Theorem (Birman—Solomyak '03).

Assume that A and B are self-adjoint operators in H. If the function ¢( -, -)
admits a representation of the form

610 = [ o\ 030n O dn(e). () € R,
where (9, dn(t)) is an auxiliary measure space and
C2 = sup/ la(A, )P dn(t) < oo, C§:= sup/ 1B(1, t)|? dn(t) < oo,

then ¢ € 91 and

[pllon < CoCp.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Theorem (Birman—Solomyak '03).

Assume that A and B are self-adjoint operators in . If there exist 0 < m; < 1
and 1 < my such that

g / (1™ + 16113, ) dé = G2 < oo,
nER JR

where 3(«5, 1) stands for the partial Fourier transform of ¢ with respect to the first
variable,

~

3, 1) = (2m) / b me N dr, (&, p) € R?,

then ¢ € 91 and
[llan < CCo,

where the constant C = C(my, my) > 0 does not depend on Ex or Eg.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Theorem (Ya '05).

Assume that A and B are self-adjoint operators in . Suppose that the function
K (X, i) on R? satisfies

KO\ )| < Ck <00, (A, p) €R?,
and is differentiable with respect to A with

‘W‘ <C(1+X)7h (Ap) eR?

where the constant 5;( is independent of u. Assume, in addition, that for every
fixed p € R

Wim KA p) = lim K(A, p)

(the limits exist). Then 7% € B(B(H)) and 7" € B(B,(H)). p € [1, ).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

AB AB
The norms HJK' HB(B(H)), HJK’ HB(BP(H))' p € [1,00), do not depend on the
spectral measures £4 and Eg.

To prove the norm bounds we now introduce the following assumption.

Assume that A and B are fixed self-adjoint operators in the Hilbert space #,
p € [1,00), and there exists m € N, m odd, such that for all a € R\{0},

(B — aily)™™ — (A — aily)~"™| € By(H) (resp., B(H)).

Given the results recalled thus far, Yafaev '05 introduces a bijection ¢ : R — R
satisfying for some ¢ > 0 and r > 0,

peCR), o) =A",|Al>r, ¢'(A\)>c, AeR,

and then shows the following:
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

There exist a1, a; € R\{0} and C = C(ay, a2, m) € (0, 00) such that

oyl g1
1((A) = i)™ = (2(B) = ihe) 5,
< C([[(A = arib) ™™ = (B = a1ih) ™" . 30
+[[(A = 22ihy) ™" — (B = a2ib) ™" || 5,(30))-

and an analogous estimate for the uniform norm || - |[5(3,). Moreover, he proves

[F(A) = £(B)] € Bp(H) (resp., [f(A) — f(B)] € B(H)),

|£(A) = F(B)llg,) < C(||(A— ariby)™™ — (B — aliIH)7m||Bp(H)

+||(A = azily)™™ — (B - azily)_mHBp(H))7 feFmR), pell,o0)

(and the corresponding estimate for the uniform norm || - [|3(3)). Here the

constant C = C(f, a1, a», m) € (0, 00) is independent of p € [1,00). (This can be
improved for p € (1,0).)
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Let A,, B, A, B be self-adjoint operators in the Hilbert space H. Suppose ¢( -, -)
admits a representation of the form

S 1) = /Q a(\ 0B, t) di(r), (A p) € R2, ()

where (2, dn(t)) is an auxiliary measure space and

C2i=sup [ a(r 0P dn(e) < oo, CBi=sup [ (5, ) di(®) < ox.
AERJQ LER JQ

Set
a(t) = [ @ dEA).  b(e) = [ B e) o0
anlt) = [ ) dEL (). bolt) = [ A1) dEs (). ne
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

and introduce

crlvea) = | [ laoe)y = a(e)elP anco) "

1/2
5u(v, B) = [/ Iba(t)v b(t)v2dn(t)] . neN, vet,
Q
and
A(Ep) :={¢p as in (x)] nll>nc10 en(v,a) =0, v € H},
AT (Eg) :=={¢ as in (x) | "|l>n;o dn(v,a) =0, v e H}.

We note that the definitions of the classes 2A2(Ex), A5 (Ea) impose certain
restrictions on convergences A, — A and B, — B as well as on the properties
of the function ¢ as in (x).

Proposition.

If ¢, € A(Ea) (respectively, ¢, € A (Eg)), then (¢ + 1) € A (En)
(respectively, (¢ + ) € A(Eg)).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Proposition (Birman—Solomyak '73).
Let ¢ € AS(Ea) NAS(Eg). Then for any T € B,(H), p € [1,00),

lim |75 5(T) = T35 (Tl g3 = 0 P € [1,00).

n— o0

Hypothesis.

Let A, B, A,, B,, n € N, be self-adjoint operators in a separable Hilbert space H
and suppose that

s-lim(A, — 20h) 7 = (A — zoly)7?, s-lim(B, — 20h) 7t = (B — z0l3) 7Y, (%)

for some zy € C\R.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Assume (xx). If there exist 0 < m; < 1 and 1 < my such that

sup [ (1™ + I61™) (6. d = GG < o

pnER

where 3(5, ) stands for the partial Fourier transform of ¢ with respect to the first
variable,

~

3, 1) = (2m) / b m)e N dA, (1) € R?,

then ¢ € 2AS(Ep).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Corollary.

Assume (*x). If a function K on R? satisfies
K\ p)| < Ck <00, (A p) €R?,
and is differentiable with respect to A with

OK (A ~ _
M SCK(1+/\2) 1’ ()\,M)ERz,

O\
where the constant EK is independent of u. Assume, in addition, that for every
fixed p € R

Wm Ky p) = lim  K(A, )

(the limits exist), then K € 2A2(Eg).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Approximations in Trace ldeals (contd.):

Next, we strengthen the assumptions on the operators A,, A, B,, B, n € N:

Hypothesis.

In addition to (%) we assume that for some m € N, m odd, p € [1,c0), and every
a € R\{0},

T(a) := [(A+ialy)™™ — (B + ialy)™"] € By(H),
To(a) := [(An +ialy) ™™ — (Bn + iaky)~™] € By(H),

and

Jim 17,(a) = T(@)lz, 0 = O

With this hypothesis in hand, the following theorem is the main result thus far:

Assume the above hypothesis. Then for any function f € §,(R),

Tim [[[£(A) = F(B)] = [F(A) = F(B)lll5, 5y =0, P € [1,00).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B:

Some remarks on powers of resolvents:

The case m = 1. If A and B are self-adjoint operators in H and for some
Zy € (C\R,
[(A=20h) ™" = (B = 20) "] € Bi(H),

then actually
[(A—zh)™ = (B = zly) ' € Bi(H), z€C\R,
a fact which follows from the well-known resolvent identity
(A—=zh) ™ = (B = zhy) ™ = (A= 20h)(A = zh)

X [(A=z20hy) ™ = (B = 20h) ](B — 20l )(B — zh) 7,
2,20 € p(A) N p(B).

However, an analogous result cannot hold for higher powers of the resolvent as
the following remarkably simple example illustrates:
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B:

Example m = 3.

Suppose H is an infinite-dimensional Hilbert space, and let P; € B(H), j € {1,2},
be infinite-dimensional orthogonal projections with

PiP, =0 and P;+ P, =Iy. (61)
Set
A=V3(Pi+ P,), B=+3(PL—P,). (6.2)
Evidently, A2 = B2 = 3/, and
(A —ily)® = A — 3iA% 4+ 3(—i)?A — Pl = —8ily. (6.3)
Similarly, one obtains (B — ily;)® = —8ily;, and consequently,
(A—ily) 3 = (B —ily)2=0¢ Bi(H). (6.4)

However, if z € C\{i}, then

(A4 zhy)® = A3 +32A% + 322A+ 231y, (6.5)
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B:

Example m = 3 (contd.).

Taking, for example, z = 3j in (6.5), one computes

(A4 zly)? = A(A? + 3221 + 2(3A% + 22 Iy) = —24A, (6.6)

and similarly,
(B + 3ily)® = —24B. (6.7)

Computing inverses, one infers

1 1
A+3ily) 3 =——Al=———(P + P,), 6.8
( ihy) G 24\@( 1+ P2) (6.8)
(B +3ily) 3 = g1 (P1— P) (6.9)
24 24/3 ’
so that |
(A+3ily) ™3 — (B +3ily) 2 = ———=P5 ¢ Boo(H), (6.10)

124/3

due to the fact that P, is an infinite-dimensional projection in H.
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B:

Assume that Ay and By are fixed self-adjoint operators in the Hilbert space #,
and there exists m € N, m odd, such that,

I:(BO = Z/'H)_m = (Ao = Z/H)_m] € B (H), VLS C\R

Note. One really needs all z € C\R for m > 2.

We denote by ¢ : R — R a bijection satisfying for some ¢ > 0,
pe C’R), M) =A"]AI>1 () >c
Then by Yafaev '05 one has the fact
[(#(Bo) = i)™ = (#(Ao) — i) ] € Bi(H). (*)
Following Yafaev '05, one introduces the class of sSSFs for the pair (By, Ap) via

§(v; Bo, Ao) = §(¢(v): v(Bo), p(Ad)), v ER,
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B (contd.):

implying
(-5 Bo, Ao) € LM(R; (Jv|™ + 1) tdv)

since upon introducing the new variable
p=9pv)eR, veR,
the inclusion (x) yields
£(+@(Bo). p(Ao)) € L (R; (|uf? + 1)~ dp).
The change of variables v — p yields for the corresponding trace formula,
tr(f(Bo) — f(Ao)) = tr ((F o o™ )((Bo)) — (F o ¢™1)((A0)))
= [ duF o ¢ Y ) €l o(Bo). (A0)

:/Rdyf'(u)g(u; Bo. Ao), f € Fm(R).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B (contd.):

We need an appropriate topology but start with a transitivity property: if
B eTn(A)and C € T,(B), then C € T,(A), as well.

For each m € N, T',(T) can be equipped with the family D = {dp . },cc\r of
pseudometrics defined by

dm7z(51, 52) = ||(52 - Z/H)im - (51 — ZIH)imHBl(H)’ 51,5 € Fm(T)
For each fixed e > 0, z € C\R, and S € I',,(T), define
B(S;dmz,e) ={S €Tm(T)|dmn.(S,S") < e},

to be the e-ball centered at S with respect to the pseudometric dy, ,.

Definition.

Tm(D, T) is the topology on I',(T) with the subbasis
Bm(D, T)={B(S;dnz¢e)|S €Tn(T), ze C\R, € > 0}.

That is, Tm(D, T) is the smallest topology on TI',( T) which contains B,(D, T).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B (contd.):

To state the main results of this section, we introduce one more hypothesis:

Hypothesis.

(i) Let Ag, By, and B; denote self-adjoint operators in H with By, By € I',(Ao)
for some odd m € N, and let {B;},c[o,1] C ['m(Bo) (and hence in I ,(Ag)) be a
path from By to By in ['y(By) depending continuously on 7 € [0, 1] with respect
to the topology 7,,(D, T) introduced in the previous definition.

(i) Assume that ¢ : R — R is a bijection satisfying for some ¢ > 0 and r > 0,

e € C*R), A=A, N>r, ¢(N)>c AeR.

Proposition.
Assume this hypothesis. Then ¢(Bp) € 1 (¢(Ao)), and

{@(BT)}TG[O,].] C rl(@(BO))

is a path from ¢(Bp) to ¢(Bi) in T1(p(Boy)) depending continuously on 7 € [0, 1]
with respect to the metric dy (-, - ).
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Approximations in Trace Ideals and Continuity of Spectral Shift Functions

Continuity of £(-; B, By) w.r.t. B (contd.):

The following theorem represents the principal result of this section:

Assume the above hypothesis and let &o( - ; ©(Bo), ¢(Ag)) be a spectral shift
function for the pair (¢(Bo), ©(Ao)). Then for each 7 € [0, 1], there is a unique
spectral shift function £(-; ©(B.), ©(Ag)) for the pair (¢(B:), ¢(Ao)) depending
continuously on 7 € [0,1] in the L}(R; (A2 + 1)~1d\)-norm such that

§(+:¢(Bo), £(Ao)) = o( - : ©(Bo), p(Ao)).-

Consequently,
§(+; Br, Ao) :=£(0(-); (Br), ¢(Ad)),

the corresponding spectral shift function for the pair (B, Ag), depends
continuously on 7 € [0,1] in the L}(R; (J¢|™! + 1)~!dv)-norm and satisfies

§(+5 Bo, Ao) = &o((+); ¢(Bo), ¢(Ao))-
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Continuity of £(-; B, By) w.r.t. B (contd.):

If {7n}52; C [0,1] and 7, — 0 as n — oo, then the previous theorem implies
tim [€(-; Br,, Ao) = £(-; Bo, Ao)ll @l +1)-1dw) = 0

In particular, there exists a subsequence of {£(-; B, , Aog) }nen Which converges
pointwise a.e. to £(-; By, Ag) as n — oo. o

v
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Continuity of £(-; B, By) w.r.t. B (contd.):

We conclude with an elementary consequence:

Corollary.

Under the hypotheses in the above theorem, if f € L°(R), then

lim [[€(-: Br, Ao)f — &( - Bo, Ao)f [l 11 (wi(w|m+141)-1d) = 0,

T—0*t

in particular,

lim /5 v; By, Ag)dv g(v /f v; By, Ao)dv g(v)

T—0t

for all g € L°°(R) such that ess.sup,cp |([v|™™ + 1)g(v)| < co.
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