
Discrete Optimization 9 (2012) 17–28

Contents lists available at SciVerse ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

Ad hoc heuristic for the cover printing problem
David Romero ∗, Federico Alonso-Pecina
Instituto de Matemáticas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor., Mexico

a r t i c l e i n f o

Article history:
Received 31 March 2009
Received in revised form 7 March 2011
Accepted 5 October 2011
Available online 15 November 2011

MSC:
90C10
90C27
90C59
90C90

Keywords:
Combinatorial optimization
Integer nonlinear programming
Cover printing
Label printing
Heuristic
Job splitting

a b s t r a c t

We address an NP-hard combinatorial optimization problem arising in a printing shop.
An impression grid is composed by a set of plates. The cover printing problem consists in
designing the composition of impression grids, and determining the number of times each
grid is to be printed in order to fulfill the demand of different book covers atminimum total
printing cost; the latter comes from three fixed costs: for printing one sheet, for producing
one plate, and for composing one impression grid. For each cover an unlimited number of
plates can be made. To deal with this challenging problem we present an ad hoc heuristic
that outperforms all previously proposed approaches, including genetic algorithms, GRASP,
and simulated annealing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address a combinatorial optimization problem arising in the printing industry. LetM = {1, . . . ,m} be a
set of different book covers (or advertisements, labels, tracts, etc.) of equal size, and suppose that di copies are to be printed
of cover i, for i ∈ M . Let d̃ = (d1, . . . , dm) be the requirements vector. Suppose that for each print an unlimited number of
identical plates can be made, and that an impression grid – also called a master or template – can accommodate a specified
number of t plates. The printing process is as follows.

1. Compose an impression grid of t plates (some of themmay be identical), and make a certain number of imprints with it.
Each imprint produces one large printed sheet of paper which, once properly cut into t parts, yields t copies.

2. Repeat step 1 until all the required copies are made.

From the second grid on, each grid is composed by replacing an arbitrary number of plates from the previous grid. The
replaced plates are automatically destroyed and therefore cannot be reused.

The printing cost comes from three fixed costs: C1 for printing one sheet, C2 for composing one impression grid (or grid,
for short), and C3 for producing one plate. Thus, the problem consists in determining the number of grids, the composition
of each grid (which plates?), and the number of imprints made with each grid, so as to fulfill the copies’ requirement at
minimum total cost.

∗ Corresponding author. Tel.: +52 777 3291721; fax: +52 777 3291722.
E-mail addresses: davidr@matcuer.unam.mx (D. Romero), falonso@matcuer.unam.mx (F. Alonso-Pecina).

1572-5286/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2011.10.002

http://dx.doi.org/10.1016/j.disopt.2011.10.002
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:davidr@matcuer.unam.mx
mailto:falonso@matcuer.unam.mx
http://dx.doi.org/10.1016/j.disopt.2011.10.002

18 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

Example. Let m = 5 be the number of covers, t = 4 the grid size, and d̃ = (3200, 2500, 3000, 1400, 2050) the
requirements vector, for a total of 12150 copies. Suppose a grid is described by a set {a1, a2, a3, a4}, where aj ∈ {1, . . . , 5}
for j = 1, . . . , 4, are the plates identification. A solution satisfying the requirements with grids {2, 4, 3, 3}, {2, 5, 1, 1}, and
{4, 5, 3, 3}, could be: print the first grid 1000 times. Compose the second grid from the first grid by replacing the two plates
of cover 3 by two plates of cover 1, and the only plate of cover 4 by one plate of cover 5; print the second grid 1600 times.
Finally, print 500 times the third grid. Thus, 1000+ 1600+ 500 = 3100 imprints are made, 4× 3100 = 12 400 copies are
produced, and ten plates are needed; this yields 3100C1+ 3C2+ 10C3 total cost and 12 400− 12 150 = 250 wasted copies,
around 2% of wastage.

Note that a better solution (although not necessarily optimal, as this depends of course upon the relationships among
costs C1, C2, C3) can immediately be obtained by reversing the order in which grids 2 and 3 are produced, which leads to
eight needed plates instead of ten.

The described combinatorial optimization problem was encountered in a Mexican printing shop in 1972, with typical
values: m = 100, 12 ≤ t ≤ 25, 10 000 ≤ di ≤ 100 000, C2 = 3 000C1, C3 = 50C1. Since then and with the exception
of [1], all known reported investigations on the subject disregard the cost C3 for producing plates; this will be our approach
in the sequel, as it reflects better the realm of modern printing technologies. However, at the conclusion we will suggest a
procedure to adopt in case C3 is not immaterial.

This problem bears some similarity to the cutting stock, the bin packing, and the multiset multicover problems (see for
example [2,3]). Although some special cases can be polynomially solved as shown below and in [4], in general this problem
is strongly NP-hard, as it has been recently established by Ekici et al. [4]. A heuristic centered on the column generation
technique of linear programming was outlined more than 30 years ago by Balinski [5], and seemed a good approach to
solving it but, unfortunately, it was afterward found to lead to nothing.

To the best of our knowledge, besides some graduate thesis [6–9,1]1 only a handful of papers have been internationally
published on the subject. Teghem et al. [10] dealt with a situation originating in a Belgian printing shop, and proposed
a solution method that combines the simulated annealing metaheuristic with linear programming techniques. Simulated
annealingwas also reported by Yiu et al. [13] as a successful heuristic to approximate the optimal solutionwhen the number
of grids is prescribed. An approach through genetic algorithms described by Elaoud et al. [11] appeared to improve on the
results obtained in [10]. Mohan et al. [14] proposed ad hoc heuristics for a version of the problem that incorporates lower
and upper bounds on the number of imprints made by each grid, and in case the number of grids is prescribed. Ekici et al. [4]
designed and successfully applied two specific heuristics to 32 real-world instances of an American printing company,
including onewith asmuch as 2086 distinct covers. Tuyttens andVandaele [12] designed and implemented a greedy random
adaptative search procedure (GRASP) that was proved to outperform previously proposed simulated annealing and genetic
algorithms for several instances with t = 4. Also, there is the problem that has arisen in a French printing shop [15], with
typical values: 4 ≤ m ≤ 18, 5 ≤ t ≤ 12, 10 000 ≤ di ≤ 100 000, C2 = 10 000C1.

This paper is organized as follows. Section 2 provides a mathematical formulation of the problem having an exponential
number of variables. In Section 3we describe our approach to the problem through both exact and ad hoc heuristicmethods.
Section 4 is devoted to computational experiments: the proposed methods were evaluated both by comparing our results
with those known to us on specific instances, and by extensive testing on randomly generated instances. Finally, in Section 5,
together with some final comments, we present a procedure that can be used in case the cost C3 of producing plates is not
immaterial.

2. Mathematical formulation

Recall M = {1, . . . ,m} is the set of covers, and let N = {1, . . . , n} be the set of all possible impression grids, with
n =


m+t−1

t


. Consider the integer, non-negative m-by-n matrix A = {aij} where aij represents the number of plates of

cover i in grid j, for (i, j) ∈ M × N . Obviously
m

i=1 aij = t , for j ∈ N .
Thus the cover printing problem – also referred to as advertisement printing, label printing or job splitting problem

(see [14,13,4], respectively) – can be formulated as one of integer nonlinear programming:

P =



(min) C1


j∈N

xj + C2


j∈N

yj

subject to

j∈N

xj aij ≥ di i ∈ M, (1)

xj(1− yj) = 0 j ∈ N, (2)
xj ≥ 0 and integer j ∈ N, (3)
yj ∈ { 0, 1 } j ∈ N. (4)

where xj and yj, for j ∈ N , are the decision variables, with yj = 1 if and only if grid j is selected, xj being the number
of its imprints. This formulation, although compact, presents a big challenge: not only are the non-linearity constraints (2)

1 Graduate thesis [6–9] are cited in [10–12], and were not available to the authors.

D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28 19

togetherwith the integrity constraints (3) and (4) very difficult to dealwith, but the number of variables can be tremendously
large, even for relatively small values ofm and t . In Section 3 we present our approach to Problem P .

Remark 1. There is no optimal solution to P employing more than m grids, and there is no feasible solution to P with less
than ⌈m/t⌉ grids.

3. Algorithms

This section deals with the algorithms we developed to approach the cover printing problem. First, in Section 3.1, we
consider the cover printing problem with prescribed number of grids, for which we describe Algorithm G, an (exponential)
approach to solving it. To find optimal or nearly optimal solutions to small instances of Problem P we propose Algorithm E
in Section 3.2. Then, Section 3.3 is devoted to explain Algorithm F , an exact, polynomial procedure to solve P when both
the number of grids is prescribed to two, and m ∈ {2t, 2t − 1, 2t − 2}. Finally, we present Algorithm H in Section 3.4,
designed to heuristically approach any instance of Problem P , which uses Algorithm F as a subroutine.

3.1. The cover printing problem with k grids

When the number of grids is prescribed to k the cover printing problem can be stated as

P(k) =



(min)

j∈K

xj

subject to

j∈K

xj bij ≥ di i ∈ M
i∈M

bij = t, j ∈ K

xj ≥ 1 and integer j ∈ K
bij ≥ 0 and integer (i, j) ∈ M × K

where K = {1, . . . , k}. Here, the decision variables are both xj for j ∈ K , and the m-by-k ‘‘composition matrix’’ B = {bij}.
Problem P(k) seems as difficult as Problem P; however, when m and k are small enough an implicit enumeration schema
can be devised to solve it.

Clearly, if a feasible solution to P(k) comprises amatrix B and some k-vector, then B belongs to the setΩ ofm-by-k integer
non-negative matrices {bij} with


i∈M bij = t for j ∈ K , and


j∈K bij ≠ 0 for i ∈ M . Conversely, every B ∈ Ω comprises

part of a feasible solution to P(k). Furthermore, for symmetry reasons we can restrict our search to the subsetΩ ′ of matrices
in Ω whose columns are in lexicographic descending order.2Algorithm G below incorporates this schema; any subroutine
implementing efficiently the Simplex method can be used in step 1(a).
Algorithm G

1. For each B ∈ Ω ′:
(a) Solve the linear programming problem L(B) arising from P(k) when B

is assumed constant, and xj for j ∈ K are the decision variables.
(b) Set z(B)←


j∈K ⌈x

∗

j (B)⌉, where (x∗1(B), . . . , x
∗

k(B)) denotes an
optimal solution to L(B).

2. Form a solution to P(k) with B∗ ∈ Ω ′ and (⌈x∗1(B
∗)⌉, . . . , ⌈x∗k(B

∗)⌉),
such that B∗ satisfies z(B∗) = minB∈Ω ′ {z(B)}.

The size of Ω ′ is exponential in m (we assume k ≤ m ≤ kt). To see this consider first any positive, integer vector
(v1, . . . , vm) such that

m
i=1 vi = kt; then, as established by a more general result (see for instance [16]), m!

(m−k+1)! is a lower
bound on the number of non-negative, integer m-by-k matrices where row i sums up to vi, for i = 1, . . . ,m, and each
column sums up to t . Furthermore,


kt−1
m−1


being the number of positive, integer m-vectors whose entries sum up to kt we

get |Ω ′| ≥ m!
(m−k+1)!


kt−1
m−1


. A trite calculation shows that this figure is exponential inm.

Observe that when the entries d1, . . . , dm are large enough – as usually occurs in practice – Algorithm G indeed produces
optimal or near optimal solutions.

3.2. A procedure for small instances of Problem P

AlgorithmG of Section 3.1 serves as a basis for Algorithm E – see below –, which produces a solution S∗ to Problem P . The
rationale of Algorithm E comes from both Remark 1 and our belief that for most instances of the cover printing problem the

2 For vectors ū = (u1, . . . , um) and v̄ = (v1, . . . , vm), vector ū is lexicographically greater than v̄ if there is and index ı̂ such that uı̂ > vı̂ , and ui = vi for
every i ∈ {1, . . . , ı̂− 1}.

20 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

cost function f (k) = kC2 + z∗(k)C1 has a single minimum, where k is the number of grids, and z∗(k) is the value of the true
optimal solution to P(k). In view that Algorithm E has exponential computational complexity – inherited from Algorithm G
– its usefulness is limited to approach very small instances of P .
Algorithm E
k← ⌈m/t⌉; C∗ ←∞;
Repeat

Solve P(k) with Algorithm G, yielding a solution S(k) = (x∗1, . . . , x
∗

k);
C(k)← C2k+ C1

k
j=1 x

∗

j ;
If C(k) < C∗ then
C∗ ← C(k); S∗ ← S(k); k← k+ 1;

Else
k← m+ 1;

Until k > m.

3.3. A polynomial, exact algorithm for a case of P(2)

When the number of grids is prescribed to two, Problem P becomes

P(2) =


(min) x1 + x2
subject to x1 bi1 + x2 bi2 ≥ di i ∈ M

i∈M

bij = t, j = 1, 2

xj ≥ 0 and integer j = 1, 2
bij ≥ 0 and integer i ∈ M; j = 1, 2

where the decision variables are x1, x2, and the m-by-2 composition matrix B = {bij}. This particular case of Problem P(k)
can be solved to optimality with little (polynomial) effort in casem ∈ {2t, 2t − 1, 2t − 2}, as we show now.

Remark 2. Without loss of generality assume d1 ≥ · · · ≥ dm and x1 ≥ x2. Then, to solve Problem P(2) we can disregard
feasible solutions where, for i < k, either bi1 = bk1 and bi2 < bk2, or bi1 < bk1 and bi2 = bk2, or bi1 + bi2 = bk1 + bk2 and
bi1 < bk1.

In casem = 2 t , from Remark 2 the only compositionmatrix to consider – denoted B0 – is the transpose of

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1


.

Thus Problem P(2) is optimally solved with B0 and the optimal solution of
min x1 + x2
subject to 1x1 + 0x2 ≥ di (i = 1, . . . , t)

0x1 + 1x2 ≥ di (i = t + 1, . . . ,m)
x1, x2 ≥ 0 and integer,

namely, x∗1 = d1, x∗2 = dt+1.
Now take cases m = 2 t − 1 and m = 2 t − 2. From Remark 2 the only composition matrices worth consideration are

shown in Table 1, denoted B1, . . . , B4 for casem = 2 t − 1, and B5, . . . , B18 for casem = 2 t − 2. If ℓ indexes these matrices,
then [x∗1(ℓ), x∗2(ℓ)] denotes the (easily found) optimal solution to their corresponding integer programming problems.

Thus, from the above considerations an exact procedure to solve P(2) in casem ∈ {2t, 2t − 1, 2t − 2} can be readily be
built as
Algorithm F
Ifm= 2 t then

x∗1 ← d1; x∗2 ← dt+1; B∗ ← B0;
EndIf;
Ifm = 2 t − 1 then

Z(ℓ)← x∗1(ℓ)+ x∗2(ℓ), for ℓ = 1, . . . , 4;
Let ℓ∗∈ {1, 2, 3, 4} such that Z(ℓ∗) = min{Z(1), . . . , Z(4)};
x∗1 ← x∗1(ℓ

∗); x∗2 ← x∗2(ℓ
∗); B∗ ← Bℓ∗ ;

EndIf;
Ifm = 2 t − 2 then

Z(ℓ)← x∗1(ℓ)+ x∗2(ℓ), for ℓ = 5, . . . , 18;
Let ℓ∗∈ {5, . . . , 18} such that Z(ℓ∗) = min{Z(5), . . . , Z(18)};
x∗1 ← x∗1(ℓ

∗); x∗2 ← x∗2(ℓ
∗); B∗ ← Bℓ∗ ;

EndIf.

3.4. Algorithm H

This section presents our main contribution to the subject, namely, an ad hoc heuristic to solve Problem P . Let Θ be
the set of feasible solutions to P . For S ∈ Θ the reals C(S) and π(S) henceforth denote its total cost and the number of

D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28 21

Table 1
The m-by-2 composition matrices for cases m = 2 t − 1 (above) and m = 2 t − 2 (below). Their corresponding optimal solutions x∗1(ℓ), x

∗

2(ℓ) are also
shown.

B1 B2 B3 B4
1 2 0 1 1 0 2 1 0
2 1 0 1 0 1 0 1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

t − 1 1 0 1 0 1 0 1 0
t 0 1 1 0 1 0 1 0
t + 1 0 1 0 1 1 0 0 2
t + 2 0 1 0 1 0 1 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m 0 1 0 1 0 1 0 1
x∗1(ℓ) max{⌈ d1/2 ⌉, d2} d2 d2 d1
x∗2(ℓ) dt max{d1 − d2, dt+1} max{⌈ d1/2 ⌉, dt } max{⌈dt+1/2 ⌉, dt+2}

B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18
1 3 0 2 1 1 2 0 3 2 0 2 0 2 0 1 1 1 1 0 2 2 0 1 1 1 0 1 0
2 1 0 1 0 1 0 1 0 2 0 1 1 0 2 1 1 0 2 0 2 1 0 1 0 1 0 1 0
3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
.
.
.

.

.

.

t − 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
t − 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
t 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 2 1 0 1 0 1 0
t + 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 2 0 3 0 2
t + 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 2
t + 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
.
.
.

.

.

.

m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

ℓ x∗1(ℓ) x∗2(ℓ)
5 max{⌈d1/3⌉, d2} dt−1
6 max{d2, (d1 − dt)/2} dt
7 d2 max{dt+1, (d1 − d2)/2}
8 d2 max{⌈d1/3⌉, dt+2}
9 max{⌈d1/2⌉, d3} dt−1

10 max{⌈d1/2⌉, d2 − dt , d3} dt
11 max{⌈d1/2⌉, d3} max{⌈d2/2⌉, dt+1}
12 d3 max{d1 − d3, dt+1}
13 d3 max{d1 − d3, ⌈d2/2⌉, dt+2}
14 d3 max{⌈d1/2⌉, dt+3}
15 max{⌈d1/2⌉, d2} max{⌈dt/2⌉, dt+1}
16 d2 max{d1 − d2, ⌈dt+1/2⌉, dt+2}
17 d1 max{⌈dt+1/3⌉, dt+2}
18 d1 max{⌈dt+1/2⌉, dt+3}

grids forming it, respectively, and δ(S) = maxi δi(S), where δi(S) ≥ 0 is the waste of cover i, for i = 1, . . . ,m. Also, let
Θ(ê) = {S ∈ Θ | δ(S) ≤ ê} for any given integer ê. Without loss of generality d1 ≥ · · · ≥ dm is assumed throughout.
Let T = {1, . . . , t} be the set of grid sites where plates can be accommodated. For clarity sake in the following algorithms’
description we omit unnecessary technical details.

Algorithm H below heuristically produces a solution S∗ ∈ Θ initialized as the solution S◦, which is formed withm grids,
where grid i is composed by t plates of cover i and xi = ⌈di/t⌉, for i = 1, . . . ,m. Also, ê is the maximum paper wastage
allowed for any cover; initialized as d1 the value of ê is gradually reduced to zero at every iteration of the outer loop.

Algorithm H
S∗ ← S◦; ê← d1;
While Θ(ê) ≠ ∅ do
(*) set S ← min{S1, S2}, where S1 (respectively, S2) is the heuristic solution to

min
S∈Θ(ê)

π(S) obtained with Algorithm H1 (respectively, H2);

While there are two grids in S such that:
when excluded from S the number of covers with unsatisfied
demand is in the range [2 t − 2, 2 t], and
when replaced by the grids obtained through Algorithm F

of Section 3.2 a solution S̄ arises with C(S̄) < C(S) do
S ← S̄

EndWhile;

22 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

If (C(S) < C(S∗)) then S∗ ← S;
ê← δ(S)− 1;

EndWhile.
The inner loop of Algorithm H makes local improvements to solution S through Algorithm F , whenever possible. To

perform instruction (∗), the core of H , we propose the heuristic procedures H1 and H2 below.
For any given value of ê, Algorithm H1 constructs a solution S1 ∈ Θ(ê) with, say, γ grids, where grid j is to be printed hj

times, for j = 1, . . . , γ , with a strategy that aims to minimize γ . Instructions 3 to 15 compose the j-th grid and determine
hj by considering the updated remaining demand e1, . . . , em, once it is assumed that the composed grids 1, . . . , j− 1 have
been printed h1, . . . , hj−1 times, respectively. This is done in two steps.

The first step computes hj (instructions 4, 5) as the maximum number of imprints that any possible grid can produce
such that the paper wastage (if any) of each cover does not exceed ê; namely, hj is the optimal solution value of

max ξ
subject to aiξ ≤ ei + ê (i = 1, . . . ,m)

m
i=1

ai = t

ξ, ai ≥ 0 and integer

where ai, for i = 1, . . . ,m, are variables too. The second step composes a grid which, once printed ξ times, yields with the
aid of Algorithm L below a maximum number of covers whose remaining demand is completely satisfied (instructions 7 to
10), and at the same time aims to level the remaining demand (instructions 11 to 15). Along thewhole process the remaining
demand is continuously updated within vector (e1, . . . , em).

Algorithm H1
(1) (e1, . . . , em)← (d1, . . . , dm); j← 0;
(2) Repeat
(3) j← j+ 1; set Φ ← { i ∈ M : ei > 0 };
(4) find (i∗, k∗) ∈ Φ × T such that

⌈ ei∗/k∗ ⌉ = max(i,k)∈Φ×T { ⌈ ei/k ⌉ :


v∈Φ⌊ (ev + ê)/⌈ ei/k ⌉ ⌋ ≥ t };
(5) hj ← ⌈ ei∗/k∗ ⌉;
(6) r ← i∗; θ ← t;
(7) While r ≤ m and θ > 0 do
(8) call Algorithm L;
(9) r ← r + 1;
(10) EndWhile;
(11) While θ > 0 do
(12) find an index s ∈ Φ such that es = maxi∈Φ{ei};
(13) put one plate of cover s in grid j;
(14) es ← es − hj; θ ← θ − 1;
(15) EndWhile;
(16) sort vector (e1, . . . , em) in non increasing order, and

re-index the covers accordingly;
(17) Until ei ≤ 0 for i = 1, . . . ,m;
(18) save in S1 the solution found;

Algorithm L

Put µ = min{ ⌊ er+ê
hj
⌋, θ } plates of cover r in grid j;

er ← er − µhj; θ ← θ − µ.
When in H1 we replace S1 with S2, and instructions 7–15 are replaced with

call Algorithm L;
r ← 1;
While r ≤ m and θ > 0 do

call Algorithm L;
r ← r + 1;

EndWhile;
procedure H2 arises which, considering the covers in non increasing order of their remaining demand, simply puts in each
grid as many plates as possible. The outer loop of heuristics H and H1 is performed at most d1 and m times, respectively.
Instruction 4 ofH1 takes at mostm2t log(mt) time. The total number of times that the two inner loops ofH1 are performed
is at mostm. Instruction 12 ofH1 takes log(mt) time. In regard to heuristicH2, a similar analysis of time can bemade. Thus,
it is not difficult to see that an efficient implementation of H yields O(d1m3t log(mt)) as its computational complexity. On
the other hand, in our experimentswehave observed that, in general, the average required computer time is very satisfactory
(see Section 4.3).

D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28 23

4. Numerical results

The procedures described in Section 3 were implemented on a computer with Xeon 3.4 GHz processor, 2 GB RAM,
and Microsoft Visual Studio 2005 compiler. To investigate the efficiency of algorithms E and H of Sections 3.2 and 3.4,
respectively, we conducted three experiments.

In the first experiment – see Section 4.1 – we tested our algorithms on every available instance considered elsewhere,
and on one large instance randomly generated by us. Algorithm E was applied to eight small instances (m ≤ 15) obtaining
their optimal solutions, most of them having been previously found. AlgorithmH was used on instances whose sizemade it
impractical to apply Algorithm E ; when compared with the best previous results of 79 instances its solutions yielded lower
cost in 76 of them, equal in one, and higher in only two instances. Moreover, we applied our approach to instances where
no grid cost is provided, and instead of looking to minimize cost it is sought to minimize paper wastage when the number
of grids is fixed; Algorithm H improved on the solution of the six considered cases for m = 18 and 22. Unfortunately, we
could not test our procedures on the 32 real-world instances solved in [4], for their corresponding data were not published.

In the second experiment Algorithm H was applied to 60 instances constructed by us for which we could previously
establish true global optima as explained in Section 4.2. When the output of Algorithm H was compared with these known
optima it yielded errors from zero to 8.5%, with an overall average error of 3.9%.

Finally, the third experimentwas designed to evaluate the performance of AlgorithmH from the point of viewof required
computer time. We did extensive testing on randomly generated instances of varying size; the results are presented in
Section 4.3.

The data for all instances, as well as the best known results and their source can be found in the website
www.matcuer.unam.mx/~davidr/cpp.html.

4.1. Testing on specific instances

We started our experiments with instances I001–I006, named P1–P6 in [12], respectively. For I001–I004, proposed by
Teghemet al. [10]withm = 3, 4, 5, 8, Algorithm E found the true globalminima that had been obtained as such in [12], each
in less than three seconds of CPU time. With 40 CPUminutes of this exact algorithmwe could claim the global optimality of
the best reported solutions [12] of I005 (proposed in [9] with m = 12), and I006 (proposed in [11] with m = 15). Besides,
heuristic H was also able to find the optimum of I006.

Proceeding further, we considered the ten instances I007–I016 shown in Tables 2 and 3. Instances I007–I009 correspond
to realworld situations [15]; instances I010 [14] and I011–I012 [13] slightly differ from the others as no grid cost is provided,
and instead of looking tominimize cost it is sought tominimize paperwastagewhen the number of grids is fixed; I013–I015
were proposed by Tuyttens and Vandaele [12] as P7–P9, respectively; finally, I016 reflects a typical situation in a Mexican
printing shop, where cover demand was randomly generated by us with uniform distribution.

Our results for I007–I016 are displayed in Tables 4, 5, and Fig. 1. The best previous solutions for I007–I008, I010,
I011–I012, and I013–I015 come from [15,14,13], and [12], respectively. With Algorithm E and Algorithm H we obtained
the optimal solution of I007, improving on previous results. Also, this exact procedure was applied to solve I010 when the
number of grids is fixed to two and three, allowing us to claim the optimality of the solution proposed in [14] for two grids,
and yielding lower paper wastage than Mohan et al. [14] for three grids. On the other hand, Algorithm H was applied to
solve I008–I009 and I011–I016. For instances I011–I012 we considered three cases in each, depending on the prescribed
number of grids. Apart from I013 this procedure improved on all previous solutions, although we offer no guarantee of
global optimality. For instances I009 and I016 we had no others’ results to compare with. In regard to the running time of
Algorithm H , it took 250 s for instance I016, and an average of 1.5 s for instances I001 to I015, with a maximum of 3 s.

Finally, Algorithm H improved on previous results of 74 out of 75 instances (T001–T075) randomly generated and
heuristically solved by Tuyttens and Vandaele [12] withm = 30, 40, 50, and five distinct grid costs.

(see www.matcuer.unam.mx/~davidr/coverprinting/Datasets.html.)

4.2. Testing on random instances with known global minimum

To further evaluate the quality of the solutions obtained by AlgorithmH we tested it on 60 non trivial instances randomly
generated by us (E001–E060), and whose true global optima could be previously determined.

Specifically, taking m = 13 and t = 6 as a first case (denote it [13, 6]) consider an instance of Problem P with some
positive C1 and C2, and vector demand D = AT

× X , where

A =

1 0 0 1 0 0 1 0 0 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 1 1
0 0 1 0 0 1 0 0 1 1 0 1 1


and X is an arbitrary, positive integer column 3-vector. Clearly, an optimal solution to P in this case is composed bymatrix AT

and vectorX because: (1) it yields zerowastage, and (2) fromRemark 1 there is no feasible solutionwith less than ⌈13/6⌉ = 3
grids.

http://www.matcuer.unam.mx/~davidr/cpp.html
http://www.matcuer.unam.mx/~davidr/coverprinting/Datasets.html

24 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

Table 2
Data of instances I007–I012 and I016. Instances I007–I009, I010, and I011–I012, come from [15,14,13], respectively.

Instance I007 Instance I008 Instance I009
m = 9, t = 8 m = 17, t = 8 m = 18, t = 7
C1 = 0.07, C2 = 700 C1 = 0.07, C2 = 700 C1 = 0.07, C2 = 700

d1 40004 d1 45340 d10 70543 d1 83672 d10 39045
d2 81721 d2 32779 d11 59686 d2 47774 d11 21944
d3 38569 d3 70801 d12 51215 d3 14251 d12 41029
d4 20609 d4 45543 d13 24190 d4 17441 d13 53671
d5 30183 d5 92427 d14 98958 d5 53155 d14 34494
d6 58469 d6 11920 d15 50953 d6 75953 d15 76827
d7 19145 d7 33181 d16 62135 d7 83543 d16 23670
d8 75308 d8 69669 d17 56990 d8 37061 d17 13956
d9 40380 d9 92921 d18 d9 25687 d18 49478

Instance Instance I016
I010 I011 I012 m = 100, t = 25, C1 = 1, C2 = 3 000

m 6 18 22 i di i di i di i di
t 4 14 15

d1 20900 2200 600 1 36547 26 54394 51 89425 76 18800
d2 21000 200 700 2 80425 27 57847 52 76785 77 35898
d3 23700 500 2350 3 39381 28 89961 53 76552 78 78002
d4 25600 100 850 4 79320 29 66892 54 35401 79 18089
d5 31800 250 625 5 48363 30 79183 55 78345 80 83863
d6 32300 550 800 6 41787 31 39345 56 44204 81 17809
d7 550 4100 7 83482 32 13900 57 78032 82 49055
d8 550 850 8 46624 33 41644 58 30935 83 90389
d9 2500 800 9 15175 34 69520 59 58240 84 73193
d10 2450 1025 10 32613 35 71594 60 35742 85 23338
d11 350 4050 11 54878 36 36214 61 97577 86 45286
d12 1150 3300 12 97767 37 41004 62 86333 87 83108
d13 3850 950 13 34822 38 42163 63 70465 88 91194
d14 1400 1050 14 57218 39 92595 64 62379 89 69619
d15 2700 5300 15 82188 40 63077 65 12112 90 59283
d16 1400 3750 16 97270 41 60844 66 76195 91 21522
d17 3050 6300 17 77661 42 11310 67 40002 92 97951
d18 5550 6275 18 27727 43 99346 68 37733 93 33684
d19 2275 19 14386 44 29716 69 70105 94 63074
d20 3650 20 77071 45 21833 70 52178 95 55161
d21 2650 21 96270 46 90881 71 75791 96 33036
d22 4850 22 76255 47 77269 72 58319 97 57311

23 70613 48 33349 73 17042 98 64867
24 98401 49 56869 74 87728 99 73833
25 46031 50 93518 75 92716 100 78716

To construct more instances of the cover printing problem with known optimal solution take [25, 8] as a second case,
and reason as in case [13, 6] considering now the 4-by-25 matrix1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1

 ,

thus obtaining an optimal solution with four grids. Note that each matrix considered in the two described cases has t/2
rows and t(t − 2)/2 + 1 columns, containing t − 3 identity matrices of size t/2, one matrix with two 1’s per row and
column, and one column composed by ones. Continuing further, with the previous rationale we can build up matrices for
t = 10, 12, 14, 16, to get cases [41, 10], [61, 12], [85, 14], and [113, 16], respectively, establishing for each an optimal
solution to the cover printing problem with t/2 grids.

Our test consisted in applying Algorithm H to solve ten randomly generated instances (the entries of vector X were
generated with uniform distribution in the range [10 000, 10 000+ 2500× t]), with C1 = 1 and C2 = 3000, for each of the
six mentioned cases, yielding 60 instances, and then measuring the error of the obtained solutions when compared with
the known optima. More precisely, letting z∗ij (respectively, z

H
ij) denote the optimal solution value (respectively, the solution

value obtained by Algorithm H) that corresponds to the i-th instance generated for case j (i = 1, . . . , 10; j = 1, . . . , 6),
we computed ρ(i, j) = 100 × (zHij − z∗ij)/z

∗

ij , as well as ρmin(j) = mini=1,...,10{ρ(i, j)}, ρmax(j) = maxi=1,...,10{ρ(i, j)}, and
ρ̂(j) = 1

10

10
i=1 ρ(i, j), for j = 1, . . . , 6. Our results are displayed in Table 6. We consider all these instances as difficult

D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28 25

Table 3
Data for instances I013–I015 proposed in [12] as P7–P9, respectively.

Instance I013 Instance I014 Instance I015
m = 30, t = 4 m = 40, t = 4 m = 50, t = 4
C1 = 13.44, C2 = 18 676 C1 = 13.44, C2 = 18 676 C1 = 13.44, C2 = 18 676
i di i di i di i di i di i di

1 1000 26 26000 1 700 26 16100 1 750 26 32700
2 1500 27 26000 2 1100 27 19000 2 1000 27 34300
3 2500 28 27000 3 1800 28 22000 3 1450 28 36000
4 5000 29 28000 4 2650 29 25000 4 2900 29 37000
5 6000 30 30000 5 3000 30 26700 5 3000 30 38900
6 7500 6 4000 31 27000 6 4000 31 39000
7 9000 7 4200 32 27000 7 4500 32 43000
8 9000 8 4300 33 29000 8 6000 33 43500
9 10000 9 5000 34 30500 9 7800 34 50000

10 10500 10 5000 35 32500 10 10000 35 51000
11 11000 11 6300 36 37000 11 10000 36 52100
12 13000 12 8000 37 41500 12 11000 37 55500
13 13500 13 9100 38 45500 13 11900 38 57650
14 14000 14 10000 39 47000 14 14000 39 60000
15 15000 15 10000 40 50000 15 16050 40 61700
16 15000 16 10700 16 19000 41 67000
17 16000 17 11300 17 21000 42 67000
18 17000 18 12000 18 21000 43 69000
19 18000 19 12000 19 22400 44 70500
20 19000 20 12900 20 25500 45 72300
21 20000 21 13000 21 26350 46 77000
22 20000 22 13000 22 28000 47 80000
23 22000 23 13500 23 28300 48 85500
24 22000 24 14000 24 30000 49 90000
25 23000 25 15000 25 30000 50 95000

Fig. 1. Solution of Algorithm H for instances I013–I015, with 11, 14, and 19 grids, respectively.

because not only their optimal solutions yield zero paper wastage, and they do not have feasible solution with less than t/2
grids, but we could not devise a simple procedure to solve them.

4.3. Evaluating the needed computer time

For each of twelve selected combinations of m ∈ {10, 25, 50, 100} and t ∈ {6, 8, 12, 16, 20, 25}, we created
ten instances where the demand of each cover was randomly generated with uniform distribution in the range [10000,
100000]. Then we computed the running time of Algorithm H for each of these 120 instances (R001–R120), with C1 = 1

26 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

Table 4
Solutions of Algorithm H for instances I007–I012. Daggers indicate the best previous results, which come from [15,14,13], for instances I007–I008, I010,
and I011–I012, respectively.

Instance Solution value Grid Imprints Cover
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

I007 5283.53 1 40861 1 2 1 0 1 0 0 2 1
Ď5492.83 2 14618 0 0 0 2 0 4 2 0 0

I008
11475.52 1 70801 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1
Ď12295.22 2 51215 1 1 0 1 0 0 1 0 0 0 0 1 0 2 1 0 0

3 11920 0 0 0 0 2 1 0 0 2 0 0 0 3 0 0 0 0

I009

1 53671 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1
11191.60 2 34494 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0

3 24589 2 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0
4 7126 0 0 2 0 0 0 0 1 0 1 0 1 0 0 0 0 2 0

I010with 3 grids
1.09% 1 21000 1 1 0 0 1 1

2 5450 0 0 2 0 2 0
Ď2.64% 3 12800 0 0 1 2 0 1

I011with 3 grids
5.119% 1 1400 1 0 0 0 0 0 0 0 1 1 0 0 2 0 2 1 2 4

2 575 1 0 0 0 0 1 1 1 2 2 0 2 2 2 0 0 0 0
Ď5.854% 3 225 1 1 3 1 2 0 0 0 0 0 2 0 0 2 0 0 2 0

I011with 4 grids

0.771% 1 1400 1 0 0 0 0 0 0 0 1 1 0 0 2 1 1 1 2 4
2 550 1 0 0 0 0 1 1 1 2 2 0 2 2 0 2 0 0 0

Ď3.243% 3 125 2 0 4 0 2 0 0 0 0 0 3 0 0 0 1 0 2 0
4 034 0 6 0 3 0 0 0 0 0 0 0 2 0 0 3 0 0 0

I011with 5 grids

1 1388 1 0 0 0 0 0 0 0 1 1 0 0 2 1 1 1 2 4
0.437% 2 537 1 0 0 0 0 1 1 1 2 2 0 2 2 0 2 0 0 0

3 125 2 0 4 0 2 0 0 0 0 0 3 0 0 0 1 0 2 0
Ď1.559% 4 40 0 5 0 3 0 0 0 0 1 0 0 2 0 0 3 0 0 0

5 12 3 0 0 0 0 2 2 2 0 0 0 0 0 2 0 1 2 0

I012with 3 grids
6.392% 1 2650 0 0 1 0 0 0 1 0 0 0 1 1 0 0 2 1 2 2 0 1 1 2

2 1138 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 2 1 0 0
Ď8.096% 3 262 3 3 0 0 3 0 2 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

I012with 4 grids

2.452% 1 2425 0 0 1 0 0 0 1 0 0 0 1 1 0 0 2 1 2 2 0 1 1 2
2 950 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 2 1 0 0

Ď4.235% 3 400 1 2 0 0 2 0 2 0 2 0 2 0 0 0 1 1 1 1 0 0 0 0
4 125 2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 3 3 2 0

I012with 5 grids

1 2350 0 0 1 0 0 0 1 0 0 0 1 1 0 0 2 1 2 2 0 1 1 2
0.482% 2 875 0 0 0 1 0 0 2 1 0 1 1 1 1 1 0 1 1 1 2 1 0 0

3 400 1 1 0 0 1 2 0 0 2 0 2 0 0 0 1 1 1 1 1 1 0 0
Ď2.468% 4 150 1 2 0 0 1 0 0 0 0 1 0 0 0 1 1 0 2 2 1 0 2 1

5 50 1 0 0 0 2 0 0 0 0 0 1 2 2 1 1 3 1 0 0 1 0 0

and C2 = 3000, obtaining reasonable results. Table 7 shows the minimum, average, and maximum CPU time needed by
Algorithm H when solving the ten instances for each selected combination.

5. Discussion

For the cover printing problem– inwhich the cost for producing plates is disregarded –wehave proposed amathematical
programming formulation in Section 2, and several solution procedures in Section 3. These methods were tested with all
specific instances known to us as well as with randomly generated instances of size up to m = 113. The results shown in
Section 4 indicate a clear superiority of our approach over those proposed elsewhere, whenever we had data to compare
with. We hope that our investigation will be an incentive to discover better discrete optimization techniques for this
challenging problem.

One final word. In case we want to solve the cover printing problem taking into account the cost of plates we propose
the following procedure: first use themethods of Section 3 to solve the problemwithout the cost of plates, and denote K the
set of grids obtained. Then form a complete non directed graph G whose set of vertices corresponds to K , and for x, y ∈ K
the length of edge (x, y) is the number of plates that one would need to replace in grid x to obtain grid y. Finally, process the
grids in K in the order b̃ = (b1, b2, . . . , b|K |), where b̃ is a Hamiltonian path of minimum length in graph G. This procedure
minimizes the number of required plates – and hence the cost – once the set of grids and number of imprints has been
found. Although no polynomial algorithm is known to find an optimal Hamiltonian path, a branch-and-bound technique
would yield a solution in small time for the typical instance size encountered in printing shops.

D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28 27

Table 5
Solution of Algorithm H for instance I016, yielding 8 grids, 2.40% wastage, and 265918 total cost.

Grid 1 2 3 4 5 6 7 8
imprints 82188 63077 41004 18800 17315 12135 5540 1859

Grid Grid Grid Grid
i 1 2 3 4 5 6 7 8 i 1 2 3 4 5 6 7 8 i 1 2 3 4 5 6 7 8 i 1 2 3 4 5 6 7 8

1 0 0 0 2 0 0 0 0 26 0 0 1 0 0 1 0 1 51 1 0 0 0 0 0 1 1 76 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 27 0 0 1 0 1 0 0 0 52 0 1 0 0 0 1 0 1 77 0 0 0 2 0 0 0 0
3 0 0 1 0 0 0 0 0 28 1 0 0 0 0 0 2 0 53 0 1 0 0 0 1 0 1 78 0 1 0 0 1 0 0 0
4 1 0 0 0 0 0 0 0 29 0 1 0 0 0 0 1 0 54 0 0 0 2 0 0 0 0 79 0 0 0 1 0 0 0 0
5 0 0 1 0 0 0 1 1 30 1 0 0 0 0 0 0 0 55 0 1 0 0 1 0 0 0 80 1 0 0 0 0 0 0 1
6 0 0 1 0 0 0 0 1 31 0 0 1 0 0 0 0 0 56 0 0 1 0 0 0 1 0 81 0 0 0 0 1 0 0 1
7 1 0 0 0 0 0 0 1 32 0 0 0 0 0 1 0 1 57 0 1 0 0 1 0 0 0 82 0 0 1 0 0 0 2 0
8 0 0 1 0 0 0 1 1 33 0 0 1 0 0 0 0 1 58 0 0 0 1 0 1 0 0 83 1 0 0 0 0 0 2 0
9 0 0 0 0 1 0 0 0 34 0 1 0 0 0 0 1 1 59 0 0 1 0 1 0 0 0 84 0 1 0 0 0 1 0 0

10 0 0 0 1 0 1 0 1 35 0 1 0 0 0 1 0 0 60 0 0 0 2 0 0 0 0 85 0 0 0 1 0 0 1 0
11 0 0 1 0 0 1 0 1 36 0 0 0 2 0 0 0 0 61 1 0 0 0 1 0 0 0 86 0 0 1 0 0 0 1 0
12 1 0 0 0 1 0 0 0 37 0 0 1 0 0 0 0 0 62 1 0 0 0 0 0 1 0 87 1 0 0 0 0 0 0 1
13 0 0 0 2 0 0 0 0 38 0 0 1 0 0 0 0 1 63 0 1 0 0 0 0 1 1 88 1 0 0 0 0 1 0 0
14 0 0 1 0 1 0 0 0 39 1 0 0 0 0 1 0 0 64 0 1 0 0 0 0 0 0 89 0 1 0 0 0 0 1 1
15 1 0 0 0 0 0 0 0 40 0 1 0 0 0 0 0 0 65 0 0 0 0 0 1 0 0 90 0 0 1 1 0 0 0 0
16 1 0 0 0 1 0 0 0 41 0 1 0 0 0 0 0 0 66 0 1 0 0 0 1 0 1 91 0 0 0 1 0 0 1 0
17 0 1 0 0 1 0 0 0 42 0 0 0 0 0 1 0 0 67 0 0 1 0 0 0 0 0 92 1 0 0 0 1 0 0 0
18 0 0 0 1 0 1 0 0 43 1 0 0 0 1 0 0 0 68 0 0 1 0 0 0 0 0 93 0 0 0 1 1 0 0 0
19 0 0 0 0 1 0 0 0 44 0 0 0 1 0 1 0 0 69 0 1 0 0 0 0 1 1 94 0 1 0 0 0 0 0 0
20 0 1 0 0 0 1 0 1 45 0 0 0 1 0 0 1 0 70 0 0 1 0 0 1 0 0 95 0 0 1 0 1 0 0 0
21 1 0 0 0 0 1 1 0 46 1 0 0 0 0 1 0 0 71 0 1 0 0 0 1 0 1 96 0 0 0 1 1 0 0 0
22 0 1 0 0 0 1 0 1 47 0 1 0 0 1 0 0 0 72 0 0 1 0 1 0 0 0 97 0 0 1 0 1 0 0 0
23 0 1 0 0 0 0 2 0 48 0 0 0 1 1 0 0 0 73 0 0 0 0 1 0 0 0 98 0 1 0 0 0 0 0 1
24 1 0 0 0 1 0 0 0 49 0 0 1 0 1 0 0 0 74 1 0 0 0 0 0 1 0 99 0 1 0 0 0 1 0 0
25 0 0 1 0 0 0 1 0 50 1 0 0 0 0 1 0 0 75 1 0 0 0 0 1 0 0 100 1 0 0 0 0 0 0 0

Table 6
Minimum, average, andmaximumerror—ρmin(j), ρ̂(j), andρmax(j), respectively—
of AlgorithmH solutionswith respect to the global optimumof ten random
instances for cases j = 1, . . . , 6. Figures in percent.

j 1 2 3 4 5 6
m 13 25 41 61 85 113
t 6 8 10 12 14 16

ρmin(j) 0.0 0.3 3.3 2.4 0.9 0.9
ρ̂(j) 2.9 5.1 4.8 4.7 3.2 2.9
ρmax(j) 5.9 8.5 6.3 6.6 4.1 3.8

Table 7
Minimum, average, andmaximum time (in seconds, rounded to nearest integer) required by
Algorithm H to solve 10 random instances of 12 selected combinations of t andm.

m 10 10 25 25 25 50 50 50 100 100 100 100
t 6 8 8 12 16 12 16 20 12 16 20 25

min 0 0 0 0 0 9 10 13 87 136 166 210
avg 1 0 1 2 1 20 14 15 119 189 225 270
max 2 1 2 6 2 29 22 20 155 249 320 321

References

[1] L.E. Carrera, Algoritmo para encontrar el óptimo a una simplificación de un problema combinatorio presente en la industria editorial, Graduate Thesis,
Mathematics Department, Cinvestav, Mexico City, 2006 (in Spanish).

[2] G.Wäscher, H. Haussner, H. Schumann, An improved typology of cutting and packing problems, European Journal of Operational Research 183 (2007)
1109–1130.

[3] Q.-S. Hua, Y. Wang, D. Yu, F.C.M. Lau, Dynamic programming based algorithms for set multicover and multiset multicover problems, Theoretical
Computer Science 411 (2010) 2467–2474.

[4] A. Ekici, O. Ergun, P. Keskinocak, M.G. Lagoudakis, Optimal job splitting on a multi-slot machine with applications in the printing industry, Naval
Research Logistics 57 (2010) 237–251.

[5] M. Balinski, Personal communication.
[6] M. Naya, Problème du mariage des couvertures posé par la S.A. Casterman, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1990.
[7] C. Antoniadis, Problème du mariage des couvertures: résolution par la méthode du recuit simulé, Graduate Thesis, Université de Mons–Hainaut,

Belgium, 1992.
[8] C. Carrein, Problème du mariage des couvertures par la méthode tabou, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1994.
[9] G. Fasbender, A branch and price algorithm for the book cover printing problem, Graduate Thesis, Université Libre de Bruxelles, Belgium, 2000.

28 D. Romero, F. Alonso-Pecina / Discrete Optimization 9 (2012) 17–28

[10] J. Teghem, M. Pirlot, C. Antoniadis, Embedding of linear programming in a simulated annealing algorithm for solving a mixed integer production
planning problem, Journal of Computational and Applied Mathematics 64 (1995) 91–102.

[11] S. Elaoud, J. Teghem, B. Bouaziz, Genetic algorithms to solve the cover printing problem, Computers and Operations Research 34 (2007) 3346–3361.
[12] D. Tuyttens, A. Vandaele, Using a greedy randomadaptative search procedure to solve the cover printing problem, Computers andOperations Research

37 (2010) 640–648.
[13] K.F.C. Yiu, K.L. Mak, H.Y.K. Lau, A heuristic for the label printing problem, Computers and Operations Research 34 (2007) 2576–2588.
[14] S.R. Mohan, S.K. Neogy, A. Seth, N.K. Garg, S. Mittal, An optimization model to determine master designs and runs for advertisement printing, Journal

of Mathematical Modelling and Algorithms 6 (2007) 259–271.
[15] L. Trilling, Personal communication.
[16] V. Klee, C. Witzgall, Facets and vertices of transportation polytopes, in: Mathematics of the Decision Sciences, American Mathematical Society, 1970,

(Part 1).

	Ad hoc heuristic for the cover printing problem
	Introduction
	Mathematical formulation
	Algorithms
	The cover printing problem with k grids
	A procedure for small instances of Problem P
	A polynomial, exact algorithm for a case of P (2)
	Algorithm H

	Numerical results
	Testing on specific instances
	Testing on random instances with known global minimum
	Evaluating the needed computer time

	Discussion
	References

