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Abstract

In this article we discuss a peculiar interplay between the representation theory of
the holonomy group of a Riemannian manifold, the Weitzenböck formula for the Hodge–
Laplace operator on forms and the Lichnerowicz formula for twisted Dirac operators.
For quaternionic Kähler manifolds this leads to simple proofs of eigenvalue estimates
for Dirac and Laplace operators. We determine which representations may contribute
to harmonic forms and prove the vanishing of certain odd Betti numbers on compact
quaternionic Kähler manifolds of negative scalar curvature. We simplify the proofs of
several related results in the positive case.

AMS Subject Classification: 53C25, 58J50

1 Introduction

Since decades the Weitzenböck formulas for the Dirac operator on Clifford bundles have
inspired intensive and important research. The full Weitzenböck machinery is now beginning
to take its definite place in differential geometry incorporating recent ideas about Kato
inequalities (cf. [CGH99]) and more and more representation theory. It is inevitable to
get the impression that geometrically interesting operators like the Hodge–Laplace or the
Dirac operator can be defined abstractly apart from their original setting. In particular it
is thus possible to compare geometric differential operators defined on completely different
vector bundles. In this article we will describe the impact of this idea and discuss potential
applications for quaternionic Kähler manifolds in detail.

Studying manifolds of special holonomy may lead to new insights into underlying struc-
tures and concepts of differential geometry. In fact the primary feature of a manifold of
special holonomy is its richness in geometric vector bundles π(M) corresponding to the rep-
resentations π of the holonomy group. In this article we will use Meyer’s interpretation
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(cf. [Me71]) of the Weitzenböck formula for the Hodge–Laplacian ∆ to define an elliptic
selfadjoint second order differential operator

∆π : Γπ(M) −→ Γ π(M)

for every geometric vector bundle π(M). For a homogeneous vector bundle on a symmetric
space G/K the operator ∆π becomes the Casimir of G. Moreover ∆π agrees with the Hodge–
Laplacian ∆ for all parallel subbundles π(M) of the differential forms. This immediately
implies the generalized Lefschetz decomposition of the de Rham cohomology

H•dR(M, C ) =
⊕
π

Hom Hol ( π, Λ •Cn∗ )⊗ ker ∆π

where the sum is over all irreducible representations π of the holonomy group Hol . Consid-
ering ∆π as a generalization of the Casimir of a symmetric space to arbitrary Riemannian
manifolds it is only natural to derive formulas linking this operator to other second order dif-
ferential operators. In particular we will generalize Parthasarathy’s formula which expresses
the twisted Dirac operator on symmetric spaces in terms of the Casimir.

The general result for twisted spinor bundles can be applied to a very prominent family of
twisted spinor bundles on quaternionic Kähler manifolds. The indices of the twisted Dirac
operators in this family are of fundamental importance in studying quaternionic Kähler
manifolds in general. Our main technical result is a general eigenvalue estimate for the Dirac
operators in this family leading to an interpretation of their kernels in terms of eigenspaces
of operators ∆π corresponding to the minimal eigenvalue. This enables us to give an explicit
description of all representations contributing to harmonic forms. In the case of positive
scalar curvature κ > 0 we obtain new proofs for results of S. Salamon on the Betti numbers
(c.f. [Sal82]) and the strong Lefschetz Theorem 6.3. The same techniques can be applied
to obtain completely new results on the cohomology of quaternionic Kähler manifolds with
negative scalar curvature. Our main result here is the vanishing of all odd Betti numbers up
to degree n for a quaternionic Kähler manifold of dimension 4n.

Theorem 1.1. (Weak Lefschetz theorem for quaternionic Kähler manifolds with κ < 0)
Let (M4n, g) be a quaternionic Kähler manifold of negative scalar curvature κ < 0. Then
the odd Betti numbers b2k+1(M) vanish for 2k + 1 < n. In general the Betti numbers of M
satisfy for all k < n the inequalities

b2k(M ) ≤ b2k+4(M ) and b2k+1(M ) ≤ b2k+3(M )

For quaternionic Kähler manifolds of negative scalar curvature the wedge product with
the parallel Kraines form Ω still descends to an injective map on the level of cohomology
in all degrees one could possibly hope for. Philosophically however this is not really the
strong Lefschetz theorem, because the space of primitive forms decomposes non–trivially
into different isotypical components with respect to the holonomy group.
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2 Holonomy groups and Weitzenböck formulas

In this section we will discuss the classical Weitzenböck formula for the Hodge–Laplacian
or more general for the Dirac operator on a Clifford bundle ( cf. [Be], [Po81] or [Sal89] )
and introduce the operator ∆π. Our approach is in some sense similar to [Me71] and [Ch57]
although our formulation of the cohomology decomposition as well as our definition of the
operator ∆π as an abstract object without reference to differential forms seems to be new.
The basic example of a Clifford bundle is the bundle of exterior forms Λ •T ∗M endowed with
the scalar product induced by the metric on M and Clifford multiplication with tangent
vectors

? : TpM × Λ •T ∗pM −→ Λ •T ∗pM, (X, ω) 7−→ X ? ω

defined by X ?ω := X]∧ω − X yω. The Levi–Civita–connection induces a connection ∇ on
Λ •T ∗M and an associated second order elliptic differential operator ∇∗∇ := −

∑
i∇2

Ei,Ei

where ∇2
X,Y := ∇X∇Y −∇∇XY and the sum is over a local orthonormal base {Ei}. On the

other hand we have the exterior differential d and its formal adjoint d∗ as natural first order
differential operators on Λ •T ∗M linked to ∇∗∇ by the classical Weitzenböck formula

∆ := (d+ d∗)2 = ∇∗∇ +
1

2

∑
ij

Ei ? Ej ? REi,Ej
(1)

where RX,Y is the curvature endomorphism of Λ •T ∗pM . However the connection on Λ •T ∗M
is induced by a connection on TM and consequently the curvature endomorphism RX,Y is just
the curvature endomorphism of TpM in a different representation, namely the representation

• : so(TpM)× Λ •T ∗pM −→ Λ •T ∗pM, (X, ω) 7−→ X •ω

of the Lie algebra so(TpM) of SO (TpM) on the exterior algebra induced by its representation
on TpM . The canonical identification of so(TpM) with the bivectors Λ 2TpM characterized
by 〈 (X ∧ Y ) •A, B 〉 := 〈X ∧ Y, A ∧ B 〉 reads (X ∧ Y ) •A := 〈X,A〉Y − 〈Y,A〉X and
defines a unique bivector R(X ∧ Y ) via:

〈R(X ∧ Y ) •Z,W 〉 := 〈RX,YZ,W 〉 R(X ∧ Y ) =
1

2

∑
i

Ei ∧RX,YEi

In the spirit of this identification the representation of so(TpM) on Λ •T ∗pM is given by
(X ∧Y ) • = Y ]∧X y −X]∧Y y. In particular, the classical Weitzenböck formula becomes

∆ = ∇∗∇ +
1

2

∑
ij

(Ei ∧ Ej) •R(Ei ∧ Ej) •

because both potentially troublesome inhomogeneous terms cancel by the first Bianchi iden-
tity leaving us with a curvature term depending linearly on the curvature tensor:

R :=
1

4

∑
ij

(Ei ∧ Ej) · R(Ei ∧ Ej) ∈ Sym 2(Λ 2TpM) .
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It will be convenient to compose the identification Λ 2TpM
∼=−→ so(TpM) with the quanti-

zation map q : Sym 2so(TpM) −→ U so(TpM), X2 7−→ X2, into the universal enveloping
algebra of so(TpM) to get an element q(R) ∈ U so(TpM) with:

∆ = ∇∗∇ + 2 q(R)(2)

Writing the well known classical Weitzenböck formula (1) this way we can bring the
holonomy group of the underlying manifold into play. Recall that the holonomy group
Hol pM ⊂ O (TpM) is the closure of the group of all parallel transports along piecewise
smooth loops in p ∈ M . We will assume that M is connected so that the holonomy groups
in different points p and p̃ are conjugated by parallel transport TpM −→ Tp̃M . Choosing
a suitable representative Hol ⊂ O nR with n := dimM of their common conjugacy class
acting on the abstract vector space Rn we can define the holonomy bundle of M :

Hol (M) := { f : Rn −→ TpM | p ∈M and f isometry with f(Hol ) = Hol pM } .

The holonomy bundle is a reduction of the orthonormal frame bundle O (M) to a principal
bundle with structure group Hol , which is stable under parallel transport. Consequently the
Levi–Civita connection is tangent to Hol (M) and descends to a connection on Hol (M).

With the Levi–Civita connection being tangent to the holonomy bundle Hol (M) its cur-
vature tensor R takes values in the holonomy algebra hol pM at every point p ∈ M , so
that R ∈ Sym 2hol pM ⊂ Sym 2Λ 2TpM and q(R) ∈ U hol pM . However by definition ev-
ery point f ∈ Hol (M) identifies hol pM with hol making q(R) a U hol –valued function on
Hol (M). For an arbitrary irreducible complex representation π of Hol the associated vec-
tor bundle π(M) := Hol (M) ×Hol π over M is endowed with the connection induced from
the Levi–Civita connection. Moreover there is a canonical second order differential operator
defined on sections of π(M):

∆π := ∇∗∇ + 2 q(R)(3)

It is evident from the Weitzenböck formula (1) written as in (2) that the diagram

π(M)
∆π−−−→ π(M)

F
y yF

Λ •T ∗M ⊗R C ∆−−−→ Λ •T ∗M ⊗R C

commutes for any F ∈ Hom Hol (π,Λ
•Cn∗) or equivalently for any globally parallel embed-

ding F : π(M) −→ Λ •T ∗M ⊗R C. Hence the pointwise decomposition of Λ •T ∗pM ⊗R C
into irreducible complex representations of Hol pM becomes a global decomposition of any
eigenspace of ∆, e. g. we have for its kernel:

H•dR(M, C) =
⊕
π

Hom Hol ( π, Λ •Cn∗ ) ⊗ ker ∆π
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The same kind of reasoning is possible for the Dirac operator on spinors, assuming the
manifold M to be spin and taking Hol pM to be its spin holonomy group. Ignoring for the
moment the Lichnerowicz result that the curvature term reduces to multiplication by the
scalar curvature and employing the formula (X ∧ Y ) • := 1

2
(X ? Y ? + 〈X, Y 〉 ) for the

representation of so(TpM) on the spinor bundle S (M) we can proceed from (1) directly to:

D2 = ∇∗∇ + 4 q(R) .(4)

In particular, all eigenspaces of D2 decompose globally according to the pointwise decom-
position of the spinor bundle under the spin holonomy group Hol pM . From Lichnerowicz’s
result we already know that q(R) acts by scalar multiplication with κ

16
on S (M), where κ is

the scalar curvature of M . Hence we can read equation (4) as

D2
∣∣∣
π

= ∆π +
κ

8

where the restriction to π is a short hand notation for any globally parallel embedding
F : π(M) −→ S (M) induced by some non–trivial F ∈ Hom Hol (π,S ). Written in this
way formula (4) is seen to be a generalization of the Parthasarathy formula for the Dirac
square D2 on a symmetric space G/K, because in this case the operators ∆π defined above
on sections of π(M) all become the Casimir of G.

Counterexamples to the idea that eigenspaces of intrinsically defined differential operators
always decompose globally according to the pointwise decomposition under the holonomy
group are easily found among twisted Dirac operators. Consider therefore a geometric vector
bundleR(M) := Hol (M)×HolR associated to the holonomy bundle via some not necessarily
irreducible representation R of the holonomy group. The Levi–Civita connection on Hol (M)
defines a connection on this vector bundle, whose curvature endomorphism is given through
the representation • : hol pM ×Rp(M) −→ Rp(M) of the Lie algebra hol pM on Rp(M).
The twisted Dirac operator DR is a first order differential operator acting on sections of the
tensor product (S ⊗R)(M). It satisfies a twisted Weitzenböck formula derived from (1):

D2
R = ∇∗∇ +

1

2

∑
ij

(
Ei ? Ej ? R(Ei ∧ Ej) • ⊗ idR + Ei ? Ej ? ⊗R(Ei ∧ Ej) •

)
(5)

Trying to balance the apparent asymmetry in (5) between the spinor bundle and the twist
we may rewrite the action of q(R) on the tensor product S ⊗R in the following asymmetric
way in order to cast equation (5) into a form similar to (4):

q(R) =
1

2

∑
ij

(
(Ei ∧ Ej) •R(Ei ∧ Ej) •⊗idR + (Ei ∧ Ej) •⊗R(Ei ∧ Ej) •

)
− q(R)⊗ idR + id S ⊗ q(R) .

With Lichnerowicz’s result q(R) = κ
16

for the spinor representation S equation (5) becomes:

D2
R = ∆S⊗R +

κ

8
⊗ idR − id S ⊗ 2 q(R) .(6)
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In conclusion, the squares D2
R of twisted Dirac operators will in general not respect the

decomposition of (S ⊗ R)(M) into parallel subbundles because of the critical summand
id S ⊗ 2 q(R). Nevertheless, if q(R) acts by scalar multiplication not only on S but onR, too,
the global decomposition of the eigenspaces of D2

R according to the pointwise decomposition
of S ⊗R is restored.

Equation (6) is the key relation of this article and forms the cornerstone and motivation
of all statements and calculations to come. In fact, we can take advantage of equation (6)
even if the manifold in question is not spin, because the twisted Dirac operator may be well
defined on the vector bundle (S ⊗R)(M) although M is neither spin nor S (M) or R(M)
are well defined vector bundles.

3 Quaternionic Kähler holonomy

In this section we introduce the main notions of quaternionic Kähler holonomy based on the
group Hol = Sp (1) · Sp (n) with n ≥ 2. Very few examples of compact manifolds with
this particular holonomy group are known, and it is a deep result that in every quaternionic
dimension n there are up to isometry only finitely many of these manifolds with positive
scalar curvature κ > 0 ([LeBSa94]). In fact, the only known examples with κ > 0 are
symmetric spaces, the so-called Wolf spaces.

Consider an abstract complex vector space E ∼= C2n, n ≥ 2 endowed with a symplectic
form σ ∈ Λ 2E∗ and an adapted, positive quaternionic structure J , i. e. a conjugate linear
map J : E −→ E satisfying J2 = −1, σ(Je1, Je2) = σ(e1, e2) and σ(e, Je) > 0 for
all e1, e2 ∈ E and e 6= 0. The symplectic form σ induces mutually inverse isomorphisms
] : E −→ E∗, e 7−→ σ(e, ·) and [ : E∗ −→ E. Similar to the representation of Λ 2TpM on
TpM considered in the first section there is an action

• : Sym 2E × E −→ E, (e1e2, e) 7−→ (e1e2) • e := σ(e1, e)e2 + σ(e2, e)e1

of the second symmetric power Sym 2E on E. This action is skew symplectic and commutes
with J for all real elements of Sym 2E thus identifying the real subspace with the Lie algebra
sp(n) of Sp (n).

Let H ∼= C2 be another abstract vector space with the same structures: a symplectic form
σ ∈ Λ 2H∗ and an adapted, positive quaternionic structure J . The tensor product H⊗E of
these two vector spaces carries a real structure J⊗J and a complex bilinear symmetric form
〈 , 〉 := σ ⊗ σ, which is positive definite on the real subspace. The subgroup of O(H ⊗ E)
preserving the real subspace and the tensor product decomposition is isomorphic to the
group Sp (1) ·Sp (n) := Sp (1)×Sp (n)/Z2 and the conjugacy class of this subgroup defines
quaternionic Kähler geometry.

In particular a quaternionic Kähler manifold is a Riemannian manifold of dimension
4n, n ≥ 2 with a parallel isomorphism of the complexified tangent bundle TM⊗R C with the
tensor product H ⊗ E of two locally defined symplectic bundles H and E. These bundles
are only locally defined because the two representations H and E do not factor through the
projection Sp (1) × Sp (n) −→ Sp (1) · Sp (n). In passing from representation theory to
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geometry we always have to check, whether the representations factor through the projection
Sp (1)×Sp (n) −→ Sp (1)·Sp (n). Things get actually simpler in some respect, as the spinor
representation S of Sp (1) × Sp (n) factors through to a representation of Sp (1) · Sp (n)
whenever n is even. Thus all quaternionic Kähler manifolds of even quaternionic dimension
n are spin:

Proposition 3.1. (The signed spinor representation ([BaS83], [Wan89]))
The spinor representation S of Sp (1)× Sp (n) decomposes into the direct sum

S =
n⊕
r=0

S r :=
n⊕
r=0

Sym rH ⊗ Λ n−r
◦ E(7)

where Λ n−r
◦ E is the kernel of the contraction σ : Λ n−rE −→ Λ n−r−2E with the symplectic

form. For the canonical quaternionic orientation of H ⊗ E, induced by the Kraines form,
the half spin representations are given by:

S + :=
⊕
r≡n (2)

S r S − :=
⊕
r 6≡n (2)

S r .

The delicate point in a constructive proof of this proposition is the choice of Clifford
multiplication ? : (H ⊗ E) × S −→ S . Besides the Clifford identity there is another
crucial property of this multiplication, namely the compatibility condition with the action
of the Lie algebra sp(1)⊕ sp(n) on S . The representation • of the complexified Lie algebra
Sym 2H ⊕ Sym 2E of the group Sp (1) × Sp (n) on S has to agree with the representation
implicitly defined by Clifford multiplication via (X∧Y ) • := 1

2
(X? Y ? + 〈X, Y 〉). Choosing

dual pairs of bases {deµ}, {eν} for E∗, E with 〈deµ, eν〉 = δµν and {dhα}, {hβ} for H∗, H
we can check that

(e ẽ) 7−→
∑
α

(dh[α ⊗ e) ∧ (hα ⊗ ẽ) (h h̃) 7−→
∑
µ

(h⊗ de[µ) ∧ (h̃⊗ eµ)(8)

is a Lie algebra homomorphism Sym 2H⊕Sym 2E −→ Λ 2(TM⊗R C) intertwining the given
representations of Sym 2H, Sym 2E and Λ 2(TM⊗R C) on H⊗E = TM⊗R C. Consequently
the following two operator identities on the spinor representation S are at the heart of
Proposition 3.1:

(e ẽ) • =
1

2

∑
α

(
(dh[α ⊗ e) ? (hα ⊗ ẽ) ? +σ(e, ẽ)

)
(9)

(h h̃) • =
1

2

∑
µ

(
(h⊗ de[µ) ? (h̃⊗ eµ) ? +σ(h, h̃)

)
(10)

The most important point in our present discussion of quaternionic Kähler holonomy is of
course the discussion of the curvature tensor of a quaternionic Kähler manifold and of the
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associated element q(R) in the universal enveloping algebra of the Lie algebra sp(1)⊕sp(n) of
the holonomy group Sp (1) ·Sp (n). In fact compared to other holonomy groups quaternionic
Kähler holonomy is rather rigid. This is mainly due to the fact that the curvature tensor of a
quaternionic Kähler manifold has to satisfy very stringent constraints and can be described
completely by the scalar curvature κ and a section R of Sym 4E. This decomposition was
first derived by D. V. Alekseevskii (cf.: [Al68] or[Sal82]) and can be made explicit in the
following way (cf.: [KSW97a]):

Lemma 3.2. (The curvature tensor)
A quaternionic Kähler manifold M is Einstein with constant scalar curvature κ. Its curvature
tensor depends only on κ and a section R of Sym 4E, this dependence reads

R = − κ

8n(n+ 2)
(RH +RE) +Rhyper(11)

where the endomorphism valued two forms RH , RE and Rhyper are defined by:

RH
h1⊗e1,h2⊗e2 = σE(e1, e2)(h1h2 •⊗id E)

RE
h1⊗e1,h2⊗e2 = σH(h1, h2)(idH ⊗ e1e2 •)(12)

Rhyper
h1⊗e1,h2⊗e2 = σH(h1, h2)(idH ⊗ (e]2 y e]1 y R) •)

At the end of this section we want to describe the action of the element q(R) of the
universal enveloping algebra U( sp(1) ⊕ sp(n) ) on some representations. In particular we
will see that for a large class of representations of Sp (1) × Sp (n) the element q(R) acts
by scalar multiplication, because the contributions from the hyperkähler part Rhyper of the
curvature tensor drop out. Observe first that q(R) depends linearly on R and so we may
write:

q(R) = − κ

8n(n+ 2)

(
q(RH) + q(RE )

)
+ q(Rhyper)

Using equation (8) we can write down the terms appearing in this sum more explicitly:

Lemma 3.3.

q(RH) =
1

4

∑
αβ

(dh[α dh
[
β) • (hα hβ) •

q(RE) =
1

4

∑
µν

(de[µ de
[
ν) • (eµ eν) •

q(Rhyper) =
1

4

∑
µν

(de[µ de
[
ν) • (e]µ y e]ν y R) •

Proof: Converting the sum over a local orthonormal base {Ei} into the sum∑
i

Ei ⊗ Ei =
∑
αµ

(dh[α ⊗ de[µ)⊗ (hα ⊗ eµ)
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over dual pairs {deµ}, {eµ} and {dhα}, {hα} of bases we calculate say for q(Rhyper)

1

4

∑
ij

(Ei ∧ Ej) • Rhyper
Ei, Ej

=
1

4

∑
αβµν

(dh[α ⊗ de[µ ∧ dh[β ⊗ de[ν) • σ(hα, hβ)(e]µ y e]ν y R) •

=
1

4

∑
αµν

(dh[α ⊗ de[µ ∧ hα ⊗ de[ν) • (e]µ y e]ν y R) •

which is equivalent to the stated equality in view of equation (8). 2

Evidently 2q(RH) and 2q(RE) respectively are the Casimir operators for sp(1) and sp(n)
in σ–normalization, i. e. the defining invariant symmetric form on the Lie algebra Sym 2H or
Sym 2E is not the Killing form itself but the natural extension of σ to the second symmetric
powers using Gram’s permanent. Hence the Casimir eigenvalues of q(RH) and q(RE) are
easily calculated directly for the simplest representations of Sp (n):

Lemma 3.4. (Casimir eigenvalues)
For the irreducible representations Sym lE and Λ d

◦E the Casimir eigenvalues for q(RE) are:

q(RE)Sym lE = − l (n +
l

2
) q(RE)Λ d

◦E
= − d (n − d

2
+ 1 )

The eigenvalues of q(RH) are given by the same formulas with n = 1. Setting l = 2
we get the Casimir eigenvalues for q(RE) and q(RH) in the adjoint representations Sym 2E
and Sym 2H of sp(n) and sp(1). Since by definition the Casimir eigenvalue of the adjoint
representation is always one for Casimirs in the Killing normalization we see in particular:

q(RE) = − 2 (n + 1) Cassp(n) q(RH) = − 4 Cassp(1)

Now we claim that the hyperkähler contribution q(Rhyper) to the element q(R) acts trivially
on every irreducible representation occurring in the representation ΛE, i. e. on all represen-
tations Λ d

◦E with d = 0, . . . , n. Because q(Rhyper) depends linearly on R ∈ Sym 4E we are
allowed to expand R into a sum of fourth powers 1

24
e4, e ∈ E, to calculate q(Rhyper). It is

thus sufficient to prove that the action of q( 1
24
e4) on ΛE is trivial for all e ∈ E. According

to Lemma 3.3 the element q( 1
24
e4) acts on ΛE as:

q(
1

24
e4) =

1

2
(
1

2
e2) • (

1

2
e2) • =

1

2
(e ∧ e] y) (e ∧ e] y) = − 1

2
e ∧ e ∧ e] y e] y = 0 .

Consequently the curvature tensor q(R) will act by scalar multiplication on all represen-
tations Rl, d := Sym lH ⊗ Λ d

◦E. From equation (6) we conclude that the squares D2
Rl, d

of the twisted Dirac operators with these particular twists have properties similar to the
Hodge–Laplacian ∆ and the square D2 of the untwisted Dirac operator:

Proposition 3.5. (Global decomposition principle)
The restriction D2

Rl, d |π of the square of a twisted Dirac operator D2
Rl, d with twisting bundle

Rl, d := (Sym lH ⊗ Λ d
◦E)(M) to a parallel subbundle π(M) ⊂ (S ⊗ Rl, d)(M) does not

depend on the specific embedding of this subbundle and equation (6) becomes in this case:

∆π = D2
Rl, d

∣∣∣
π

+
κ

8n(n+ 2)
( l + d − n ) ( l − d + n + 2 )
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4 Classification of minimal and maximal twists

In this section we will focus attention on the technicalities necessary to draw conclusions
from Proposition 3.5. The irreducible representations occurring in the twisted spinor rep-
resentations S ⊗ Rl, d are all of the form Sym kH ⊗ Λa, b

topE, where Λa, b
topE is the irreducible

representation in the tensor product Λ a
◦E⊗Λ b

◦E corresponding to the sum of highest weights.
Alternatively we see from Weyl’s construction of the irreducible representations of the clas-
sical matrix groups that Λa, b

topE is the common kernel of the diagonal contraction with the
symplectic form σ : Λ a

◦E ⊗ Λ b
◦E −→ Λ a−1

◦ E ⊗ Λ b−1
◦ E and the Plücker differential:∑

µ

eµ ∧ ⊗ deµ y : Λ a
◦E ⊗ Λ b

◦E −→ Λ a+1E ⊗ Λ b−1
◦ E

In particular, we will characterize the twists Rl, d with Sym kH ⊗Λa, b
topE ⊂ S ⊗Rl, d. More-

over, for each representation Sym kH⊗Λa, b
topE in this class and will classify the special twists

maximizing the curvature expression

− κ

8n(n+ 2)
( l + d − n ) ( l − d + n + 2 )

of Proposition 3.5 for κ > 0 and κ < 0. This classification is the most important step used
in the applications of the ideas encoded in Proposition 3.5. Global questions are postponed
to the next sections. Hence, we will deal with representations of Sp (1)× Sp (n) only.

Theorem 4.1. (Characterization of admissible twists)
A representation Rl, d := Sym lH⊗Λ d

◦E with l ≥ 0 and n ≥ d ≥ 0 is called an admissible twist
for the irreducible representation Sym kH ⊗ Λa, b

topE, if there exists a non–trivial, equivariant

homomorphism from Sym kH ⊗ Λa, b
topE to the twisted spinor representation S ⊗Rl, d, i. e.

Hom Sp (1)×Sp (n)( Sym kH ⊗ Λa, b
topE, S ⊗Rl, d ) 6= {0} .

A twist Rl, d is admissible in this sense if and only if k + a+ b ≡ n+ l + d mod 2 and:

b ≤ d(13)

| k − l | + | a − d | ≤ n − b(14)

|n − a + b − d | ≤ k + l .(15)

A simple consequence of Theorem 4.1 is that all the representations Sym kH⊗Λa, b
topE occur

in twisted spinor representations, e. g. in S ⊗Rk+n−b, a and S ⊗R|n−a−k|, b. These two twists
are the prototype examples of maximal and minimal twists to be defined below.

Proof: For the proof we recall a well–known fusion rule for the tensor product Λ c
◦E⊗Λ d

◦E
of the two irreducible Sp (n)–representations Λ c

◦E and Λ d
◦E (cf. [OnVi90]):

Λ c
◦E ⊗ Λ d

◦E =
⊕

a+b ≡ c+d mod 2

a+b ≤ c+d
|c−d| ≤ a−b ≤ 2n−c−d

Λa, b
topE

10



Note in particular that each irreducible representation Λa, b
topE occurs at most once in the

tensor product Λ c
◦E⊗Λ d

◦E. Using this fusion rule together with the Clebsch–Gordan formula
for irreducible Sp (1)–representations and the decomposition of the spinor representation S
under Sp (1)×Sp (n) given in Proposition 3.1 we can formally write down the decomposition

n⊕
c=0

(Sym n−cH ⊗ Λ c
◦E)⊗ (Sym lH ⊗ Λ d

◦E) =
∑
k≥0

n≥a≥b≥0

]Mk, a, b(l, d) · Sym kH ⊗ Λa,b
topE(16)

of S ⊗Rl, d, where Mk, a, b(l, d) is the set of all n ≥ c ≥ 0 satisfying the set of constraints:

k ≡ n+ c+ l mod 2
k ≤ n− c+ l
k ≥ |n− c− l|

a+ b ≡ c+ d mod 2
a+ b ≤ c+ d
a− b ≥ |c− d|
a− b ≤ 2n− c− d

(17)

It is clear from these constraints that Mk, a, b(l, d) is empty unless k+a+b ≡ n+ l+d mod 2
reflecting in a way the consistency of the action of (−1, −1) ∈ Sp (1)×Sp (n). In particular,
k + a+ b ≡ n+ l + d mod 2 is a necessary condition for the twist Rl, d to be admissible.

In view of this congruence we can drop one of the two constraints a + b ≡ c + d mod 2
or k ≡ n + c + l mod 2 and solve the inequalities (17) for c. After a little manipulation
we arrive at an equivalent description of Mk, a, b(l, d) as the set of all c ≡ a + b + d mod 2
satisfying:

max { b+ |a− d|, n− k − l } ≤ c ≤ n − max { |k − l|, |n− a+ b− d|}(18)

Under the standing hypothesis k + a+ b ≡ n+ l + d mod 2 we evidently have

max { b+ |a− d|, n− k − l } ≡ a + b + d ≡ n − max { |k − l|, |n− a+ b− d|} mod 2

so that Mk, a, b(l, d) will be non–empty if and only if the inequality (18) is consistent. Indeed
the congruence c ≡ a + b + d mod 2 will be fulfilled by either end of the resulting interval.
However, the consistency condition for (18) is given by four inequalities in l, d depending
of course on k, a, b. The first n − k − l ≤ n − |k − l| is trivial for k, l ≥ 0 and the next
two become inequalities (14) and (15), whereas the last b+ |a− d| ≤ n− |n− a+ b− d| is
equivalent to inequality (13) for all b ≤ a ≤ n and d ≤ n. 2

Note that if the set Mk, a, b(l, d) is non-empty all its elements will have the same parity as
a+ b+ d. Of course their number ]Mk, a, b(l, d) is just the multiplicity of the representation

Sym kH ⊗ Λa, b
topE in S ⊗Rl, d, which we will need below as index multiplicity:

Definition 4.2. (The index of an admissible twist)
The index of an admissible twist Rl, d for an irreducible representation Sym kH ⊗ Λa, b

topE is

the index multiplicity of Sym kH ⊗ Λa, b
topE in the twisted spinor representation S ± ⊗Rl, d:

index (k, a, b; l, d) := dim Hom Sp (1)×Sp (n)(Sym kH ⊗ Λa, b
topE, S + ⊗Rl, d)

− dim Hom Sp (1)×Sp (n)(Sym kH ⊗ Λa, b
topE, S − ⊗Rl, d)

11



From the proof of Theorem 4.1 we can easily read off an explicit formula for this index:

index (k, a, b; l, d) :=

(−1)a+b+d

2

(
n + 2 − max {|k − l|, |n− a+ b− d|} − max {b+ |a− d|, n− k − l}

)
Although we have calculated the index multiplicity of the representation Sym kH ⊗Λa, b

topE
for an arbitrary twisted spinor representation S ⊗Rl, d, it will turn out below that only very
few representations actually contribute to the index of a particular twisted Dirac operator.
These representations are characterized by the following extremality condition:

Definition 4.3. (Minimal and maximal twists)
An admissible twist Rl, d := Sym lH⊗Λ d

◦E for the irreducible representation Sym kH⊗Λa,b
topE

is called a minimal or maximal twist, if the curvature term of Proposition 3.5, or equivalently
the function φ(l̃, d̃) := (l̃ + d̃ − n) (l̃ − d̃ + n + 2), assumes its minimum or maximum

among all admissible twists Rl̃, d̃ in the twist Rl, d.

To determine the index of a twisted Dirac operator in terms of the dimension of the
eigenspaces of the operators ∆π, all we will further need is a classification of all minimal
twists for negative scalar curvature κ < 0 and similarly of all maximal twists for κ > 0:

Theorem 4.4. (Classification of maximal twists)
All representations Sym kH ⊗ Λa,b

topE with k > 0 or a > b have unique maximal twists:

Rk+n−b, a = Sym k+n−bH ⊗ Λ a
◦E index (k, a, b; k + n− b, a) = (−1)b

For the special representations Λa,a
topE with k = 0 and a = b all admissible twists Rn−d,d with

d = a, . . . , n have φ(n− d, d) = 0 and are thus automatically maximal and minimal:

Rn−d, d = Sym n−dH ⊗ Λ d
◦E index (0, a, a; n− d, d) = (−1)d

The classification of all minimal twists splits into more cases:

Theorem 4.5. (Classification of minimal twists)
According to their minimal twists the irreducible representations Sym kH⊗Λa,b

topE are divided
into four classes. In the first class we have k > (n−a)+(n− b) and a unique minimal twist:

Rk−n+b, a = Sym k−n+bH ⊗ Λ a
◦E index (k, a, b; k − n+ b, a) = (−1)b

In the second class with k = (n − a) + (n − b) the minimal twist is no longer unique. All
minimal twists for representations in this class are given by

Rn−d, d = Sym n−dH ⊗ Λ d
◦E index (k, a, b; n− d, d) = (−1)k+d

with d = b, . . . , a. The special representations Λa,a
topE with k = 0 and a = b form the third

class overlapping in k = 0 and a = b = n with the second. All admissible twists Rn−d, d with
d = a, . . . , n for these special representations are minimal and maximal at the same time:

Rn−d, d = Sym n−dH ⊗ Λ d
◦E index (0, a, a; n− d, d) = (−1)d

12



The remaining representations are characterized by k < (n−a)+(n− b) and k+(a− b) > 0.
The minimal twists of the representations in this fourth class are all unique:

R|n−a−k|, b = Sym |n−a−k|H ⊗ Λ b
◦E index (k, a, b; |n− a− k|, b) = (−1)a

It should not be too difficult for the reader to prove Theorems 4.4 and 4.5, but it is
advisable to have a geometric picture in mind in order to help intuition. The set of solutions
to the inequality (14) in the (l, d)–space is a ball in the L1–norm, i. e. a diamond, with
center (k, a) and radius n− b. On the other hand the set of solutions to the inequality (15)
is a cone opening diagonally to the right from its vertex in the point (−k, n − a + b). We
want to extremize the function φ(l, d) = (l + d − n) (l − d + n + 2), whose level sets are
hyperbolas with diagonal axes l + d = n and l − d = −n− 2. Eventually we only care for
points l ≥ 0 and n ≥ d ≥ 0 in its first l + d ≥ n, l − d ≥ −n − 2 or second quadrant
l + d ≤ n, l − d ≥ −n− 2, where φ is positive or negative respectively.
Proof: We will only consider the last case of Theorem 4.5 characterized by k+(a− b) > 0
and k < (n−a)+(n− b), which anyhow is the most difficult to prove. Observing that these
two inequalities together are equivalent to |n − a − k| + b < n we conclude that the point
(|n − a − k|, b) will lie in the strict interior of the second quadrant. The twist R|n−a−k|, b
corresponding to this point is certainly an admissible twist, because |n−a| ≤ k+ |n−a−k|
and || − k| − |n − a − k|| ≤ n − a by the contraction property of x 7−→ |x|. Turning to
the geometric picture we see that the bottom corner of the intersection rectangle of cone
and diamond will be either (k, a − n + b) for k ≥ n − a or (n − a, b − k) for k ≤ n − a,
i. e. whatever point has larger l and d–coordinate. In particular this bottom corner fails in
general to satisfy inequality (13) chopping off a triangle from the rectangle. The resulting
face runs from the point (|n− a− k|, b) to (n− a+ k, b) independent of whether k ≥ n− a
or k ≤ n−a. Note that the geometry may become even more complicated, but as the point
(|n−a−k|, b) solves all inequalities (13),(14),(15) and lies in the strict interior of the second
quadrant it is the unique point, where the function φ assumes its minimum. 2

5 Eigenvalue estimates

The potential applications of Proposition 3.5 include eigenvalue estimates for the Laplace
and for twisted Dirac operators. The general procedure is described in this section and
carried out in some particularly interesting cases. Our first example are the irreducible
Sp (1) · Sp (n)–representations Sym rH ⊗ Λ r

◦E defining parallel subbundles in the bundle
of r–forms (cf. [Sal86]). On these subbundles we have the following lower bound for the
spectrum of the Laplace operator.

Proposition 5.1. (Eigenvalue estimate on Sym rH ⊗ Λ r
◦E)

Let (M4n, g) be a compact quaternionic Kähler manifold of positive scalar curvature κ > 0.
Then any eigenvalue λ of the Laplace operator restricted to Sym rH ⊗ Λ r

◦E satisfies

λ ≥ r(n+ 1)

2n(n+ 2)
κ .
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Proof: It follows from Theorem 4.4 that Sym n+rH ⊗ Λ r
◦E is a maximal twist for the

representation Sym rH ⊗ Λ r
◦E. Using Proposition 3.5 with l = n+ r and d = r we obtain:

∆Sym rH⊗Λ r
◦E = D2

Rn+r,r

∣∣∣
Sym rH⊗Λ r

◦E
+

r(n+ 1)

2n(n+ 2)
κ ≥ r(n+ 1)

2n(n+ 2)
κ . 2

An interesting special case is H ⊗ E = TM ⊗R C for r = 1, leading to an eigenvalue
estimate for the Laplace operator on 1–forms. In particular, the first Betti number has to
vanish. Since the differential of any eigenfunction of the Laplace operator is an eigenform
for the same eigenvalue we also obtain an estimate on functions (cf. [AlMa95] and [LeB95]).
Replacing maximal by minimal twists to compensate the sign of the scalar curvature the
same argument provides eigenvalue estimates on Sym rH ⊗ Λ r

◦E on manifolds with κ < 0.
Again the first Betti number has to vanish reproving the result of [Ho96]. In Theorem 6.6
we will prove a stronger vanishing result for the odd Betti numbers.

Our next aim is to derive properties of twisted Dirac operators. For doing so we make the
following crucial observation. If π is any representation with admissible twists Rl,d and Rl̃,d̃

then we can apply Proposition 3.5 twice to obtain

D2
Rl,d

∣∣∣
π

= D2
Rl̃,d̃

∣∣∣
π

+
κ

8n(n+ 2)

(
φ(l̃, d̃) − φ(l, d)

)
,(19)

with φ(l, d) = (l + d− n)(l − d+ n+ 2). We first use this observation to give a short proof
of the eigenvalue estimate for the untwisted Dirac operator:

Proposition 5.2. (Eigenvalue estimate for the untwisted Dirac operator [KSW97a])
Let (M4n, g) be a compact quaternionic Kähler spin manifold of positive scalar curvature κ.
Then any eigenvalue λ of the untwisted Dirac operator satisfies

λ2 ≥ n+ 3

n+ 2

κ

4
.

Proof: According to Proposition 3.1 the spinor bundle decomposes into the parallel sub-
bundles S = ⊕nr=0 S r with S r = Sym rH ⊗ Λ n−r

◦ E. To estimate the square of the Dirac
operator on Sym rH⊗Λ n−r

◦ E we observe that the unique maximal twist for Sym rH⊗Λ n−r
◦ E

is Rn+r,n−r and for l = d = 0 and l̃ = n+ r, d̃ = n− r equation (19) reads:

D2
∣∣∣
S r

= D2
Rn+r,n−r

∣∣∣
S r

+
κ

8n(n+ 2)

(
n(2r + n+ 2) + n(n+ 2)

)
≥ n+ 2 + r

n+ 2

κ

4
.

Consequently some hypothetical eigenspinor φ ∈ Γ(S ) of D2 with eigenvalue λ2 < n+3
n+2

κ
4

would have to be localized in the subbundle S 0 ⊂ S . But the Dirac operator on a manifold
of positive scalar curvature has trivial kernel so that Dφ ∈ Γ(S 1) would be a nontrivial
eigenspinor for D2 again with eigenvalue λ2 in contradiction to the estimate for S 1. 2

We now use equation (19) for describing the kernels of twisted Dirac operators in the case
of positive scalar curvature. If π is any representations which contributes to the kernel of
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D2
Rl,d then Rl,d has to be a maximal twist for π. In fact equation (19) implies that D2

Rl, d is

positive on π as soon as there is another admissible twist Rl̃, d̃ for π with φ(l̃, d̃) > φ(l, d).
From this remark and Proposition 3.5 we conclude in the case of positive scalar curvature

ker(D2
Rl,d) =

⊕
π

ker

(
∆π −

κ

8n(n+ 2)
φ(l, d)

)
(20)

where the sum is over all representations π for which Rl, d is a maximal twist. Since
κ

8n(n+2)
φ(l, d) is the smallest possible eigenvalue of the operator ∆π equation (20) is in essence

a decomposition of ker(D2
Rl,d) into a sum of minimal eigenspaces for the operators ∆π.

If Rl, d is a maximal twist for a representation π then Theorem 4.4 also provides us with
the information whether π occurs in S + ⊗ Rl, d or in S − ⊗ Rl, d. Hence a corollary of
equation (20) is a formula for the index of the twisted Dirac operator DRl, d in terms of
dimensions of certain minimal eigenspaces. We will describe this in two examples:

Proposition 5.3.
Let (M4n, g) be a compact quaternionic Kähler manifold of positive scalar curvature κ > 0,
then:

ker
(
D2
Rl,d

)
= {0} for l + d < n .

Proof: All maximal twists Rl,d satisfy l + d ≥ n by Theorem 4.4. 2

An immediate consequence of this proposition is the vanishing of the index index (DRl, d)
for l + d < n. This was also proved in [LeBSa94] by using the Akizuki–Nakano vanishing
theorem on the twistor space. For the second example we consider the twisted Dirac operator
DRn+2, 0 . It easily follows from Theorem 4.4 that Sym 2H is the unique representation with
maximal twist Rn+2, 0:

Proposition 5.4. (Killing vector fields)
On every compact quaternionic Kähler manifold (M4n, g) of positive scalar curvature κ we
have:

ker
(
D2
Rn+2,0

)
= ker

(
∆Sym 2H −

κ

2n

)
.

The index of DRn+2,0 equals the dimension of the isometry group of (M, g) (cf. [Sal82]).
But since Sym 2H is the only representation contributing to ker(D2

Rn+2,0) the index is just
the dimension of the minimal eigenspace of ∆Sym 2H . In fact, there is an explicit isomorphism
from the space of Killing vector fields to Sym 2H (cf. [AlMa98]). It is given by projecting the
covariant derivative of a Killing vector field onto its component in Sym 2H ⊂ Λ 2T ∗M ⊗R C.

More generally it follows that the index of DRn+r,0 , coincides with the dimension of the
minimal eigenspace for ∆Sym rH . Combining this insight with appropriate Weitzenböck for-
mulas we will show in a forthcoming paper (c.f. [SW01]) that for even numbers r ≥ 0 this
index is always less or equal the corresponding value on the quaternionic projective space,
i. e. we obtain a sharp upper bound for the Hilbert polynomial P (r) := index (DRn+r,0). This
in turn provides an upper bound on the degree of the twistor space or in more geometric
terms an upper bound for the volume of a quaternionic Kähler manifold of positive scalar
curvature.
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6 Harmonic forms and Betti numbers

This section contains the most important application of Proposition 3.5. We will determine
which parallel subbundles of the differential forms may carry harmonic forms and thus prove
vanishing theorems for Betti numbers both for positive and negative scalar curvature. These
results will lead to quaternionic Kähler analogues of the weak and strong Lefschetz theorem
in Kähler geometry. Recall that the weak Lefschetz theorem for Kähler manifolds M states
the inequality bk ≤ bk+2 of the Betti numbers for k < 1

2
dim M , whereas the strong Lefschetz

theorem asserts that the wedge product with the parallel 2–form descends to an injective
map of the cohomology Hk(M, R) −→ Hk+2(M, R) in the same range.

Theorem 6.1. (Representations and harmonic forms)
Let (M4n, g) be a compact quaternionic Kähler manifold of scalar curvature κ 6= 0 and let π
be an irreducible representation of Sp (1) · Sp (n) occurring in the forms Λ •(H ⊗ E):

Hom Sp (1)·Sp (n)(π,Λ
•(H ⊗ E)) 6= {0}

If the scalar curvature is positive then ker ∆π = {0} unless π = Λa, a
topE for some a with

n ≥ a ≥ 0. Similarly if the scalar curvature is negative then ker(∆π) = {0} unless either
π = Λa, a

topE as before or π is a representation of the form π = Sym 2n−a−bH ⊗ Λa, b
topE with

n ≥ a ≥ b ≥ 0.

Although the representations Sym 2n−a−bH ⊗ Λa, b
topE form a larger class of representations

they are still rather special among all the representations occurring in the forms. The ap-
pearance of these exceptional representations potentially carrying harmonic forms could have
been foreseen from the difficulties encountered in the attempt to push Kraines original strong
Lefschetz theorem ([Kra66]) for quaternionic Kähler manifolds beyond degree n. In higher
degrees the given proofs fail precisely for these representations. It follows from Theorem 6.1
that this problem is absent in the positive scalar curvature case.

Proof: For any manifold of even dimension the bundle of exterior forms is the tensor
product of the spinor bundle S with its dual S ∗. In the quaternionic Kähler case S ∼= S ∗ is
real or quaternionic and the decomposition given in Proposition 3.1 implies:

Λ •(H ⊗ E) = S ⊗ S =
n⊕
r=0

S ⊗Rr, n−r .

In particular, a representation π occurs in the forms if and only if it occurs in a twisted
spinor bundle S ⊗ Rr, n−r for some r with n ≥ r ≥ 0. It is consequently of the form
π = Sym kH ⊗ Λa, b

topE for suitable k ≥ 0 and n ≥ a ≥ b ≥ 0. In this situation Proposition
3.5 becomes:

∆
∣∣∣
π

= ∆π = D2
Rr, n−r

∣∣∣
π

A harmonic form in the parallel subbundle determined by π is thus identified with an har-
monic twisted spinor for the twist Rr, n−r. However, we have already expressed the kernel of
the twisted Dirac operators D2

Rr, n−r in formula (20) at least for positive scalar curvature.
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The point in this formula is of course that only those representations π may contribute to
the kernel of the twisted Dirac operator D2

Rr, n−r , for which the twist Rr, n−r is a maximal
twist. Replacing maximal by minimal twists the same argument applies in the case of
negative scalar curvature and we conclude that a representation π may carry harmonic
forms in the case of negative or positive scalar curvature if and only if it has a minimal or
maximal twist respectively of the form Rr, n−r for some r with n ≥ r ≥ 0. A look at the
classification of maximal and minimal twists in Theorems 4.4 and 4.5 completes the proof.
2

We now want to point out a remarkable property of minimal and maximal twists: If a twist
Rl, d is minimal or maximal for a representation π then π always occurs with multiplicity one
in the twisted spinor representation S ⊗Rl, d. Although this property seems very natural it
is obtained only as a corollary of the calculation of the index multiplicities in Theorems 4.4
and 4.5 using all the rather technical calculations of that section. Surely it is tempting to
search for a direct argument providing better insight into the nature of this property.

For us this property is very convenient counting the total multiplicity of those repre-
sentations π in the differential forms, which may carry harmonic forms. In fact for any
representation π this total multiplicity is given by:

dim Hom Sp (1)·Sp (n)( π, Λ •(H ⊗ E) ) =
n∑
r=0

dim Hom Sp (1)·Sp (n)( π, S ⊗Rr, n−r ) .(21)

However, in the course of the proof of Theorem 6.1 we characterized the representations π
potentially carrying harmonic forms in negative or positive scalar curvature by their property
of having a minimal or maximal twist respectively of the form Rr, n−r, n ≥ r ≥ 0. For such
a representation π a twist of the form Rr̃, n−r̃ is minimal or maximal respectively if and only
if it is admissible, because in this case φ(r, n− r) = 0 = φ(r̃, n− r̃).

Consequently for any representation π which may carry harmonic forms the summands
on the right hand side of equation (21) are all either 0 or 1 and the total multiplicity of π in
the differential forms is just the number of different minimal or maximal twists respectively.
This number is easily read off from Theorems 4.4 and 4.5 and is part of the following lemma:

Lemma 6.2. (Embeddings of harmonic forms)
The representation π = Λa, a

topE, n ≥ a ≥ 0, occurs n − a + 1 times in the forms: it occurs
with multiplicity one in the forms of degree 2a, 2a + 4, 2a + 8, . . . , 4n − 2a. Similarly the
representation π = Sym 2n−a−bH ⊗ Λa, b

topE, n ≥ a ≥ b ≥ 0, occurs in the forms of degree
2n− a+ b, 2n− a+ b+ 2, 2n− a+ b+ 4, . . . , 2n+ a− b with multiplicity 1 and a− b+ 1
times in total.

Proof: We have already calculated the total multiplicity of the representations Λa, a
topE and

Sym 2n−a−bH⊗Λa, b
topE in the differential forms so that it is sufficient to prove the existence of

embeddings of these representations into the forms of the claimed degrees. First let us recall
the well known general decomposition of the exterior forms Λ k(H ⊗E ) into Schur functors

Λ k(H ⊗ E ) =
⊕

Y

Schur YH ⊗ Schur YE
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where the sum is over all Young tableaus Y of size |Y| = k and Y denotes the conjugated
Young tableau ([FuHa]). All Schur functors have two preferred realizations as the images of
Schur symmetrizers in iterated tensor products. Specifying the Young tableau Y either by
the length of its rows (r1, r2, . . . , rc1) or of its columns (c1, c2, . . . , cr1) satisfying r1 ≥ r2 ≥
. . . ≥ rc1 and c1 ≥ c2 ≥ . . . ≥ cr1 these two preferred realizations of the Schur functors

Schur YH ⊂ Λ c1H ⊗ Λ c2H ⊗ . . . ⊗ Λ cr1H

Schur YE ⊂ Sym r1E ⊗ Sym r2E ⊗ . . . ⊗ Sym rc1E

are given as the intersection of the kernels of all possible Plücker differentials. In our case
all Schur functors in H corresponding to Young tableaus of more than two rows vanish and
since Λ 2H ∼= C is trivial the Schur functor in H for the Young tableau of size k with two
rows (k − s, s) is equivalent to Sym k−2sH:

Λ k(H ⊗ E) =

b k
2
c⊕

s=0

Sym k−2sH ⊗ Schur (k−s, s)E .

Conjugation of Young tableaus is defined by exchanging rows and columns. Conjugated to
the Young tableau with two rows (k−s, s) is the tableau with two columns (k − s, s). Thus
Schur (k−s, s)E can be defined as the kernel of the Plücker differential:∑

µ

eµ ∧ ⊗deµ y : Λ k−sE ⊗ Λ sE −→ Λ k−s+1E ⊗ Λ s−1E .

From Weyl’s construction of the representation Λa, b
topE as the intersection of the kernel of

the Plücker differential Λ a
◦E ⊗ Λ b

◦E −→ Λ a+1E ⊗ Λ b−1
◦ E with the kernel of the diagonal

contraction with the symplectic form we see that Λa, a
topE ⊂ Schur (a, a)E. Consider now the

map
Ω : Λ aE ⊗ Λ bE −→ Λ a+2E ⊗ Λ b+2E

defined by

Ω :=
∑
µ,ν

(
de[µ ∧ de[ν ∧ ⊗ eµ ∧ eν ∧ + de[µ ∧ eµ ∧ ⊗ de[ν ∧ eν∧

)
,

which curiously enough commutes with the Plücker differential. Consequently we may extend
the above embedding to a chain of Sp (n)–equivariant linear maps:

Λa, a
topE −→ Schur (a, a)E

Ω−→ Schur (a+2, a+2)E
Ω−→ . . .

Ω−→ Schur (2n−a, 2n−a)E .

Explicit calculation shows that Ωn−a = (2n − 2a + 1)! (? ⊗ ?) on Λa, a
topE, where ? denotes

the Hodge isomorphism Λ aE −→ Λ 2n−aE. Hence Λa, a
topE embeds into all the Schur functors

Schur (a+2s, a+2s)E with n− a ≥ s ≥ 0 and further into the forms Λ 2a+4s(H ⊗ E ) of degree
2a+4s with n−a ≥ s ≥ 0. The appearance of the map Ω is by no means an accident, it can
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be shown that it corresponds exactly to the wedge product with the parallel Kraines form
Ω on the level of forms.

The construction of the different embeddings of the representations Sym 2n−a−bH ⊗Λa, b
topE

is simpler, although it is a dead end to start with the inclusion Λa, b
topE ⊂ Schur (a, b)E. Instead

we have to use the Hodge isomorphism (? ⊗ 1) : Λ aE ⊗ Λ bE −→ Λ 2n−aE ⊗ Λ bE, which
interchanges in a sense the roles of the Plücker differential and the diagonal contraction with
the symplectic form. The Hodge isomorphism can be extended to a chain of maps

Λa, b
topE −→ Λ 2n−aE ⊗ Λ bE

σ−→ Λ 2n−a+1E ⊗ Λ b+1E
σ−→ . . .

σ−→ Λ 2n−bE ⊗ Λ aE

using the diagonal multiplication σ with the symplectic form. Since diagonal contraction
and multiplication with the symplectic form generate an sl2–algebra of operators the final
map Λa, b

topE −→ Λ 2n−bE ⊗ Λ aE is injective and maps into the kernel of σ. In addition the

commutator relations between the Plücker differential and σ imply that Λa, b
topE is mapped

into the kernel Schur (2n−a+s, b+s)E of the Plücker differential at each step, so that

Sym 2n−a−bH ⊗ Λa, b
topE −→ Sym 2n−a−bH ⊗ Schur (2n−a+s, b+s)E

⊂−→ Λ 2n−a+b+2s(H ⊗ E )

embeds into the forms of degree 2n− a+ b+ 2s for all a− b ≥ s ≥ 0. 2

The weak Lefschetz Theorem for quaternionic Kähler manifolds of positive scalar curvature
was proved by S. Salamon (cf. [Sal82]) by analyzing the cohomology of the twistor space.
In the course of the proof of Lemma 6.2 we have sketched a proof of the strong Lefschetz
Theorem for quaternionic Kähler manifolds of positive scalar curvature. The wedge product
with the parallel Kraines form Ω is injective on the forms of type Λa, a

topE in all degrees
k < 1

2
dim M and hence descends to an injective map of the cohomology.

A completely different argument can be given to show that the wedge product with the
Kraines form is injective on forms of type Sym 2n−a−bH⊗Λa, b

topE in degrees k < 1
2

dim M − 1,
too. In contrast to the positive scalar curvature case however, the decomposition of the
cohomology given in Theorem 6.1 for quaternionic manifolds of negative scalar curvature is
finer than the decomposition into primitive cohomologies with respect to the Kraines form.

Theorem 6.3. (Strong Lefschetz theorem for quaternionc Kähler manifolds with κ > 0)
Let (M4n, g) be a quaternionic Kähler manifold of positive scalar curvature κ > 0. Its odd
Betti numbers vanish b2k+1 = 0 for all 0 ≤ k < n. The wedge product with the parallel
Kraines form Ω ∈ Γ( Λ 4T ∗M ) descends to an injective map on the level of cohomology

Ω∧ : H2k(M, R ) −→ H2k+4(M, R )

for all k < n. In particular the even Betti numbers of M satisfy the inequality:

b2k(M ) ≤ b2k+4(M )

for all 0 ≤ k < n and the space of primitive forms of degree 2k agrees with the kernel of the
operator ∆πk

for the irreducible representation πk = Λ k, k
top E of Sp (1) · Sp (n).
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Proof: For a compact quaternionic Kähler manifold of positive scalar curvature it follows
from Proposition 6.1 that the only representations potentially carrying harmonic forms are
Λa, a

topE with n ≥ a ≥ 0. But according to Lemma 6.2 all these representations embed
into forms of even degree, i. e. all odd Betti numbers necessarily vanish. Moreover the
representations Λa, a

topE occur in the forms of degree 2k if and only if a = k, k − 2, . . . and in
this case they occur with multiplicity one. 2

Remark 6.4. (Associated twistor space and 3–Sasakian manifold [GaSa96])
Let S be the 3–Sasakian manifold and Z the twistor space associated with the quaternionic
Kähler manifold M4n. The dimension of ker ∆Λk, k

topE
can be reinterpreted as the dimension

of the cohomology of S and as the dimension of the primitive cohomology group of Z:

dim(ker ∆Λk, k
topE

) = b2k(S) = b2k(Z) − b2k−2(Z) k ≤ n .

At this point it is easy to see that Theorem 6.3 provides the expression for the dimension
of the kernel of the twisted Dirac operators DRn−d, d in terms of Betti numbers. Indeed we
conclude formula (20) that in the case of positive scalar curvature a representation π may
contribute to the kernel of D2

Rl, d only if the twist Rl, d is maximal for π. On the other hand
the twisted spinor representation S ⊗ Rn−d, d occurs in the forms so that a representation
π contributes to the kernel of D2

Rn−d, d if and only if it carries harmonic forms, i. e. π must
be one of the representations Λa, a

topE for some a with n ≥ a ≥ 0. From inequality (13) of
Theorem 4.1 it is evident that π = Λa, a

topE occurs in S ⊗Rn−d, d if and only if a ≤ d, hence
we obtain

ker(D2
Rn−d, d) =

⊕
a≤d

ker(∆Λa, a
topE

) .

An immediate consequence of this formula is then the well-known result of S. Salamon and
C. LeBrun (cf. [LeBSa94]) on the index of the twisted Dirac operator DRl, d with l+ d = n.

In dealing with quaternionic Kähler manifolds of negative curvature it is convenient to
decompose their cohomology into two direct summands with quite different behavior:

Definition 6.5. ( sp(1)–invariant and exceptional cohomology)
Let (M4n, g) be a compact quaternionic Kähler manifold of negative scalar curvature. Ac-
cording to Theorem 6.1 two different series of representations contribute to harmonic forms
on M , namely Λa, a

topE, n ≥ a ≥ 0 and Sym 2n−a−bH ⊗ Λa, b
topE, n ≥ a ≥ b ≥ 0. In particular

the de Rham cohomology of M splits into the direct sum

H•dR(M, C ) = H•sp(1)(M, C ) ⊕ H•expt(M, C )

of its sp(1)–invariant cohomology H•sp(1)(M, C ), which is the sum of all isotypical compo-

nents corresponding to the representations Λa, a
topE, n ≥ a ≥ 0, and its exceptional cohomology

H•expt(M, C ), which is the direct sum of all isotypical components corresponding to the re-

maining representations Sym 2n−a−bH ⊗ Λa, b
topE, n ≥ a ≥ b ≥ 0, b 6= n.
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Because the curvature tensor of M is sp(1)–invariant the same is true for all its character-
istic classes. Moreover H•sp(1)(M, C ) is closed under multiplication and the decomposition

of the de Rham–cohomology into sp(1)–invariant and exceptional cohomology is respected
by the induced modul structure. A deeper analysis of the ring structure of the cohomology
ring of M will be given in a forthcoming paper (cf. [Wei00]).

Theorem 6.6. (Weak Lefschetz theorem for negative scalar curvature)
Let (M4n, g) be a compact quaternionic Kähler manifold of negative scalar curvature κ < 0.
Its sp(1)–invariant and exceptional Betti numbers bsp(1), k and bexpt, k satisfy:

bsp(1), k = 0 for k odd ,

bexpt, k = 0 for k ≤ n− 1 ,

bsp(1), k ≤ bsp(1), k+4 for k ≤ 2n− 2 ,

bexpt, k ≤ bexpt, k+2 for k ≤ 2n− 1 .

In particular, its Betti numbers bk = bsp(1), k + bexpt, k satisfy:

b2k+1 = 0 for 2k + 1 ≤ n− 1 ,

bk ≤ bk+2 for odd k ≤ 2n− 1 ,

bk ≤ bk+4 for k ≤ 2n− 2 .

Proof: Since the sp(1)–invariant Betti numbers correspond by definition to the represen-
tations Λa, a

topE, n ≥ a ≥ 0, they have the same properties as Betti numbers of a quater-
nionic Kähler manifolds of positve scalar curvature given in Theorem 6.3. It follows from
Lemma 6.2 that the remaining representations Sym 2n−a−bH ⊗ Λa, b

topE with n ≥ a ≥ b ≥ 0
and b 6= n corresponding to the exceptional Betti numbers embed into forms of degree
2n − a + b, 2n − a + b + 2, . . . , 2n + a − b. For a 6≡ b mod 2 these embeddings give rise to
harmonic forms of odd degree. Nevertheless the odd Betti numbers of degree less than n
have to vanish because of 2n− a+ b ≥ n. 2
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