Applications of Spectral Shift Functions. I: Basic Properties of SSFs

Fritz Gesztesy (Baylor University, Waco, TX, USA)

VII Taller-Escuela de Verano de Análisis y Física Matemática
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
Unidad Cuernavaca del Instituto de Matemáticas, UNAM
May 29 – June 2, 2017

- Motivation
- 2 Notation
- **3** The Spectral Shift Function: Basics
- **4** Applications to Schrödinger Operators in d = 1, 2, 3
- Substitution of Spectral Shift Functions
 Approximations in Trace Ideals and Continuity of Spectral Shift Functions

A Classic Problem in Operator Theory:

- Perturbation Theory
- Spectral Theory

More precisely, suppose we are given an unperturbed operator H_0 , and an additive perturbation V, consider $H = H_0 + V$.

Basic Problem of (Perturbative) Spectral Theory: Given spectral properties of the unperturbed operator H_0 , determine spectral properties of H.

(This is a fundamental problem, but one that's a lot easier formulated than solved!)

Standard Example: Two-Body Quantum Mechanics

H₀ models kinetic energy

V models potential energy

 $H = H_0 + V$ represents the total Hamiltonian

A Classic Problem in Operator Theory (contd.):

Spectral Theory: Typically is divided into two parts:

- (i) A study of the discrete spectrum: Searching for eigenvalues (think bound states in quantum systems).
- (ii) A study of the (absolutely) continuous spectrum: Leading toward scattering theory (think scattering amplitudes, cross sections, etc.).

There are also **eigenvalues embedded in the continuous spectrum**, but that's for another day.

Today, **spectral theory** is a vast area in operator theory! We will just scratch a bit at its surface in these lectures.

A Bit of Notation:

- $\mathcal H$ denotes a (separable, complex) Hilbert space, $I_{\mathcal H}$ represents the identity operator in $\mathcal H$.
- ullet If A is a closed (typically, self-adjoint) operator in ${\mathcal H}$, then
- $\rho(A) \subseteq \mathbb{C}$ denotes the **resolvent set** of A; $z \in \rho(A) \iff A z I_{\mathcal{H}}$ is a bijection.
- $\sigma(A) = \mathbb{C} \setminus \rho(A)$ denotes the **spectrum** of A.
- $\sigma_p(A)$ denotes the **point spectrum** (i.e., the set of eigenvalues) of A.
- $\sigma_d(A)$ denotes the **discrete spectrum** of A (i.e., isolated eigenvalues of finite (algebraic) multiplicity).
- If A is closable in \mathcal{H} , then \overline{A} denotes the **operator closure** of A in \mathcal{H} .

Note. All operators will be **linear** in this course.

A Bit of Notation (contd.):

- $\mathcal{B}(\mathcal{H})$ is the set of **bounded** operators defined on \mathcal{H} .
 - $\mathcal{B}_p(\mathcal{H})$, $1 \leq p \leq \infty$ denotes the pth trace ideal of $\mathcal{B}(\mathcal{H})$,

(i.e., $T \in \mathcal{B}_p(\mathcal{H}) \Longleftrightarrow \sum_{j \in \mathcal{J}} \lambda_j \left((T^*T)^{1/2} \right)^p < \infty$, where $\mathcal{J} \subseteq \mathbb{N}$ is an appropriate index set, and the eigenvalues $\lambda_j(T)$ of T are repeated according to their algebraic multiplicity),

 $\mathcal{B}_1(\mathcal{H})$ is the set of **trace class** operators,

 $\mathcal{B}_2(\mathcal{H})$ is the set of **Hilbert–Schmidt** operators,

 $\mathcal{B}_{\infty}(\mathcal{H})$ is the set of **compact** operators.

- $\operatorname{tr}_{\mathcal{H}}(A) = \sum_{j \in \mathcal{J}} \lambda_j(A)$ denotes the **trace** of $A \in \mathcal{B}_1(\mathcal{H})$.
- $\det_{\mathcal{H}}(I_{\mathcal{H}} A) = \prod_{j \in \mathcal{J}} [1 \lambda_j(A)]$ denotes the **Fredholm determinant**, defined for $A \in \mathcal{B}_1(\mathcal{H})$.
- $\det_{2,\mathcal{H}}(I_{\mathcal{H}} B) = \prod_{j \in \mathcal{J}} [1 \lambda_j(B)] e^{\lambda_j(B)}$ denotes the **modified** Fredholm determinant, defined for $B \in \mathcal{B}_2(\mathcal{H})$.

The Krein-Lifshitz spectral shift function **\(\xi**:

"On the shoulders of giants":

Ilya Mikhailovich Lifshitz (January 13, 1917 - October 23, 1982):

Well-known Theoretical Physicist: Worked in solid state physics, electron theory of metals, disordered systems, Lifshitz tails, Lifshitz singularity, the theory of polymers; introduced the concept of the spectral shift function for rank one perturbations in 1952.

Mark Grigorievich Krein (April 3, 1907 - October 17, 1989):

Mathematician Extraordinaire: One of the giants of 20th century mathematics, Wolf Prize in Mathematics in 1982; introduced the theory of the spectral shift function in the period of 1953–1963.

A Short Course on the Spectral Shift Function &:

Given two **self-adjoint** operators H, H_0 in \mathcal{H} , think of H as an additive perturbation of H_0 by the operator V, that is,

$$H = H_0$$
 "+" V .

We assume that the "perturbation" $V = H - H_0$ satisfies one of the following:

- Trace class perturbations: $V = \overline{[H H_0]} \in \mathcal{B}_1(\mathcal{H})$.
- Relative trace class: $V(H_0 z I_H)^{-1} \in \mathcal{B}_1(\mathcal{H})$ for some (hence, all) $z \in \mathbb{C} \setminus \mathbb{R}$.
- Resolvent comparable: $[(H-z I_{\mathcal{H}})^{-1}-(H_0-z I_{\mathcal{H}})^{-1}] \in \mathcal{B}_1(\mathcal{H}).$

Perhaps, the best way to formally introduce the Krein–Lifshitz spectral shift function $\xi(\cdot; H, H_0)$ is to show what it can do: It computes traces!

More precisely, the spectral shift function (SSF) is a real-valued function on \mathbb{R} that satisfies the **trace formula**

$$\operatorname{tr}_{\mathcal{H}}(f(H) - f(H_0)) = \int_{\mathbb{R}} f'(\lambda) \, \xi(\lambda; H, H_0) \, d\lambda,$$

for "appropriate" functions f.

For example, take the resolvent function $(\cdot - z)^{-1}$, $z \in \mathbb{C} \backslash \mathbb{R}$,

$$\operatorname{tr}_{\mathcal{H}}\left((H-z\,I_{\mathcal{H}})^{-1}-(H_{0}-z\,I_{\mathcal{H}})^{-1}\right)=-\int_{\mathbb{R}}\frac{\xi(\lambda;H,H_{0})\,d\lambda}{(\lambda-z)^{2}},\quad z\in\mathbb{C}\backslash\mathbb{R},$$

or the exponential function e^{-t} , t>0, assuming H_0 , H to be bounded from below, $H_0 \ge cl_{\mathcal{H}}$ for some $c \in \mathbb{R}$,

$$\operatorname{tr}_{\mathcal{H}}\left(e^{-tH}-e^{-tH_{0}}\right)=-t\int_{[c,\infty)}e^{-t\lambda}\xi(\lambda;H,H_{0})\,d\lambda,\quad t>0.$$

Here $c = \min\{\inf(\sigma(H)), \inf(\sigma(H_0))\}.$

The general trace formula works, e.g., for $f \in C^1(\mathbb{R})$ with $f'(\lambda) = \int_{\mathbb{R}} e^{-i\lambda s} d\sigma(s)$ and $d\sigma$ a finite signed measure;

$$f(\lambda)=(\lambda-z)^{-1};$$
 or, $\widehat{f}\in L^1(\mathbb{R};(1+|p|)dp)$ (implies $f\in C^1(\mathbb{R})$), etc.

V. Peller has necessary conditions on f, and also sufficient conditions on f in terms of certain Besov spaces. These spaces are not that far apart

Possible Applications:

- **Spectral Theory** (eigenvalue counting functions, inverse spectral problems, trace formulas, spectral averaging, localization for random Hamiltonians, etc.)
- Scattering Theory (sum rules, such as Levinson's Theorem, time delay, fixed energy scattering matrices, etc.)
- Quantum Mechanics (Solid State Physics: Friedel's sum rule, etc.)
- **Statistical Mechanics** (convexity of trace functionals, density-functional theory, density matrices, etc.).
- Index Theory (Fredholm and Witten indices.)
- Almost everywhere where traces and/or determinants involving pairs of self-adjoint operators are relevant.

The Spectral Shift Function **\(\xi**: Examples

We start with some Examples:

Here's a **non-serious** one:

 H, H₀ ∈ R (really, a joke!), the trace formula then becomes the Newton-Leibniz "trace" formula, a.k.a., the fundamental theorem of calculus (FTC):

$$f(H) - f(H_0) = \int_{[H_0, H]} f'(\lambda) d\lambda$$

and thus,

 $\xi(\cdot; H, H_0) = \chi_{[H_0, H]}(\cdot) = \text{characteristic function of the interval } [H_0, H].$

The Spectral Shift Function **\(\xi**: Examples (contd.)

For our next example, the **finite-dimensional case**, we first recall the spectral theorem for **self-adjoint** matrices $A = A^*$ in \mathbb{C}^n :

Let $\sigma(A) = \{\lambda_j(A)\}_{1 \leq j \leq m}$, $m \leq n$, be the eigenvalues of A, and denote by $P_j(A)$ the associated projection onto the eigenspace corresponding to $\lambda_j(A)$, $1 \leq j \leq m$. Then

$$\mathbf{A} = \sum_{j=1}^{m} \lambda_j(\mathbf{A}) P_j(\mathbf{A}), \quad P_j(\mathbf{A}) = \sum_{k=1}^{m_j} (\cdot, f_{j,k})_{\mathbb{C}^n} f_{j,k},$$

where $(f_{j,k},f_{j,\ell})_{\mathbb{C}^n}=\delta_{k,\ell}$, $1\leq k,\ell\leq m_j$, with m_j the multiplicity of the eigenvalue $\lambda_j(A)$ of A. Introducing

$$E_{\mathbf{A}}((-\infty,\lambda]) = \sum_{j \text{ s.t. } \lambda_j(\mathbf{A}) \leq \lambda} P_j(\mathbf{A}), \quad \lambda \in \mathbb{R},$$

then (employing the Stieltjes integral)

$$A = \sum_{j=1}^{m} \lambda_j(A) P_j(A) = \int_{\mathbb{R}} \lambda \, dE_A(\lambda), \quad f(A) = \sum_{j=1}^{m} f(\lambda_j(A)) P_j(A) = \int_{\mathbb{R}} f(\lambda) \, dE_A(\lambda)$$

for bounded measurable functions f on \mathbb{R} .

The Spectral Shift Function **\(\xi**: Examples (contd.)

• H, H_0 self-adjoint matrices in \mathbb{C}^n (I. M. Lifshitz trace formula):

$$\begin{split} & \operatorname{tr}_{\mathbb{C}^n}(f(\red{H}) - f(\red{H_0})) = \operatorname{tr}_{\mathbb{C}^n}\bigg(\int_{\mathbb{R}} f(\lambda) dE_{\red{H}}(\lambda) - \int_{\mathbb{R}} f(\lambda) dE_{\red{H_0}}(\lambda)\bigg) \\ & = \operatorname{tr}_{\mathbb{C}^n}\bigg(\int_{\mathbb{R}} f(\lambda) d(E_{\red{H}}(\lambda) - E_{\red{H_0}}(\lambda))\bigg) = \int_{\mathbb{R}} f(\lambda) d\operatorname{tr}_{\mathbb{C}^n}(E_{\red{H}}(\lambda) - E_{\red{H_0}}(\lambda)) \\ & = -\int_{\mathbb{R}} f'(\lambda) \operatorname{tr}_{\mathbb{C}^n}(E_{\red{H}}(\lambda) - E_{\red{H_0}}(\lambda)) d\lambda \end{split}$$

implies

$$\xi(\lambda; H, H_0) = -\operatorname{tr}_{\mathbb{C}^n}(E_H(\lambda) - E_{H_0}(\lambda)), \quad \lambda \in \mathbb{R}.$$

WARNING: Generally, $\xi(\cdot; H, H_0) = -\text{tr}_{\mathcal{H}}(E_H(\cdot) - E_{H_0}(\cdot))$ is **NOT** correct if $\dim(\mathcal{H}) = \infty!$

M. Krein constructed a simple example where $[E_H(\cdot) - E_{H_0}(\cdot)]$ is **NOT** necessarily of trace class even for $V = [H - H_0]$ of rank one! (He used half-line Laplacians with different boundary conditions.)

Recall the **Trace** and the **Determinant:** Let $\lambda_j(T)$, $j \in \mathcal{J}$ ($\mathcal{J} \subseteq \mathbb{N}$ an index set) denote the eigenvalues of $T \in \mathcal{B}_{\infty}(\mathcal{H})$, counting algebraic multiplicity.

$$K \in \mathcal{B}_1(\mathcal{H})$$
, then $\sum_{j \in \mathcal{J}} \lambda_j ig((K^*K)^{1/2} ig) < \infty$ and

$$\operatorname{tr}_{\mathcal{H}}(K) = \sum_{j \in \mathcal{J}} \lambda_j(K), \qquad \operatorname{det}_{\mathcal{H}}(I_{\mathcal{H}} - K) = \prod_{j \in \mathcal{J}} [1 - \lambda_j(K)].$$

The Perturbation Determinant: H and H_0 self-adjoint in \mathcal{H} , $H = H_0 + V$,

$$\frac{\mathsf{D}_{\mathsf{H}/\mathsf{H}_0}(\mathsf{z})}{\mathsf{det}_{\mathcal{H}}\big((\mathsf{H}-\mathsf{z}\,I_{\mathcal{H}})(\mathsf{H}_0-\mathsf{z}\,I_{\mathcal{H}})^{-1}\big)}=\mathsf{det}_{\mathcal{H}}\big(I_{\mathcal{H}}+\mathsf{V}(\mathsf{H}_0-\mathsf{z}\,I_{\mathcal{H}})^{-1}\big).$$

In the matrix case, view $D_{H/H_0}(z)$ as the quotient

$$D_{H/H_0}(z) = \frac{\det_{\mathcal{H}}(H - z I_{\mathcal{H}})}{\det_{\mathcal{H}}(H_0 - z I_{\mathcal{H}})}.$$

Example. If $H_0 = -(d^2/dx^2)$, $H = -(d^2/dx^2) + V(\cdot)$ in $L^2(\mathbb{R}; dx)$, $V \in L^1(\mathbb{R}; (1+|x|)dx)$, real-valued, then

$$D_{H/H_0}(z) =$$
Jost function = **Evans** function.

The general Krein trace formula for the trace class perturbations V, i.e., $V = [H - H_0] \in \mathcal{B}_1(\mathcal{H})$:

$$\xi(\lambda; H, H_0) = \frac{1}{\pi} \lim_{\varepsilon \downarrow 0} \operatorname{Im}(\operatorname{In}(D_{H/H_0}(\lambda + i\varepsilon))) \text{ for a.e. } \lambda \in \mathbb{R}, \quad (*)$$

where

$$D_{H/H_0}(z) = \det_{\mathcal{H}} ((H - z I_{\mathcal{H}})(H_0 - z I_{\mathcal{H}})^{-1}) = \det_{\mathcal{H}} (I_{\mathcal{H}} + V(H_0 - z I_{\mathcal{H}})^{-1}).$$

Then

$$\xi(\cdot; H, H_0) \in L^1(\mathbb{R}; d\lambda),$$

and

$$\begin{split} &\int_{\mathbb{R}} |\xi(\lambda;H,H_0)| \, d\lambda \leqslant \|H-H_0\|_{\mathcal{B}_1(\mathcal{H})}, \\ &\int_{\mathbb{R}} \xi(\lambda;H,H_0) \, d\lambda = \mathrm{tr}_{\mathcal{H}}(H-H_0). \end{split}$$

Note. Formula (*) remains valid in the relative trace class case, where $V(H_0 - zI_H)^{-1} \in \mathcal{B}_1(\mathcal{H})$. But in this case one only has

$$\int_{\mathbb{R}} \frac{|\xi(\lambda; H, H_0)| d\lambda}{1 + \lambda^2} < \infty$$

(and no longer $\xi(\cdot; H, H_0) \in L^1(\mathbb{R}; d\lambda)$).

Similar, but slightly more involved formulas also work in the most general case where H and H_0 are only resolvent comparable, i.e.,

$$\left[(H - z I_{\mathcal{H}})^{-1} - (H_0 - z I_{\mathcal{H}})^{-1} \right] \in \mathcal{B}_1(\mathcal{H}).$$

Note. The physicist **Ilya Lifshitz** introduced $\xi(\cdot; H, H_0)$ first for **rank-one** perturbations V. Mark Krein then treated the **trace class** case, $V \in \mathcal{B}_1(\mathcal{H})$, "one rank at a time".

If $\dim(\operatorname{ran}(E_{H_0}(a-\epsilon,b+\epsilon)))<\infty$, then

$$\xi(b-0;H,H_0)-\xi(a+0;H,H_0) = \dim(\operatorname{ran}(E_{H_0}(a,b))) - \dim(\operatorname{ran}(E_{H}(a,b))). \quad (**$$

Note. Again, formula (**) remains **valid** in the **relative trace class case**, where $V(H_0 - zI_H)^{-1} \in \mathcal{B}_1(\mathcal{H})$.

Away from $\sigma_{ess}(H_0) = \sigma_{ess}(H)$, $\xi(\lambda; H, H_0)$ is piecewise constant:

Counting multiplicity: Suppose $\lambda_0 \in \mathbb{R} \setminus \{\sigma_{ess}(H_0)\}$. Then,

$$\xi(\lambda_0 + 0; H, H_0) - \xi(\lambda_0 - 0; H, H_0) = m(H_0; \lambda_0) - m(H; \lambda_0),$$

where $m(T, \lambda) \in \mathbb{N} \cup \{0\}$ denotes the multiplicity of the eigenvalue $\lambda \in \mathbb{R}$ of $T = T^*$.

Thus, for energies λ away from $\sigma_{ess}(H_0)$, $\xi(\lambda; H, H_0)$ represents the **difference** of two **eigenvalue counting functions**.

The spectral shift function is only determined up to a constant.

Assuming H_0 , H to be bounded from below

$$H_0 \geq cI_{\mathcal{H}}$$
,

the standard way to fix the constant is to impose the normalization

$$\xi(\lambda; H, H_0) = 0, \quad \lambda < \inf(\sigma(H_0) \cup \sigma(H)).$$

Moreover, in the semibounded case, one has the "chain rule",

$$\xi(\lambda; H_2, H_0) = \xi(\lambda; H_2, H_1) + \xi(\lambda; H_1, H_0).$$

Scattering theory: The Birman-Krein formula

Let $S(H, H_0)$ be the scattering operator for the pair (H, H_0) . Then

$$S(H, H_0) = \int_{\sigma_{ac}(H_0)}^{\oplus} S(\lambda; H, H_0) d\lambda,$$

where $S(\lambda; H, H_0)$ is the fixed energy scattering operator (sweeping spectral multiplicity issues of H_0 under the rug!). Then the **Birman–Krein formula** holds,

$$\xi(\lambda; H, H_0) = -\frac{1}{2\pi i} \ln(\det(S(\lambda; H, H_0)))$$
 for a.e. $\lambda \in \sigma_{ac}(H_0)$.

Example. If
$$H_0 = -(d^2/dx^2)$$
, $H = -(d^2/dx^2) + V(\cdot)$ in $L^2([0,\infty); dx)$, $V \in L^1([0,\infty); (1+|x|)dx)$, real-valued, then

$$D_{H/H_0}(z)$$
 = the half-line **Jost** function,

and

 $\xi(\lambda; H, H_0)$ equals the scattering phase shift function for a.e. $\lambda \in \sigma_{ac}(H_0)$.

Connections Between **§**, Traces, and Determinants

Suppose H_0 and H are self-adjoint in \mathcal{H} and satisfy

$$\left[(\mathbf{H} - z \, I_{\mathcal{H}})^{-1} - (\mathbf{H_0} - z \, I_{\mathcal{H}})^{-1} \right] \in \mathcal{B}_1(\mathcal{H}) \text{ for some (hence, all) } z \in \rho(\mathbf{H_0}) \cap \rho(\mathbf{H}).$$

Since V " = " $H - H_0$ is self-adjoint, we can always factor it as V = AB = BA (e.g., using the spectral theorem), assuming

$$B(H_0-z\,I_{\mathcal{H}})^{-1},\,\overline{(H_0-z\,I_{\mathcal{H}})^{-1}A}\in\mathcal{B}_2(\mathcal{H}),\quad z\in\mathbb{C}\backslash\mathbb{R},$$

and either:

(i)
$$\overline{B(H_0-zI_{\mathcal{H}})^{-1}A} \in \mathcal{B}_1(\mathcal{H}), z \in \mathbb{C}\backslash\mathbb{R}, \text{ or }$$

(ii)
$$\overline{B(H_0-z\,I_{\mathcal{H}})^{-1}A}\in\mathcal{B}_2(\mathcal{H}),\ z\in\mathbb{C}\backslash\mathbb{R}.$$

One can then define **perturbation determinants** for $z \in \mathbb{C} \setminus \mathbb{R}$,

(i)
$$D_{H/H_0}(z) = \det_{\mathcal{H}} \left(I_{\mathcal{H}} + \overline{B(H_0 - z I_{\mathcal{H}})^{-1} A} \right)$$
 (Fredholm det.),

(ii)
$$D_{2,H/H_0}(z) = \det_{2,\mathcal{H}}(I_{\mathcal{H}} + \overline{B(H_0 - z I_{\mathcal{H}})^{-1}A})$$
 (modified Fredholm det.).

Connections Between ξ , Traces, and Dets. (contd.)

In these cases,

$$-\frac{d}{dz}\ln(D_{H/H_0}(z)) = \operatorname{tr}_{\mathcal{H}}((H-zI_{\mathcal{H}})^{-1} - (H_0-zI_{\mathcal{H}})^{-1})$$
$$= -\int_{\mathbb{R}} \frac{\xi(\lambda; H, H_0)}{(\lambda-z)^2} d\lambda,$$

and

$$\begin{split} -\frac{d}{dz} & \ln(D_{2,H/H_0}(z)) = \operatorname{tr}_{\mathcal{H}} \big((H - z I_{\mathcal{H}})^{-1} - (H_0 - z I_{\mathcal{H}})^{-1} \\ & + (H_0 - z I_{\mathcal{H}})^{-1} V (H_0 - z I_{\mathcal{H}})^{-1} \big) \\ & = - \int_{\mathbb{D}} \frac{\xi(\lambda; H, H_0)}{(\lambda - z)^2} d\lambda + \operatorname{tr}_{\mathcal{H}} \big((H_0 - z I_{\mathcal{H}})^{-1} V (H_0 - z I_{\mathcal{H}})^{-1} \big). \end{split}$$

Applications to 1d Schrödinger Operators

Consider the Laplacian H_0 and a quadratic form perturbation H of it in $L^2(\mathbb{R}; dx)$:

$$H_0 = -\Delta$$
, $dom(H_0) = H^2(\mathbb{R})$, $H = -\Delta +_q V$,

where $V \in L^1(\mathbb{R}; dx)$ is real-valued. Here $+_q$ abbreviates the form sum. Next, we factor

$$V(x) = u(x)v(x)$$
, where $v(x) = |V(x)|^{1/2}$, $u(x) = v(x) \operatorname{sgn}[V(x)]$, $x \in \mathbb{R}$.

Then (with $I := I_{L^2(\mathbb{R}; d\times)}$),

- (i) $\overline{u(H_0-zI)^{-1}v} \in \mathcal{B}_1(L^2(\mathbb{R};dx)), \quad z \in \mathbb{C}\setminus[0,\infty).$
- (ii) H and H_0 have a trace class resolvent difference,

$$\left[(H-zI)^{-1} - (H_0-zI)^{-1} \right] \in \mathcal{B}_1(L^2(\mathbb{R};dx)), \quad z \in \mathbb{R} \setminus \sigma(H).$$

- (iii) $(H_0 zI)^{-1}V(H_0 zI)^{-1} \in \mathcal{B}_1(L^2(\mathbb{R}; dx)), \quad z \in \mathbb{C}\setminus[0, \infty).$
- (iv) For $z \in \mathbb{C} \setminus \sigma(H)$,

$$\operatorname{tr} \left((H - z I)^{-1} - (H_0 - z I)^{-1} \right) = -\frac{d}{dz} \ln \left(\det \left(I + \overline{u(H_0 - z I)^{-1} v} \right) \right).$$

Applications to 2d and 3d Schrödinger Operators

Again, consider the Laplacian H_0 and a quadratic form perturbation H of it in $L^2(\mathbb{R}^n; d^n x)$, n = 2, 3:

$$H_0 = -\Delta$$
, $dom(H_0) = H^2(\mathbb{R}^n)$, $H = -\Delta +_q V$, $n = 2, 3$,

where V is real-valued and $V \in \mathcal{R}_{2,\delta}$ for some $\delta > 0$ and n = 2, and $V \in \mathcal{R}_3 \cap L^1(\mathbb{R}^3; d^3x)$ for n = 3 and

$$\begin{split} \mathcal{R}_{2,\delta} &= \big\{ \textcolor{red}{V}: \mathbb{R}^2 \to \mathbb{R}, \text{ measurable} \, \big| \, \textcolor{red}{V^{1+\delta}}, (1+|\cdot|^\delta) \textcolor{red}{V} \in L^1(\mathbb{R}^2; d^2x) \big\}, \\ \mathcal{R}_3 &= \bigg\{ \textcolor{red}{V}: \mathbb{R}^3 \to \mathbb{R}, \text{ measurable} \, \Big| \, \int_{\mathbb{R}^6} d^3x \, \, d^3x' \, \, |\textcolor{red}{V(x')}||\textcolor{red}{V(x')}||x-x'|^{-2} < \infty \bigg\}, \end{split}$$

Rollnik potentials in \mathbb{R}^3 .

Again, $+_q$ abbreviates the **form sum**.

Appls. to 2d and 3d Schrödinger Operators (contd.)

Again, we factor

$$V(x) = u(x)v(x), \quad v(x) = |V(x)|^{1/2}, \ u(x) = v(x)\operatorname{sgn}[V(x)], \quad x \in \mathbb{R}^n, \ n = 2, 3.$$

Then (with $I := I_{L^2(\mathbb{R}^n; d^n x)}, n = 2, 3$),

- (i) $\overline{u(H_0-zI)^{-1}v} \in \mathcal{B}_2(L^2(\mathbb{R}^n;d^nx)), \quad z \in \mathbb{C}\setminus[0,\infty), \ n=2,3.$
- (ii) H and H_0 have a trace class resolvent difference,

$$\left[(\textcolor{red}{H} - z \, I)^{-1} - (\textcolor{red}{H_0} - z \, I)^{-1} \right] \in \mathcal{B}_1 \big(L^2(\mathbb{R}^n; d^n x) \big), \quad z \in \mathbb{R} \setminus \sigma(\textcolor{red}{H}), \ n = 2, 3.$$

(iii)
$$(H_0 - zI)^{-1}V(H_0 - zI)^{-1} \in \mathcal{B}_1(L^2(\mathbb{R}^n; d^n x)), \quad z \in \mathbb{C} \setminus [0, \infty), \ n = 2, 3.$$

(iv) For $z \in \mathbb{C} \setminus \sigma(H)$,

$$\operatorname{tr}\left((H - zI)^{-1} - (H_0 - zI)^{-1} + (H_0 - zI)^{-1}V(H_0 - zI)^{-1}\right)$$
$$= -\frac{d}{dz}\operatorname{ln}\left(\operatorname{det}_2\left(I + \overline{u(H_0 - zI)^{-1}v}\right)\right).$$

A Bit of Literature:

- **H. Baumgärtel and M. Wollenberg,** *Mathematical Scattering Theory*, Akademie Verlag, Berlin, 1983.
- M. Sh. Birman and M. G. Krein, On the theory of wave operators and scattering operators, Sov. Math. Dokl. 3, 740–744 (1962).
- M. Sh. Birman and D. R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4, 833–870 (1993).
- **D. R. Yafaev,** *Mathematical Scattering Theory. General Theory*, Amer. Math. Soc., Providence, RI, 1992.
- **D. R. Yafaev,** *A trace formula for the Dirac operator*, Bull. London Math. Soc. **37**, 908–918 (2005).
- **D. R. Yafaev,** The Schrödinger operator: Perturbation determinants, the spectral shift function, trace identities, and all that, Funct. Anal. Appl. **41**, 217–236 (2007).
- **D. R. Yafaev,** *Mathematical Scattering Theory. Analytic Theory*, Math. Surveys and Monographs, Vol. 158, Amer. Math. Soc., Providence, RI, 2010.

Approximations in Trace Ideals and Continuity of Spectral Shift Functions: Motivation

In our attempt to study the Witten index for higher-dimensional massless Dirac-type operators, we needed various approximation results which were not available in the literature. More importantly, those results should prove useful in a variety of other situations.

The following is based on:

A. Carey, F.G., G. Levitina, R. Nichols, D. Potapov, and F. Sukochev, J. Spectral Theory **6**, 747–779 (2016).

Motivation (contd.)

To describe the first such result, assume that A, B, A_n, B_n , $n \in \mathbb{N}$, are self-adjoint operators in a complex, separable Hilbert space \mathcal{H} , and suppose that

for some $z_0 \in \mathbb{C} \backslash \mathbb{R}$. Fix $m \in \mathbb{N}$, m odd, $p \in [1, \infty)$, and assume that for all $a \in \mathbb{R} \backslash \{0\}$,

$$\begin{split} & T(a,m) := \left[(A - ail_{\mathcal{H}})^{-m} - (B - ail_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_p(\mathcal{H}), \\ & T_n(a,m) := \left[(A_n - ail_{\mathcal{H}})^{-m} - (B_n - ail_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_p(\mathcal{H}), \\ & \lim_{n \to \infty} \|T_n(a,m) - T(a,m)\|_{\mathcal{B}_p(\mathcal{H})} = 0. \end{split}$$

Then for any function f in the class $\mathfrak{F}_m(\mathbb{R}) \supset C_0^\infty(\mathbb{R})$ (details later),

$$\lim_{n\to\infty} \left\| \left[f(A_n) - f(B_n) \right] - \left[f(A) - f(B) \right] \right\|_{\mathcal{B}_p(\mathcal{H})} = 0.$$

Motivation (contd.)

Moreover, for each $f \in \mathfrak{F}_m(\mathbb{R})$, $p \in [1, \infty)$, we prove the existence of constants $a_1, a_2 \in \mathbb{R} \setminus \{0\}$ and $C = C(f, m, a_1, a_2) \in (0, \infty)$ such that

$$\begin{aligned} \|f(A) - f(B)\|_{\mathcal{B}_{\rho}(\mathcal{H})} &\leq C(\|(A - a_{1}il_{\mathcal{H}})^{-m} - (B - a_{1}il_{\mathcal{H}})^{-m}\|_{\mathcal{B}_{\rho}(\mathcal{H})} \\ &+ \|(A - a_{2}il_{\mathcal{H}})^{-m} - (B - a_{2}il_{\mathcal{H}})^{-m}\|_{\mathcal{B}_{\rho}(\mathcal{H})}), \end{aligned}$$

which permits the use of differences of higher powers $m \in \mathbb{N}$ of resolvents to **control** the $\|\cdot\|_{\mathcal{B}_o(\mathcal{H})}$ -norm of the left-hand side [f(A) - f(B)] for $f \in \mathfrak{F}_m(\mathbb{R})$.

Here, the class of functions $\mathfrak{F}_m(\mathbb{R})$, $m \in \mathbb{N}$ (introduced by **Yafaev** '05), is given by

$$\mathfrak{F}_m(\mathbb{R}) := \big\{ f \in C^2(\mathbb{R}) \, \big| \, f^{(\ell)} \in L^\infty(\mathbb{R}); \text{ there exists } \varepsilon > 0 \text{ and } f_0 = f_0(f) \in \mathbb{C} \\ \text{such that } \big(d^\ell / d\lambda^\ell \big) \big[f(\lambda) - f_0 \lambda^{-m} \big] \underset{|\lambda| \to \infty}{=} O\big(|\lambda|^{-\ell - m - \varepsilon} \big), \, \ell = 0, 1, 2 \big\}.$$

(It is implied that $f_0 = f_0(f)$ is the same as $\lambda \to \pm \infty$.) One observes that

$$\mathfrak{F}_m(\mathbb{R}) \supset C_0^{\infty}(\mathbb{R}), \ m \in \mathbb{N},$$

$$f(\lambda) = \int_{|\lambda| \to \infty} f_0 \lambda^{-m} + O(|\lambda|^{-m-\epsilon}), \quad f \in \mathfrak{F}_m(\mathbb{R}).$$

Motivation (contd.)

Our second result concerns the continuity of spectral shift functions $\xi(\cdot; B, B_0)$ associated with a pair of self-adjoint operators (B, B_0) in $\mathcal H$ w.r.t. the operator parameter B. Assume that A_0 and B_0 are fixed self-adjoint operators in $\mathcal H$, and there exists $m \in \mathbb N$, $m \in \mathbb N$ odd, such that,

 $\left[\left(\frac{\mathcal{B}_{0}}{\mathcal{B}_{0}}-zl_{\mathcal{H}}\right)^{-m}-\left(\mathcal{A}_{0}-zl_{\mathcal{H}}\right)^{-m}\right]\in\mathcal{B}_{1}(\mathcal{H}),\ z\in\mathbb{C}\backslash\mathbb{R}.$ For T self-adjoint in \mathcal{H} we denote by $\Gamma_{m}(T)$ the set of all self-adjoint operators S in \mathcal{H} for which the containment, $\left[\left(S-zl_{\mathcal{H}}\right)^{-m}-\left(T-zl_{\mathcal{H}}\right)^{-m}\right]\in\mathcal{B}_{1}(\mathcal{H}),\ z\in\mathbb{C}\backslash\mathbb{R},\ (m\in\mathbb{N}\ \text{odd}\ \text{is fixed}),\ \text{holds}.$

Suppose that $B_1 \in \Gamma_m(B_0)$ and let $\{B_{\tau}\}_{\tau \in [0,1]} \subset \Gamma_m(B_0)$ denote a continuous path (in a suitable topology on $\Gamma_m(B_0)$, details later) from B_0 to B_1 in $\Gamma_m(B_0)$. If $f \in L^{\infty}(\mathbb{R})$, then

$$\lim_{\tau \to 0^+} \|\xi(\cdot; B_\tau, A_0)f - \xi(\cdot; B_0, A_0)f\|_{L^1(\mathbb{R}; (|\nu|^{m+1}+1)^{-1}d\nu)} = 0.$$

The fact that higher powers $m \in \mathbb{N}$, $m \geq 2$, of resolvents are involved, permits applications of this circle of ideas to elliptic partial differential operators in \mathbb{R}^n , $n \in \mathbb{N}$. The proofs of these results rest on double operator integral (DOI) techniques.

No spectral gaps are assumed to exist in B_0 , B.

A 5 min. Course on Double Operator Integrals (DOI):

A brief timeout on DOIs:

Daletskij and S. G. Krein (1960'), Birman and Solomyak (1960–70'), Peller, dePagter, Sukochev (1990–05), and others.

Our main goals: (i) Given self-adjoint operators A and B and a Borel function f, represent f(A) - f(B) as a **double Stieltjes integral** with respect to the spectral measures $dE_A(\lambda)$ and $dE_B(\mu)$.

(ii) Construct a bounded transformer to the effect, for a bounded Borel function $\phi(\lambda, \mu)$ we would like to define $\mathcal{J}_{\phi}^{A,B}: \mathcal{B}_1(\mathcal{H}) \to \mathcal{B}_1(\mathcal{H})$ so that

$$\mathcal{J}_{\phi}^{A,B}(T) = \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\lambda,\mu) \, dE_{A}(\lambda) \, T \, dE_{B}(\mu), \quad T \in \mathcal{B}_{1}(\mathcal{H}) \, \text{ (or } \mathcal{B}(\mathcal{H})).$$

A 5 min. Course on DOI (contd.):

If A, B are **self-adjoint** matrices in \mathbb{C}^n , then $A = \sum_{j=1}^n \lambda_j E_A(\{\lambda_j\})$ and $B = \sum_{k=1}^n \mu_k E_B(\{\mu_k\})$ imply:

$$f(A) - f(B) = \sum_{j=1}^{n} \sum_{k=1}^{n} [f(\lambda_{j}) - f(\mu_{k})] E_{A}(\{\lambda_{j}\}) E_{B}(\{\mu_{k}\})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}} E_{A}(\{\lambda_{j}\}) (\lambda_{j} - \mu_{k}) E_{B}(\{\mu_{k}\})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}}$$

$$\times E_{A}(\{\lambda_{j}\}) \left(\sum_{j'=1}^{n} \lambda_{j'} E_{A}(\{\lambda_{j'}\}) - \sum_{k'=1}^{n} \mu_{k'} E_{B}(\{\mu_{k'}\})\right) E_{B}(\{\mu_{k}\})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{f(\lambda_{j}) - f(\mu_{k})}{\lambda_{j} - \mu_{k}} E_{A}(\{\lambda_{j}\}) (A - B) E_{B}(\{\mu_{k}\}).$$

A 5 min. Course on DOI (contd.):

The Birman-Solomyak formula:

$$f(A) - f(B) = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{f(\lambda) - f(\mu)}{\lambda - \mu} dE_A(\lambda) (A - B) dE_B(\mu).$$

More generally: For a bounded Borel function $\phi(\lambda, \mu)$ we would like to define a bounded transformer $\mathcal{J}_{\phi}^{A,B}: \mathcal{B}_1(\mathcal{H}) \to \mathcal{B}_1(\mathcal{H})$ so that

$$\mathcal{J}_{\phi}^{A,B}(T) = \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\lambda,\mu) \, dE_A(\lambda) \, T \, dE_B(\mu), \quad T \in \mathcal{B}_1(\mathcal{H}).$$

$$\mathcal{J}_{\phi}^{A,B}(T) = \int_{\mathbb{R}} \alpha(\lambda) dE_{A}(\lambda) T \int_{\mathbb{R}} \beta(\mu) dE_{B}(\mu) \text{ for } \phi(\lambda,\mu) = \alpha(\lambda) \beta(\mu),$$

$$\mathcal{J}_{\phi}^{A,B}(T) = \int_{\mathbb{R}} \alpha_{s}(A) T \beta_{s}(B) \nu(s) ds \text{ for } \boxed{\phi(\lambda,\mu) = \int_{\mathbb{R}} \alpha_{s}(\lambda) \beta_{s}(\mu) \nu(s) ds,}$$

where α_s , β_s are bounded Borel functions, $\int_{\mathbb{R}} \|\alpha_s\|_{\infty} \|\beta_s\|_{\infty} \nu(s) ds < \infty$.

The (**Wiener**) class of such ϕ 's is denoted by \mathfrak{A}_0 .

Approximations in Trace Ideals:

Denote by $\mathcal{J}_{\phi}^{ extsf{A,B}}$ the linear mapping defined by the double operator integral

$$\mathcal{J}_{\phi}^{A,B}(T) = \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\lambda,\mu) \, dE_{A}(\lambda) \, T \, dE_{B}(\mu), \quad T \in \mathcal{B}(\mathcal{H}),$$

where E_A , E_B are spectral measures corresponding to the self-adjoint operators A, B.

If $\phi(\lambda,\mu) = a_1(\lambda)a_2(\mu)$, $(\lambda,\mu) \in \mathbb{R}^2$, for some bounded functions a_1 and a_2 on \mathbb{R} , then

$$\mathcal{J}_{\phi}^{A,B}(T)=a_1(A)Ta_2(B).$$

Depending on ϕ , the operator $\mathcal{J}_{\phi}^{A,B}(T)$ can be bounded. Below we describe a class of functions ϕ such that

$$\mathcal{J}_{\phi}^{\mathsf{A},\mathsf{B}}:\mathcal{B}_{p}(\mathcal{H}) o\mathcal{B}_{p}(\mathcal{H}),\;p\in[1,\infty),\quad\mathcal{J}_{\phi}^{\mathsf{A},\mathsf{B}}:\mathcal{B}(\mathcal{H}) o\mathcal{B}(\mathcal{H}),$$

is a bounded operator. We introduce

$$\mathfrak{M}_{p} := \left\{ \phi \in L^{\infty}(\mathbb{R}^{2}; d\rho) \, \middle| \, \mathcal{J}_{\phi}^{A,B} \in \mathcal{B}(\mathcal{B}_{p}(\mathcal{H})) \right\}, \quad p \in [1, \infty),$$

$$\mathfrak{M}_{\infty} := \left\{ \phi \in L^{\infty}(\mathbb{R}^{2}; d\rho) \, \middle| \, \mathcal{J}_{\phi}^{A,B} \in \mathcal{B}(\mathcal{B}(\mathcal{H})) \right\},$$

where $\rho = \rho_A \otimes \rho_B$ denotes the product measure of ρ_A and ρ_B , the latter are suitable (scalar-valued) control measures for E_A and E_B , respectively.

Approximations in Trace Ideals (contd.):

E.g., $\rho_A(\cdot) = \sum_{j \in J} (e_j, E_A(\cdot)e_j)_{\mathcal{H}}$, with $\{e_j\}_{j \in J}$ a complete orthonormal system in \mathcal{H} , $J \subseteq \mathbb{N}$ an appropriate index set, and analogously for ρ_B . In addition, we set

$$\|\phi\|_{\mathfrak{M}_{\rho}}:=\big\|\mathcal{J}_{\phi}^{\mathsf{A},\mathsf{B}}\big\|_{\mathcal{B}(\mathcal{B}_{\rho}(\mathcal{H}))},\;\rho\in[1,\infty),\quad\|\phi\|_{\mathfrak{M}_{\infty}}:=\big\|\mathcal{J}_{\phi}^{\mathsf{A},\mathsf{B}}\big\|_{\mathcal{B}(\mathcal{B}(\mathcal{H}))}.$$

We denote $\mathfrak{M}:=\mathfrak{M}_1=\mathfrak{M}_{\infty}$, and $\|\phi\|_{\mathfrak{M}}:=\|\phi\|_{\mathfrak{M}_1}=\|\phi\|_{\mathfrak{M}_{\infty}}$, $\phi\in\mathfrak{M}$.

Theorem (Birman-Solomyak '03).

Assume that A and B are self-adjoint operators in \mathcal{H} . If the function $\phi(\cdot, \cdot)$ admits a representation of the form

$$\phi(\lambda,\mu) = \int_{\Omega} \alpha(\lambda,t) \beta(\mu,t) \, d\eta(t), \quad (\lambda,\mu) \in \mathbb{R}^2,$$

where $(\Omega, d\eta(t))$ is an auxiliary measure space and

$$\mathcal{C}_{lpha}^2 := \sup_{\lambda \in \mathbb{R}} \int_{\Omega} |lpha(\lambda,t)|^2 \, d\eta(t) < \infty, \quad \mathcal{C}_{eta}^2 := \sup_{\mu \in \mathbb{R}} \int_{\Omega} |eta(\mu,t)|^2 \, d\eta(t) < \infty,$$

then $\phi \in \mathfrak{M}$ and

$$\|\phi\|_{\mathfrak{M}} \leq C_{\alpha}C_{\beta}.$$

Approximations in Trace Ideals (contd.):

Theorem (Birman-Solomyak '03).

Assume that A and B are self-adjoint operators in \mathcal{H} . If there exist $0 \leq m_1 < 1$ and $1 < m_2$ such that

$$\sup_{\mu\in\mathbb{R}}\int_{\mathbb{R}}\left(|\xi|^{m_1}+|\xi|^{m_2}\right)\left|\widehat{\phi}(\xi,\mu)\right|^2d\xi=C_0^2<\infty,$$

where $\widehat{\phi}(\xi,\mu)$ stands for the partial Fourier transform of ϕ with respect to the first variable,

$$\widehat{\phi}(\xi,\mu) = (2\pi)^{-1} \int_{\mathbb{R}} \phi(\lambda,\mu) e^{-i\xi\lambda} d\lambda, \quad (\xi,\mu) \in \mathbb{R}^2,$$

then $\phi \in \mathfrak{M}$ and

$$\|\phi\|_{\mathfrak{M}} \leq CC_0$$

where the constant $C = C(m_1, m_2) > 0$ does not depend on E_A or E_B .

Approximations in Trace Ideals (contd.):

Theorem (Ya '05).

Assume that A and B are self-adjoint operators in \mathcal{H} . Suppose that the function $K(\lambda, \mu)$ on \mathbb{R}^2 satisfies

$$|K(\lambda,\mu)| \le C_K < \infty, \quad (\lambda,\mu) \in \mathbb{R}^2,$$

and is differentiable with respect to λ with

$$\left|\frac{\partial K(\lambda,\mu)}{\partial \lambda}\right| \leq \widetilde{C}_K (1+\lambda^2)^{-1}, \quad (\lambda,\mu) \in \mathbb{R}^2,$$

where the constant \widetilde{C}_K is independent of μ . Assume, in addition, that for every fixed $\mu \in \mathbb{R}$

$$\lim_{\lambda \to -\infty} K(\lambda, \mu) = \lim_{\lambda \to +\infty} K(\lambda, \mu)$$

(the limits exist). Then $\mathcal{J}_{K}^{A,B} \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$ and $\mathcal{J}_{K}^{A,B} \in \mathcal{B}(\mathcal{B}_{p}(\mathcal{H})), \ p \in [1,\infty)$.

Corollary.

The norms $\|\mathcal{J}_{K}^{A,B}\|_{\mathcal{B}(\mathcal{B}(\mathcal{H}))}$, $\|\mathcal{J}_{K}^{A,B}\|_{\mathcal{B}(\mathcal{B}_{p}(\mathcal{H}))}$, $p \in [1, \infty)$, do not depend on the spectral measures E_{A} and E_{B} .

To prove the norm bounds we now introduce the following assumption.

Hypothesis.

Assume that A and B are fixed self-adjoint operators in the Hilbert space \mathcal{H} , $p \in [1, \infty)$, and there exists $m \in \mathbb{N}$, m odd, such that for all $a \in \mathbb{R} \setminus \{0\}$,

$$\left[({\color{red}B}-{\color{black} ail}_{\mathcal{H}})^{-m} - ({\color{red}A}-{\color{black} ail}_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_p(\mathcal{H}) \; (\text{resp., } \mathcal{B}(\mathcal{H})).$$

Given the results recalled thus far, **Yafaev '05** introduces a bijection $\varphi : \mathbb{R} \to \mathbb{R}$ satisfying for some c > 0 and r > 0,

$$\varphi \in C^2(\mathbb{R}), \quad \varphi(\lambda) = \lambda^m, \ |\lambda| \ge r, \quad \varphi'(\lambda) \ge c, \ \lambda \in \mathbb{R},$$

and then shows the following:

There exist $a_1, a_2 \in \mathbb{R} \setminus \{0\}$ and $C = C(a_1, a_2, m) \in (0, \infty)$ such that

$$\begin{split} & \| (\varphi(A) - i I_{\mathcal{H}})^{-1} - (\varphi(B) - i I_{\mathcal{H}})^{-1} \|_{\mathcal{B}_{\rho}(\mathcal{H})} \\ & \leq C (\| (A - a_{1} i I_{\mathcal{H}})^{-m} - (B - a_{1} i I_{\mathcal{H}})^{-m} \|_{\mathcal{B}_{\rho}(\mathcal{H})} \\ & + \| (A - a_{2} i I_{\mathcal{H}})^{-m} - (B - a_{2} i I_{\mathcal{H}})^{-m} \|_{\mathcal{B}_{\rho}(\mathcal{H})}), \end{split}$$

and an analogous estimate for the uniform norm $\|\cdot\|_{\mathcal{B}(\mathcal{H})}$. Moreover, he proves

$$\begin{split} & [f(A) - f(B)] \in \mathcal{B}_{p}(\mathcal{H}) \ \, (\text{resp., } [f(A) - f(B)] \in \mathcal{B}(\mathcal{H})), \\ & \|f(A) - f(B)\|_{\mathcal{B}_{p}(\mathcal{H})} \le C \big(\|(A - a_{1}il_{\mathcal{H}})^{-m} - (B - a_{1}il_{\mathcal{H}})^{-m} \|_{\mathcal{B}_{p}(\mathcal{H})} \\ & + \|(A - a_{2}il_{\mathcal{H}})^{-m} - (B - a_{2}il_{\mathcal{H}})^{-m} \|_{\mathcal{B}_{p}(\mathcal{H})} \big), \quad f \in \mathfrak{F}_{m}(\mathbb{R}), \ \, p \in [1, \infty) \end{split}$$

(and the corresponding estimate for the uniform norm $\|\cdot\|_{\mathcal{B}(\mathcal{H})}$). Here the constant $C=C(f,a_1,a_2,m)\in(0,\infty)$ is independent of $p\in[1,\infty)$. (This can be improved for $p\in(1,\infty)$.)

Let A_n , B_n , A, B be self-adjoint operators in the Hilbert space \mathcal{H} . Suppose $\phi(\cdot, \cdot)$ admits a representation of the form

$$\phi(\lambda,\mu) = \int_{\Omega} \alpha(\lambda,t)\beta(\mu,t) \, d\eta(t), \quad (\lambda,\mu) \in \mathbb{R}^2, \tag{*}$$

where $(\Omega, d\eta(t))$ is an auxiliary measure space and

$$C_{lpha}^2 := \sup_{\lambda \in \mathbb{R}} \int_{\Omega} |lpha(\lambda, t)|^2 d\eta(t) < \infty, \quad C_{eta}^2 := \sup_{\mu \in \mathbb{R}} \int_{\Omega} |eta(\mu, t)|^2 d\eta(t) < \infty.$$

Set

$$\begin{split} a(t) &:= \int_{\mathbb{R}} \alpha(\lambda, t) \, dE_A(\lambda), \quad b(t) := \int_{\mathbb{R}} \beta(\mu, t) \, dE_B(\mu), \\ a_n(t) &:= \int_{\mathbb{R}} \alpha(\lambda, t) \, dE_{A_n}(\lambda), \quad b_n(t) := \int_{\mathbb{R}} \beta(\mu, t) \, dE_{B_n}(\mu), \quad n \in \mathbb{N}, \end{split}$$

and introduce

$$\varepsilon_n(v,\alpha) = \left[\int_{\Omega} \|a_n(t)v - a(t)v\|^2 d\eta(t) \right]^{1/2},$$

$$\delta_n(v,\beta) = \left[\int_{\Omega} \|b_n(t)v - b(t)v\|^2 d\eta(t) \right]^{1/2}, \quad n \in \mathbb{N}, \ v \in \mathcal{H},$$

and

$$\begin{aligned} &\mathfrak{A}_{r}^{s}(E_{A}):=\{\phi \text{ as in } (*) \mid \lim_{n \to \infty} \varepsilon_{n}(v,\alpha)=0, \ v \in \mathcal{H}\}, \\ &\mathfrak{A}_{l}^{s}(E_{B}):=\{\phi \text{ as in } (*) \mid \lim_{n \to \infty} \delta_{n}(v,\alpha)=0, \ v \in \mathcal{H}\}. \end{aligned}$$

We note that the definitions of the classes $\mathfrak{A}_r^s(E_A), \mathfrak{A}_l^s(E_A)$ impose certain restrictions on convergences $A_n \longrightarrow A$ and $B_n \longrightarrow B$ as well as on the properties of the function ϕ as in (*).

Proposition.

If $\phi, \psi \in \mathfrak{A}_r^s(E_A)$ (respectively, $\phi, \psi \in \mathfrak{A}_l^s(E_B)$), then $(\phi + \psi) \in \mathfrak{A}_r^s(E_A)$ (respectively, $(\phi + \psi) \in \mathfrak{A}_l^s(E_B)$).

Proposition (Birman-Solomyak '73).

Let $\phi \in \mathfrak{A}_r^s(E_A) \cap \mathfrak{A}_l^s(E_B)$. Then for any $T \in \mathcal{B}_p(\mathcal{H}), \ p \in [1, \infty)$,

$$\lim_{n\to\infty}\big\|\mathcal{J}_{\phi}^{A_n,B_n}(T)-\mathcal{J}_{\phi}^{A,B}(T)\big\|_{\mathcal{B}_p(\mathcal{H})}=0,\quad p\in[1,\infty).$$

Hypothesis.

Let A, B, A_n, B_n , $n \in \mathbb{N}$, be self-adjoint operators in a separable Hilbert space \mathcal{H} and suppose that

$$\underset{n \to \infty}{\text{s-lim}} (A_n - z_0 I_{\mathcal{H}})^{-1} = (A - z_0 I_{\mathcal{H}})^{-1}, \quad \underset{n \to \infty}{\text{s-lim}} (B_n - z_0 I_{\mathcal{H}})^{-1} = (B - z_0 I_{\mathcal{H}})^{-1}, \quad (**)$$

for some $z_0 \in \mathbb{C} \backslash \mathbb{R}$.

Lemma.

Assume (**). If there exist $0 \le m_1 < 1$ and $1 < m_2$ such that

$$\sup_{\mu\in\mathbb{R}}\int_{\mathbb{R}}\left(\left|\xi\right|^{m_1}+\left|\xi\right|^{m_2}\right)\left|\widehat{\phi}(\xi,\mu)\right|^2d\xi=C_0^2<\infty,$$

where $\widehat{\phi}(\xi,\mu)$ stands for the partial Fourier transform of ϕ with respect to the first variable,

$$\widehat{\phi}(\xi,\mu) = (2\pi)^{-1} \int_{\mathbb{R}} \phi(\lambda,\mu) e^{-i\xi\lambda} d\lambda, \quad (\xi,\mu) \in \mathbb{R}^2,$$

then $\phi \in \mathfrak{A}_r^s(E_A)$.

Corollary.

Assume (**). If a function K on \mathbb{R}^2 satisfies

$$|K(\lambda,\mu)| \le C_K < \infty, \quad (\lambda,\mu) \in \mathbb{R}^2,$$

and is differentiable with respect to λ with

$$\left|\frac{\partial \mathcal{K}(\lambda,\mu)}{\partial \lambda}\right| \leq \widetilde{\mathcal{C}}_{\mathcal{K}}\big(1+\lambda^2\big)^{-1}, \quad (\lambda,\mu) \in \mathbb{R}^2,$$

where the constant $\widetilde{\mathcal{C}}_{\mathcal{K}}$ is independent of μ . Assume, in addition, that for every fixed $\mu \in \mathbb{R}$

$$\lim_{\lambda \to -\infty} K(\lambda, \mu) = \lim_{\lambda \to +\infty} K(\lambda, \mu)$$

(the limits exist), then $K \in \mathfrak{A}_r^s(E_B)$.

Next, we strengthen the assumptions on the operators A_n , A, B_n , B, $n \in \mathbb{N}$:

Hypothesis.

In addition to (**) we assume that for some $m \in \mathbb{N}$, m odd, $p \in [1, \infty)$, and every $a \in \mathbb{R} \setminus \{0\}$,

$$\begin{split} & \textbf{\textit{T}(a)} := \left[(\textbf{\textit{A}} + ial_{\mathcal{H}})^{-m} - (\textbf{\textit{B}} + ial_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_p(\mathcal{H}), \\ & \textbf{\textit{T}_n(a)} := \left[(\textbf{\textit{A}}_n + ial_{\mathcal{H}})^{-m} - (\textbf{\textit{B}}_n + ial_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_p(\mathcal{H}), \end{split}$$

and

$$\lim_{n\to\infty} \|T_n(a) - T(a)\|_{\mathcal{B}_p(\mathcal{H})} = 0.$$

With this hypothesis in hand, the following theorem is the main result thus far:

Theorem.

Assume the above hypothesis. Then for any function $f \in \mathfrak{F}_m(\mathbb{R})$,

$$\lim_{n\to\infty} \left\| \left[f(A_n) - f(B_n) \right] - \left[f(A) - f(B) \right] \right\|_{\mathcal{B}_{\rho}(\mathcal{H})} = 0, \quad p \in [1,\infty).$$

Some remarks on powers of resolvents:

The case m = 1. If A and B are self-adjoint operators in H and for some $z_0 \in \mathbb{C} \setminus \mathbb{R}$,

$$[(A - z_0 I_{\mathcal{H}})^{-1} - (B - z_0 I_{\mathcal{H}})^{-1}] \in \mathcal{B}_1(\mathcal{H}),$$

then actually

$$[(A-zI_{\mathcal{H}})^{-1}-(B-zI_{\mathcal{H}})^{-1}]\in\mathcal{B}_1(\mathcal{H}),\quad z\in\mathbb{C}\backslash\mathbb{R},$$

a fact which follows from the well-known resolvent identity

$$(A - zI_{\mathcal{H}})^{-1} - (B - zI_{\mathcal{H}})^{-1} = (A - z_0I_{\mathcal{H}})(A - zI_{\mathcal{H}})^{-1} \times [(A - z_0I_{\mathcal{H}})^{-1} - (B - z_0I_{\mathcal{H}})^{-1}](B - z_0I_{\mathcal{H}})(B - zI_{\mathcal{H}})^{-1},$$

$$z, z_0 \in \rho(A) \cap \rho(B).$$

However, an analogous result **cannot** hold for higher powers of the resolvent as the following remarkably simple example illustrates:

Example m = 3.

Suppose \mathcal{H} is an infinite-dimensional Hilbert space, and let $P_j \in \mathcal{B}(\mathcal{H})$, $j \in \{1, 2\}$, be infinite-dimensional orthogonal projections with

$$P_1P_2 = 0$$
 and $P_1 + P_2 = I_{\mathcal{H}}$. (6.1)

Set

$$A = \sqrt{3}(P_1 + P_2), \quad B = \sqrt{3}(P_1 - P_2).$$
 (6.2)

Evidently, $A^2 = B^2 = 3I_H$, and

$$(A - iI_{\mathcal{H}})^3 = A^3 - 3iA^2 + 3(-i)^2 A - i^3 I_{\mathcal{H}} = -8iI_{\mathcal{H}}.$$
 (6.3)

Similarly, one obtains $(B - iI_{\mathcal{H}})^3 = -8iI_{\mathcal{H}}$, and consequently,

$$(\mathbf{A} - iI_{\mathcal{H}})^{-3} - (\mathbf{B} - iI_{\mathcal{H}})^{-3} = 0 \in \mathcal{B}_1(\mathcal{H}). \tag{6.4}$$

However, if $z \in \mathbb{C} \setminus \{i\}$, then

$$(A + zI_{\mathcal{H}})^3 = A^3 + 3zA^2 + 3z^2A + z^3I_{\mathcal{H}}.$$
 (6.5)

Example m = 3 (contd.).

Taking, for example, z = 3i in (6.5), one computes

$$(A + zI_{\mathcal{H}})^3 = A(A^2 + 3z^2I_{\mathcal{H}}) + z(3A^2 + z^2I_{\mathcal{H}}) = -24A, \tag{6.6}$$

and similarly,

$$(B + 3iI_{\mathcal{H}})^3 = -24B. \tag{6.7}$$

Computing inverses, one infers

$$(\mathbf{A} + 3il_{\mathcal{H}})^{-3} = -\frac{1}{24}\mathbf{A}^{-1} = -\frac{1}{24\sqrt{3}}(P_1 + P_2), \tag{6.8}$$

$$(B + 3iI_{\mathcal{H}})^{-3} = -\frac{1}{24}B^{-1} = -\frac{1}{24\sqrt{3}}(P_1 - P_2), \tag{6.9}$$

so that

$$(A + 3il_{\mathcal{H}})^{-3} - (B + 3il_{\mathcal{H}})^{-3} = -\frac{1}{12\sqrt{3}}P_2 \notin \mathcal{B}_{\infty}(\mathcal{H}), \tag{6.10}$$

due to the fact that P_2 is an infinite-dimensional projection in \mathcal{H} .

Hypothesis.

Assume that A_0 and B_0 are fixed self-adjoint operators in the Hilbert space \mathcal{H} , and there exists $m \in \mathbb{N}$, m odd, such that,

$$\left[(\underline{B_0} - z I_{\mathcal{H}})^{-m} - (\underline{A_0} - z I_{\mathcal{H}})^{-m} \right] \in \mathcal{B}_1(\mathcal{H}), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

Note. One really **needs all** $z \in \mathbb{C} \setminus \mathbb{R}$ for $m \geq 2$.

We denote by $\varphi : \mathbb{R} \to \mathbb{R}$ a bijection satisfying for some c > 0,

$$\varphi \in C^2(\mathbb{R}), \quad \varphi(\lambda) = \lambda^m, \ |\lambda| \ge 1, \quad \varphi'(\lambda) \ge c.$$

Then by Yafaev '05 one has the fact

$$\left[(\varphi(\mathcal{B}_0) - i \mathcal{I}_{\mathcal{H}})^{-1} - (\varphi(\mathcal{A}_0) - i \mathcal{I}_{\mathcal{H}})^{-1} \right] \in \mathcal{B}_1(\mathcal{H}). \tag{*}$$

Following Yafaev '05, one introduces the class of sSSFs for the pair (B_0, A_0) via

$$\xi(\nu; B_0, A_0) = \xi(\varphi(\nu); \varphi(B_0), \varphi(A_0)), \quad \nu \in \mathbb{R},$$

implying

$$\xi(\cdot; B_0, A_0) \in L^1(\mathbb{R}; (|\nu|^{m+1} + 1)^{-1} d\nu)$$

since upon introducing the new variable

$$\mu = \varphi(\nu) \in \mathbb{R}, \quad \nu \in \mathbb{R},$$

the inclusion (*) yields

$$\xi(\cdot; \varphi(B_0), \varphi(A_0)) \in L^1(\mathbb{R}; (|\mu|^2 + 1)^{-1} d\mu).$$

The change of variables $\nu \to \mu$ yields for the corresponding trace formula,

$$\begin{split} \operatorname{tr}(f(B_0) - f(A_0)) &= \operatorname{tr}\left((f \circ \varphi^{-1})(\varphi(B_0)) - (f \circ \varphi^{-1})(\varphi(A_0))\right) \\ &= \int_{\mathbb{R}} d\mu \, (f \circ \varphi^{-1})'(\mu) \, \xi(\mu; \varphi(B_0), \varphi(A_0)) \\ &= \int_{\mathbb{R}} d\nu \, f'(\nu) \, \xi(\nu; B_0, A_0), \quad f \in \mathfrak{F}_m(\mathbb{R}). \end{split}$$

We need an appropriate topology but start with a transitivity property: if $B \in \Gamma_m(A)$ and $C \in \Gamma_m(B)$, then $C \in \Gamma_m(A)$, as well.

For each $m \in \mathbb{N}$, $\Gamma_m(T)$ can be equipped with the family $\mathcal{D} = \{d_{m,z}\}_{z \in \mathbb{C} \setminus \mathbb{R}}$ of **pseudometrics** defined by

$$d_{m,z}(S_1, S_2) = \|(S_2 - zI_{\mathcal{H}})^{-m} - (S_1 - zI_{\mathcal{H}})^{-m}\|_{B_{r}(\mathcal{H})}, \quad S_1, S_2 \in \Gamma_m(T).$$

For each fixed $\varepsilon > 0$, $z \in \mathbb{C} \setminus \mathbb{R}$, and $S \in \Gamma_m(T)$, define

$$B(S; d_{m,z}, \varepsilon) = \{S' \in \Gamma_m(T) \mid d_{m,z}(S, S') < \varepsilon\},\$$

to be the ε -ball centered at S with respect to the pseudometric $d_{m,z}$.

Definition.

 $\mathcal{T}_m(\mathcal{D}, T)$ is the topology on $\Gamma_m(T)$ with the subbasis

$$\mathfrak{B}_{m}(\mathcal{D},T)=\{B(S;d_{m,z},\varepsilon)\,|\,S\in\Gamma_{m}(T),\,z\in\mathbb{C}\backslash\mathbb{R},\,\varepsilon>0\}.$$

That is, $\mathcal{T}_m(\mathcal{D}, T)$ is the smallest topology on $\Gamma_m(T)$ which contains $\mathfrak{B}_m(\mathcal{D}, T)$.

To state the main results of this section, we introduce one more hypothesis:

Hypothesis.

- (i) Let A_0 , B_0 , and B_1 denote self-adjoint operators in $\mathcal H$ with B_0 , $B_1 \in \Gamma_m(A_0)$ for some odd $m \in \mathbb N$, and let $\{B_\tau\}_{\tau \in [0,1]} \subset \Gamma_m(B_0)$ (and hence in $\Gamma_m(A_0)$) be a path from B_0 to B_1 in $\Gamma_m(B_0)$ depending continuously on $\tau \in [0,1]$ with respect to the topology $\mathcal T_m(\mathcal D, \mathcal T)$ introduced in the previous definition.
- (ii) Assume that $\varphi:\mathbb{R}\to\mathbb{R}$ is a bijection satisfying for some c>0 and r>0,

$$\varphi \in C^2(\mathbb{R}), \quad \varphi(\lambda) = \lambda^m, \ |\lambda| \ge r, \quad \varphi'(\lambda) \ge c, \ \lambda \in \mathbb{R}.$$

Proposition.

Assume this hypothesis. Then $\varphi(B_0) \in \Gamma_1(\varphi(A_0))$, and

$$\{\varphi(B_{\tau})\}_{\tau\in[0,1]}\subset\Gamma_1(\varphi(B_0))$$

is a path from $\varphi(B_0)$ to $\varphi(B_1)$ in $\Gamma_1(\varphi(B_0))$ depending continuously on $\tau \in [0,1]$ with respect to the metric $d_{1,i}(\cdot,\cdot)$.

The following theorem represents the principal result of this section:

Theorem.

Assume the above hypothesis and let $\xi_0(\cdot; \varphi(B_0), \varphi(A_0))$ be a spectral shift function for the pair $(\varphi(B_0), \varphi(A_0))$. Then for each $\tau \in [0,1]$, there is a unique spectral shift function $\xi(\cdot; \varphi(B_\tau), \varphi(A_0))$ for the pair $(\varphi(B_\tau), \varphi(A_0))$ depending continuously on $\tau \in [0,1]$ in the $L^1(\mathbb{R}; (\lambda^2+1)^{-1}d\lambda)$ -norm such that

$$\xi(\cdot;\varphi(B_0),\varphi(A_0))=\xi_0(\cdot;\varphi(B_0),\varphi(A_0)).$$

Consequently,

$$\xi(\cdot; B_{\tau}, A_0) := \xi(\varphi(\cdot); \varphi(B_{\tau}), \varphi(A_0)),$$

the corresponding spectral shift function for the pair (B_{τ}, A_0) , depends continuously on $\tau \in [0,1]$ in the $L^1(\mathbb{R}; (|\nu|^{m+1}+1)^{-1}d\nu)$ -norm and satisfies

$$\xi(\cdot; B_0, A_0) = \xi_0(\varphi(\cdot); \varphi(B_0), \varphi(A_0)).$$

Remark.

If $\{\tau_n\}_{n=1}^{\infty} \subset [0,1]$ and $\tau_n \to 0$ as $n \to \infty$, then the previous theorem implies

$$\lim_{n\to\infty} \|\xi(\cdot; B_{\tau_n}, A_0) - \xi(\cdot; B_0, A_0)\|_{L^1(\mathbb{R}; (|\nu|^{m+1}+1)^{-1}d\nu)} = 0.$$

In particular, there exists a subsequence of $\{\xi(\cdot; B_{\tau_n}, A_0)\}_{n\in\mathbb{N}}$ which converges pointwise a.e. to $\xi(\cdot; B_0, A_0)$ as $n \to \infty$.

We conclude with an elementary consequence:

Corollary.

Under the hypotheses in the above theorem, if $f \in L^{\infty}(\mathbb{R})$, then

$$\lim_{\tau \to 0^+} \|\xi(\cdot; B_\tau, A_0)f - \xi(\cdot; B_0, A_0)f\|_{L^1(\mathbb{R}; (|\nu|^{m+1}+1)^{-1}d\nu)} = 0,$$

in particular,

$$\lim_{\tau\to 0^+}\int_{\mathbb{R}}\xi(\nu;B_\tau,A_0)d\nu\,g(\nu)=\int_{\mathbb{R}}\xi(\nu;B_0,A_0)d\nu\,g(\nu)$$

for all $g \in L^{\infty}(\mathbb{R})$ such that ess. $\sup_{\nu \in \mathbb{R}} \left| (|\nu|^{m+1} + 1)g(\nu) \right| < \infty$.