Ad hoc heuristic for the cover printing problem

David Romero*, Federico Alonso-Pecina
Instituto de Matemáticas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor., Mexico

ARTICLE INFO

Article history:

Received 31 March 2009
Received in revised form 7 March 2011
Accepted 5 October 2011
Available online 15 November 2011

MSC:

90C10
90C27
90C59
90C90

Keywords:

Combinatorial optimization
Integer nonlinear programming
Cover printing
Label printing
Heuristic
Job splitting

Abstract

We address an NP-hard combinatorial optimization problem arising in a printing shop. An impression grid is composed by a set of plates. The cover printing problem consists in designing the composition of impression grids, and determining the number of times each grid is to be printed in order to fulfill the demand of different book covers at minimum total printing cost; the latter comes from three fixed costs: for printing one sheet, for producing one plate, and for composing one impression grid. For each cover an unlimited number of plates can be made. To deal with this challenging problem we present an ad hoc heuristic that outperforms all previously proposed approaches, including genetic algorithms, GRASP, and simulated annealing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address a combinatorial optimization problem arising in the printing industry. Let $M=\{1, \ldots, m\}$ be a set of different book covers (or advertisements, labels, tracts, etc.) of equal size, and suppose that d_{i} copies are to be printed of cover i, for $i \in M$. Let $\tilde{d}=\left(d_{1}, \ldots, d_{m}\right)$ be the requirements vector. Suppose that for each print an unlimited number of identical plates can be made, and that an impression grid - also called a master or template - can accommodate a specified number of t plates. The printing process is as follows.

1. Compose an impression grid of t plates (some of them may be identical), and make a certain number of imprints with it. Each imprint produces one large printed sheet of paper which, once properly cut into t parts, yields t copies.
2. Repeat step 1 until all the required copies are made.

From the second grid on, each grid is composed by replacing an arbitrary number of plates from the previous grid. The replaced plates are automatically destroyed and therefore cannot be reused.

The printing cost comes from three fixed costs: C_{1} for printing one sheet, C_{2} for composing one impression grid (or grid, for short), and C_{3} for producing one plate. Thus, the problem consists in determining the number of grids, the composition of each grid (which plates?), and the number of imprints made with each grid, so as to fulfill the copies' requirement at minimum total cost.

[^0]Example. Let $m=5$ be the number of covers, $t=4$ the grid size, and $\tilde{d}=(3200,2500,3000,1400,2050)$ the requirements vector, for a total of 12150 copies. Suppose a grid is described by a set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, where $a_{j} \in\{1, \ldots, 5\}$ for $j=1, \ldots, 4$, are the plates identification. A solution satisfying the requirements with grids $\{2,4,3,3\},\{2,5,1,1\}$, and $\{4,5,3,3\}$, could be: print the first grid 1000 times. Compose the second grid from the first grid by replacing the two plates of cover 3 by two plates of cover 1, and the only plate of cover 4 by one plate of cover 5 ; print the second grid 1600 times. Finally, print 500 times the third grid. Thus, $1000+1600+500=3100$ imprints are made, $4 \times 3100=12400$ copies are produced, and ten plates are needed; this yields $3100 C_{1}+3 C_{2}+10 C_{3}$ total cost and $12400-12150=250$ wasted copies, around 2% of wastage.

Note that a better solution (although not necessarily optimal, as this depends of course upon the relationships among $\operatorname{costs} C_{1}, C_{2}, C_{3}$) can immediately be obtained by reversing the order in which grids 2 and 3 are produced, which leads to eight needed plates instead of ten.

The described combinatorial optimization problem was encountered in a Mexican printing shop in 1972, with typical values: $m=100,12 \leq t \leq 25,10000 \leq d_{i} \leq 100000, C_{2}=3000 C_{1}, C_{3}=50 C_{1}$. Since then and with the exception of [1], all known reported investigations on the subject disregard the cost C_{3} for producing plates; this will be our approach in the sequel, as it reflects better the realm of modern printing technologies. However, at the conclusion we will suggest a procedure to adopt in case C_{3} is not immaterial.

This problem bears some similarity to the cutting stock, the bin packing, and the multiset multicover problems (see for example [2,3]). Although some special cases can be polynomially solved as shown below and in [4], in general this problem is strongly NP-hard, as it has been recently established by Ekici et al. [4]. A heuristic centered on the column generation technique of linear programming was outlined more than 30 years ago by Balinski [5], and seemed a good approach to solving it but, unfortunately, it was afterward found to lead to nothing.

To the best of our knowledge, besides some graduate thesis $[6-9,1]^{1}$ only a handful of papers have been internationally published on the subject. Teghem et al. [10] dealt with a situation originating in a Belgian printing shop, and proposed a solution method that combines the simulated annealing metaheuristic with linear programming techniques. Simulated annealing was also reported by Yiu et al. [13] as a successful heuristic to approximate the optimal solution when the number of grids is prescribed. An approach through genetic algorithms described by Elaoud et al. [11] appeared to improve on the results obtained in [10]. Mohan et al. [14] proposed ad hoc heuristics for a version of the problem that incorporates lower and upper bounds on the number of imprints made by each grid, and in case the number of grids is prescribed. Ekici et al. [4] designed and successfully applied two specific heuristics to 32 real-world instances of an American printing company, including one with as much as 2086 distinct covers. Tuyttens and Vandaele [12] designed and implemented a greedy random adaptative search procedure (GRASP) that was proved to outperform previously proposed simulated annealing and genetic algorithms for several instances with $t=4$. Also, there is the problem that has arisen in a French printing shop [15], with typical values: $4 \leq m \leq 18,5 \leq t \leq 12,10000 \leq d_{i} \leq 100000, C_{2}=10000 C_{1}$.

This paper is organized as follows. Section 2 provides a mathematical formulation of the problem having an exponential number of variables. In Section 3 we describe our approach to the problem through both exact and ad hoc heuristic methods. Section 4 is devoted to computational experiments: the proposed methods were evaluated both by comparing our results with those known to us on specific instances, and by extensive testing on randomly generated instances. Finally, in Section 5 , together with some final comments, we present a procedure that can be used in case the cost C_{3} of producing plates is not immaterial.

2. Mathematical formulation

Recall $M=\{1, \ldots, m\}$ is the set of covers, and let $N=\{1, \ldots, n\}$ be the set of all possible impression grids, with $n=\binom{m+t-1}{t}$. Consider the integer, non-negative m-by- n matrix $A=\left\{a_{i j}\right\}$ where $a_{i j}$ represents the number of plates of cover i in grid j, for $(i, j) \in M \times N$. Obviously $\sum_{i=1}^{m} a_{i j}=t$, for $j \in N$.

Thus the cover printing problem - also referred to as advertisement printing, label printing or job splitting problem (see [14,13,4], respectively) - can be formulated as one of integer nonlinear programming:

$$
P=\left\{\begin{array}{lll}
(\min) & C_{1} \sum_{j \in N} x_{j}+C_{2} \sum_{j \in N} y_{j} & \tag{1}\\
\text { subject to } & \sum_{j \in N} x_{j} a_{i j} \geq d_{i} & i \in M \\
& x_{j}\left(1-y_{j}\right)=0 & j \in N \\
& x_{j} \geq 0 \text { and integer } & j \in N \\
& y_{j} \in\{0,1\} & j \in N
\end{array}\right.
$$

where x_{j} and y_{j}, for $j \in N$, are the decision variables, with $y_{j}=1$ if and only if grid j is selected, x_{j} being the number of its imprints. This formulation, although compact, presents a big challenge: not only are the non-linearity constraints (2)

[^1]together with the integrity constraints (3) and (4) very difficult to deal with, but the number of variables can be tremendously large, even for relatively small values of m and t. In Section 3 we present our approach to Problem P.

Remark 1. There is no optimal solution to P employing more than m grids, and there is no feasible solution to P with less than $\lceil m / t\rceil$ grids.

3. Algorithms

This section deals with the algorithms we developed to approach the cover printing problem. First, in Section 3.1, we consider the cover printing problem with prescribed number of grids, for which we describe Algorithm g, an (exponential) approach to solving it. To find optimal or nearly optimal solutions to small instances of Problem P we propose Algorithm \mathcal{E} in Section 3.2. Then, Section 3.3 is devoted to explain Algorithm \mathcal{F}, an exact, polynomial procedure to solve P when both the number of grids is prescribed to two, and $m \in\{2 t, 2 t-1,2 t-2\}$. Finally, we present Algorithm \mathscr{H} in Section 3.4, designed to heuristically approach any instance of Problem P, which uses Algorithm \mathcal{F} as a subroutine.

3.1. The cover printing problem with k grids

When the number of grids is prescribed to k the cover printing problem can be stated as

$$
P(k)=\left\{\begin{array}{lll}
(\min) & \sum_{j \in K} x_{j} & \\
\text { subject to } & \sum_{j \in K} x_{j} b_{i j} \geq d_{i} & i \in M \\
& \sum_{i \in M} b_{i j}=t, & j \in K \\
& x_{j} \geq 1 \text { and integer } & j \in K \\
& b_{i j} \geq 0 \text { and integer } & (i, j) \in M \times K
\end{array}\right.
$$

where $K=\{1, \ldots, k\}$. Here, the decision variables are both x_{j} for $j \in K$, and the m-by- k "composition matrix" $B=\left\{b_{i j}\right\}$. Problem $P(k)$ seems as difficult as Problem P; however, when m and k are small enough an implicit enumeration schema can be devised to solve it.

Clearly, if a feasible solution to $P(k)$ comprises a matrix B and some k-vector, then B belongs to the set Ω of m-by- k integer non-negative matrices $\left\{b_{i j}\right\}$ with $\sum_{i \in M} b_{i j}=t$ for $j \in K$, and $\sum_{j \in K} b_{i j} \neq 0$ for $i \in M$. Conversely, every $B \in \Omega$ comprises part of a feasible solution to $P(k)$. Furthermore, for symmetry reasons we can restrict our search to the subset Ω^{\prime} of matrices in Ω whose columns are in lexicographic descending order. ${ }^{2}$ Algorithm g below incorporates this schema; any subroutine implementing efficiently the Simplex method can be used in step 1(a).
Algorithm g

1. For each $B \in \Omega^{\prime}$:
(a) Solve the linear programming problem $L(B)$ arising from $P(k)$ when B is assumed constant, and x_{j} for $j \in K$ are the decision variables.
(b) Set $z(B) \leftarrow \sum_{j \in K}\left\lceil x_{j}^{*}(B)\right\rceil$, where $\left(x_{1}^{*}(B), \ldots, x_{k}^{*}(B)\right)$ denotes an optimal solution to $L(B)$.
2. Form a solution to $P(k)$ with $B^{*} \in \Omega^{\prime}$ and ($\left.\left\lceil x_{1}^{*}\left(B^{*}\right)\right\rceil, \ldots,\left\lceil x_{k}^{*}\left(B^{*}\right)\right\rceil\right)$,
such that B^{*} satisfies $z\left(B^{*}\right)=\min _{B \in \Omega^{\prime}}\{z(B)\}$.
The size of Ω^{\prime} is exponential in m (we assume $k \leq m \leq k t$). To see this consider first any positive, integer vector $\left(v_{1}, \ldots, v_{m}\right)$ such that $\sum_{i=1}^{m} v_{i}=k t$; then, as established by a more general result (see for instance [16]), $\frac{m!}{(m-k+1)!}$ is a lower bound on the number of non-negative, integer m-by- k matrices where row i sums up to v_{i}, for $i=1, \ldots$, m, and each column sums up to t. Furthermore, $\binom{k t-1}{m-1}$ being the number of positive, integer m-vectors whose entries sum up to $k t$ we get $\left|\Omega^{\prime}\right| \geq \frac{m!}{(m-k+1)!}\binom{k t-1}{m-1}$. A trite calculation shows that this figure is exponential in m.

Observe that when the entries d_{1}, \ldots, d_{m} are large enough - as usually occurs in practice - Algorithm g indeed produces optimal or near optimal solutions.

3.2. A procedure for small instances of Problem P

Algorithm \mathcal{g} of Section 3.1 serves as a basis for Algorithm \mathcal{E} - see below -, which produces a solution S^{*} to Problem P. The rationale of Algorithm \mathcal{E} comes from both Remark 1 and our belief that for most instances of the cover printing problem the

[^2]cost function $f(k)=k C_{2}+z^{*}(k) C_{1}$ has a single minimum, where k is the number of grids, and $z^{*}(k)$ is the value of the true optimal solution to $P(k)$. In view that Algorithm \mathcal{E} has exponential computational complexity - inherited from Algorithm g - its usefulness is limited to approach very small instances of P.

Algorithm \mathcal{E}
$k \leftarrow\lceil m / t\rceil ; C^{*} \leftarrow \infty$;
Repeat
Solve $P(k)$ with Algorithm g, yielding a solution $S(k)=\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$;
$C(k) \leftarrow C_{2} k+C_{1} \sum_{j=1}^{k} x_{j}^{*} ;$
If $C(k)<C^{*}$ then $C^{*} \leftarrow C(k) ; S^{*} \leftarrow S(k) ; k \leftarrow k+1 ;$
Else

$$
k \leftarrow m+1 ;
$$

Until $k>m$.

3.3. A polynomial, exact algorithm for a case of $P(2)$

When the number of grids is prescribed to two, Problem P becomes

$$
P(2)=\left\{\begin{array}{lll}
(\min) & x_{1}+x_{2} & \\
\text { subject to } & x_{1} b_{i 1}+x_{2} b_{i 2} \geq d_{i} & i \in M \\
& \sum_{i \in M} b_{i j}=t, & j=1,2 \\
& x_{j} \geq 0 \text { and integer } & j=1,2 \\
& b_{i j} \geq 0 \text { and integer } & i \in M ; j=1,2
\end{array}\right.
$$

where the decision variables are x_{1}, x_{2}, and the m-by- 2 composition matrix $B=\left\{b_{i j}\right\}$. This particular case of Problem $P(k)$ can be solved to optimality with little (polynomial) effort in case $m \in\{2 t, 2 t-1,2 t-2\}$, as we show now.

Remark 2. Without loss of generality assume $d_{1} \geq \cdots \geq d_{m}$ and $x_{1} \geq x_{2}$. Then, to solve Problem $P(2)$ we can disregard feasible solutions where, for $i<k$, either $b_{i 1}=b_{k 1}$ and $b_{i 2}<b_{k 2}$, or $b_{i 1}<b_{k 1}$ and $b_{i 2}=b_{k 2}$, or $b_{i 1}+b_{i 2}=b_{k 1}+b_{k 2}$ and $b_{i 1}<b_{k 1}$.

In case $m=2 t$, from Remark 2 the only composition matrix to consider - denoted B_{0} - is the transpose of $\left(\begin{array}{llllll}1 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1\end{array}\right)$. Thus Problem $P(2)$ is optimally solved with B_{0} and the optimal solution of

$$
\begin{array}{ll}
\min & x_{1}+x_{2} \\
\text { subject to } & 1 x_{1}+0 x_{2} \geq d_{i} \quad(i=1, \ldots, t) \\
& 0 x_{1}+1 x_{2} \geq d_{i} \quad(i=t+1, \ldots, m) \\
& x_{1}, x_{2} \geq 0 \text { and integer, }
\end{array}
$$

namely, $x_{1}^{*}=d_{1}, x_{2}^{*}=d_{t+1}$.
Now take cases $m=2 t-1$ and $m=2 t-2$. From Remark 2 the only composition matrices worth consideration are shown in Table 1, denoted B_{1}, \ldots, B_{4} for case $m=2 t-1$, and B_{5}, \ldots, B_{18} for case $m=2 t-2$. If ℓ indexes these matrices, then $\left[x_{1}^{*}(\ell), x_{2}^{*}(\ell)\right]$ denotes the (easily found) optimal solution to their corresponding integer programming problems.

Thus, from the above considerations an exact procedure to solve $P(2)$ in case $m \in\{2 t, 2 t-1,2 t-2\}$ can be readily be built as
ALGORITHM \mathcal{F}
If $m=2 t$ then
$x_{1}^{*} \leftarrow d_{1} ; x_{2}^{*} \leftarrow d_{t+1} ; B^{*} \leftarrow B_{0} ;$
EndIf;
If $m=2 t-1$ then
$Z(\ell) \leftarrow x_{1}^{*}(\ell)+x_{2}^{*}(\ell)$, for $\ell=1, \ldots, 4 ;$
Let $\ell^{*} \in\{1,2,3,4\}$ such that $Z\left(\ell^{*}\right)=\min \{Z(1), \ldots, Z(4)\}$;
$x_{1}^{*} \leftarrow x_{1}^{*}\left(\ell^{*}\right) ; x_{2}^{*} \leftarrow x_{2}^{*}\left(\ell^{*}\right) ; B^{*} \leftarrow B_{\ell^{*}} ;$
EndIf;
If $m=2 t-2$ then
$Z(\ell) \leftarrow x_{1}^{*}(\ell)+x_{2}^{*}(\ell)$, for $\ell=5, \ldots, 18$;
Let $\ell^{*} \in\{5, \ldots, 18\}$ such that $Z\left(\ell^{*}\right)=\min \{Z(5), \ldots, Z(18)\}$;
$x_{1}^{*} \leftarrow x_{1}^{*}\left(\ell^{*}\right) ; x_{2}^{*} \leftarrow x_{2}^{*}\left(\ell^{*}\right) ; B^{*} \leftarrow B_{\ell^{*}} ;$
EndIf.

3.4. Algorithm \mathscr{H}

This section presents our main contribution to the subject, namely, an ad hoc heuristic to solve Problem P. Let Θ be the set of feasible solutions to P. For $S \in \Theta$ the reals $C(S)$ and $\pi(S)$ henceforth denote its total cost and the number of

Table 1
The m-by- 2 composition matrices for cases $m=2 t-1$ (above) and $m=2 t-2$ (below). Their corresponding optimal solutions $x_{1}^{*}(\ell)$, $x_{2}^{*}(\ell)$ are also shown.

grids forming it, respectively, and $\delta(S)=\max _{i} \delta_{i}(S)$, where $\delta_{i}(S) \geq 0$ is the waste of cover i, for $i=1, \ldots$, m. Also, let $\Theta(\hat{e})=\{S \in \Theta \mid \delta(S) \leq \hat{e}\}$ for any given integer \hat{e}. Without loss of generality $d_{1} \geq \cdots \geq d_{m}$ is assumed throughout. Let $T=\{1, \ldots, t\}$ be the set of grid sites where plates can be accommodated. For clarity sake in the following algorithms' description we omit unnecessary technical details.

Algorithm \mathscr{H} below heuristically produces a solution $S^{*} \in \Theta$ initialized as the solution S°, which is formed with m grids, where grid i is composed by t plates of cover i and $x_{i}=\left\lceil d_{i} / t\right\rceil$, for $i=1, \ldots, m$. Also, \hat{e} is the maximum paper wastage allowed for any cover; initialized as d_{1} the value of \hat{e} is gradually reduced to zero at every iteration of the outer loop.

[^3]\[

$$
\begin{aligned}
& \text { If }\left(C(S)<C\left(S^{*}\right)\right) \text { then } S^{*} \leftarrow S \text {; } \\
& \hat{e} \leftarrow \delta(S)-1 \text {; }
\end{aligned}
$$
\]

EndWhile.
The inner loop of Algorithm \mathscr{H} makes local improvements to solution S through Algorithm \mathcal{F}, whenever possible. To perform instruction $(*)$, the core of \mathscr{H}, we propose the heuristic procedures $\mathscr{H} 1$ and $\mathscr{H} 2$ below.

For any given value of \hat{e}, Algorithm $\mathscr{H} 1$ constructs a solution $S_{1} \in \Theta(\hat{e})$ with, say, γ grids, where grid j is to be printed h_{j} times, for $j=1, \ldots, \gamma$, with a strategy that aims to minimize γ. Instructions 3 to 15 compose the j-th grid and determine h_{j} by considering the updated remaining demand e_{1}, \ldots, e_{m}, once it is assumed that the composed grids $1, \ldots, j-1$ have been printed h_{1}, \ldots, h_{j-1} times, respectively. This is done in two steps.

The first step computes h_{j} (instructions 4,5) as the maximum number of imprints that any possible grid can produce such that the paper wastage (if any) of each cover does not exceed \hat{e}; namely, h_{j} is the optimal solution value of

$$
\begin{array}{ll}
\max & \xi \\
\text { subject to } & a_{i} \xi \leq e_{i}+\hat{e} \quad(i=1, \ldots, m) \\
& \sum_{i=1}^{m} a_{i}=t \\
& \xi, a_{i} \geq 0 \quad \text { and integer }
\end{array}
$$

where a_{i}, for $i=1, \ldots, m$, are variables too. The second step composes a grid which, once printed ξ times, yields with the aid of Algorithm \mathcal{L} below a maximum number of covers whose remaining demand is completely satisfied (instructions 7 to 10), and at the same time aims to level the remaining demand (instructions 11 to 15). Along the whole process the remaining demand is continuously updated within vector $\left(e_{1}, \ldots, e_{m}\right)$.
ALgorithm $\mathscr{H} 1$
(1) $\left(e_{1}, \ldots, e_{m}\right) \leftarrow\left(d_{1}, \ldots, d_{m}\right) ; j \leftarrow 0$;
(2) Repeat
(3) $j \leftarrow j+1$; set $\Phi \leftarrow\left\{i \in M: e_{i}>0\right\}$;
(4) find $\left(i^{*}, k^{*}\right) \in \Phi \times T$ such that
$\left\lceil e_{i^{*}} / k^{*}\right\rceil=\max _{(i, k) \in \Phi \times T}\left\lceil\left\lceil e_{i} / k\right\rceil: \sum_{v \in \Phi}\left\lfloor\left(e_{v}+\hat{e}\right) /\left\lceil e_{i} / k\right\rceil\right\rfloor \geq t\right\} ;$
(5) $\quad h_{j} \leftarrow\left\lceil e_{i^{*}} / k^{*}\right\rceil$;
(6) $\quad r \leftarrow i^{*} ; \theta \leftarrow t$;
(7) While $r \leq m$ and $\theta>0$ do
(8) call Algorithm \mathcal{L};
$r \leftarrow r+1 ;$
(10) EndWhile;
(11) While $\theta>0$ do
(12) \quad find an index $s \in \Phi$ such that $e_{s}=\max _{i \in \Phi}\left\{e_{i}\right\}$;
(13) put one plate of cover s in grid j;
(14) $\quad e_{s} \leftarrow e_{s}-h_{j} ; \theta \leftarrow \theta-1$;
(15) EndWhile;
(16) sort vector $\left(e_{1}, \ldots, e_{m}\right)$ in non increasing order, and re-index the covers accordingly;
(17) Until $e_{i} \leq 0$ for $i=1, \ldots, m$;
(18) save in S_{1} the solution found;

ALGorithm \mathcal{L}

Put $\mu=\min \left\{\left\lfloor\frac{e_{r}+\hat{e}}{h_{j}}\right\rfloor, \theta\right\}$ plates of cover r in grid j;
$e_{r} \leftarrow e_{r}-\mu h_{j} ; \theta \leftarrow \theta-\mu$.
When in $\mathscr{H} 1$ we replace S_{1} with S_{2}, and instructions 7-15 are replaced with
call Algorithm \mathcal{L};
$r \leftarrow 1$;
While $r \leq m$ and $\theta>0$ do
call Algorithm \mathcal{L};
$r \leftarrow r+1 ;$
EndWhile;
procedure $\mathscr{H} 2$ arises which, considering the covers in non increasing order of their remaining demand, simply puts in each grid as many plates as possible. The outer loop of heuristics \mathscr{H} and $\mathscr{H} 1$ is performed at most d_{1} and m times, respectively. Instruction 4 of $\mathscr{H} 1$ takes at most $m^{2} t \log (m t)$ time. The total number of times that the two inner loops of $\mathscr{H} 1$ are performed is at most m. Instruction 12 of $\mathscr{H} 1$ takes $\log (m t)$ time. In regard to heuristic $\mathscr{H} 2$, a similar analysis of time can be made. Thus, it is not difficult to see that an efficient implementation of \mathscr{H} yields $O\left(d_{1} m^{3} t \log (m t)\right)$ as its computational complexity. On the other hand, in our experiments we have observed that, in general, the average required computer time is very satisfactory (see Section 4.3).

4. Numerical results

The procedures described in Section 3 were implemented on a computer with Xeon 3.4 GHz processor, 2 GB RAM, and Microsoft Visual Studio 2005 compiler. To investigate the efficiency of algorithms \mathcal{E} and \mathscr{H} of Sections 3.2 and 3.4, respectively, we conducted three experiments.

In the first experiment - see Section 4.1 - we tested our algorithms on every available instance considered elsewhere, and on one large instance randomly generated by us. Algorithm \mathcal{E} was applied to eight small instances ($m \leq 15$) obtaining their optimal solutions, most of them having been previously found. Algorithm \mathscr{H} was used on instances whose size made it impractical to apply Algorithm \mathcal{E}; when compared with the best previous results of 79 instances its solutions yielded lower cost in 76 of them, equal in one, and higher in only two instances. Moreover, we applied our approach to instances where no grid cost is provided, and instead of looking to minimize cost it is sought to minimize paper wastage when the number of grids is fixed; Algorithm \mathscr{H} improved on the solution of the six considered cases for $m=18$ and 22 . Unfortunately, we could not test our procedures on the 32 real-world instances solved in [4], for their corresponding data were not published.

In the second experiment Algorithm \mathscr{H} was applied to 60 instances constructed by us for which we could previously establish true global optima as explained in Section 4.2. When the output of Algorithm \mathscr{H} was compared with these known optima it yielded errors from zero to 8.5%, with an overall average error of 3.9%.

Finally, the third experiment was designed to evaluate the performance of Algorithm \mathscr{H} from the point of view of required computer time. We did extensive testing on randomly generated instances of varying size; the results are presented in Section 4.3.

The data for all instances, as well as the best known results and their source can be found in the website www.matcuer.unam.mx/~davidr/cpp.html.

4.1. Testing on specific instances

We started our experiments with instances I001-I006, named P1-P6 in [12], respectively. For I001-I004, proposed by Teghem et al. [10] with $m=3,4,5,8$, Algorithm ε found the true global minima that had been obtained as such in [12], each in less than three seconds of CPU time. With 40 CPU minutes of this exact algorithm we could claim the global optimality of the best reported solutions [12] of $\mathbf{I 0 0 5}$ (proposed in [9] with $m=12$), and $\mathbf{I 0 0 6}$ (proposed in [11] with $m=15$). Besides, heuristic \mathscr{H} was also able to find the optimum of $\mathbf{I 0 0 6}$.

Proceeding further, we considered the ten instances $\mathbf{I 0 0 7} \mathbf{- 1 0 1 6}$ shown in Tables 2 and 3. Instances I007-I009 correspond to real world situations [15]; instances $\mathbf{I O 1 0}$ [14] and $\mathbf{I 0 1 1} \mathbf{- I 0 1 2}$ [13] slightly differ from the others as no grid cost is provided, and instead of looking to minimize cost it is sought to minimize paper wastage when the number of grids is fixed; I013-I015 were proposed by Tuyttens and Vandaele [12] as P7-P9, respectively; finally, $\mathbf{I 0 1 6}$ reflects a typical situation in a Mexican printing shop, where cover demand was randomly generated by us with uniform distribution.

Our results for $\mathbf{I 0 0 7}-\mathbf{I 0 1 6}$ are displayed in Tables 4, 5, and Fig. 1. The best previous solutions for $\mathbf{I 0 0 7} \mathbf{- I 0 0 8}, \mathbf{I O 1 0}$, IO11-I012, and IO13-I015 come from [15,14,13], and [12], respectively. With Algorithm \mathcal{E} and Algorithm \mathscr{H} we obtained the optimal solution of $\mathbf{I 0 0 7}$, improving on previous results. Also, this exact procedure was applied to solve $\mathbf{I 0 1 0}$ when the number of grids is fixed to two and three, allowing us to claim the optimality of the solution proposed in [14] for two grids, and yielding lower paper wastage than Mohan et al. [14] for three grids. On the other hand, Algorithm \mathscr{H} was applied to solve I008-I009 and I011-I016. For instances I011-I012 we considered three cases in each, depending on the prescribed number of grids. Apart from $\mathbf{I 0 1 3}$ this procedure improved on all previous solutions, although we offer no guarantee of global optimality. For instances I009 and $\mathbf{I 0 1 6}$ we had no others' results to compare with. In regard to the running time of Algorithm \mathscr{H}, it took 250 s for instance $\mathbf{I 0 1 6}$, and an average of 1.5 s for instances $\mathbf{I 0 0 1}$ to $\mathbf{I 0 1 5}$, with a maximum of 3 s .

Finally, Algorithm \mathscr{H} improved on previous results of 74 out of 75 instances (T001-T075) randomly generated and heuristically solved by Tuyttens and Vandaele [12] with $m=30,40,50$, and five distinct grid costs.
(see www.matcuer.unam.mx/~davidr/coverprinting/Datasets.html.)

4.2. Testing on random instances with known global minimum

To further evaluate the quality of the solutions obtained by Algorithm \mathscr{H} we tested it on 60 non trivial instances randomly generated by us (E001-E060), and whose true global optima could be previously determined.

Specifically, taking $m=13$ and $t=6$ as a first case (denote it $[13,6]$) consider an instance of Problem P with some positive C_{1} and C_{2}, and vector demand $D=A^{T} \times X$, where

$$
A=\left(\begin{array}{lllllll}
10 & 0 & 100 & 100 & 1 & 10 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and X is an arbitrary, positive integer column 3-vector. Clearly, an optimal solution to P in this case is composed by matrix A^{T} and vector X because: (1) it yields zero wastage, and (2) from Remark 1 there is no feasible solution with less than $\lceil 13 / 6\rceil=3$ grids.

Table 2
Data of instances IO07-I012 and IO16. Instances I007-I009, IO10, and I011-I012, come from [15,14,13], respectively.

To construct more instances of the cover printing problem with known optimal solution take [25, 8] as a second case, and reason as in case $[13,6]$ considering now the 4 -by- 25 matrix

$$
\left(\begin{array}{lllllllll}
1000 & 1000 & 1000 & 1000 & 1000 & 1100 & 1 \\
0100 & 0100 & 0100 & 0100 & 0100 & 0110 & 1 \\
0010 & 0010 & 0010 & 0010 & 0010 & 0011 & 1 \\
0001 & 0001 & 0001 & 0001 & 0001 & 1001 & 1
\end{array}\right),
$$

thus obtaining an optimal solution with four grids. Note that each matrix considered in the two described cases has $t / 2$ rows and $t(t-2) / 2+1$ columns, containing $t-3$ identity matrices of size $t / 2$, one matrix with two 1 's per row and column, and one column composed by ones. Continuing further, with the previous rationale we can build up matrices for $t=10,12,14,16$, to get cases [41, 10], [61, 12], [85, 14], and [113, 16], respectively, establishing for each an optimal solution to the cover printing problem with $t / 2$ grids.

Our test consisted in applying Algorithm \mathscr{H} to solve ten randomly generated instances (the entries of vector X were generated with uniform distribution in the range [$10000,10000+2500 \times t]$), with $C_{1}=1$ and $C_{2}=3000$, for each of the six mentioned cases, yielding 60 instances, and then measuring the error of the obtained solutions when compared with the known optima. More precisely, letting $z_{i j}^{*}$ (respectively, $z_{i j}^{H}$) denote the optimal solution value (respectively, the solution value obtained by Algorithm \mathscr{H}) that corresponds to the i-th instance generated for case $j(i=1, \ldots, 10 ; j=1, \ldots, 6)$, we computed $\rho(i, j)=100 \times\left(z_{i j}^{H}-z_{i j}^{*}\right) / z_{i j}^{*}$, as well as $\rho_{\min }(j)=\min _{i=1, \ldots, 10}\{\rho(i, j)\}, \rho_{\max }(j)=\max _{i=1, \ldots, 10}\{\rho(i, j)\}$, and $\hat{\rho}(j)=\frac{1}{10} \sum_{i=1}^{10} \rho(i, j)$, for $j=1, \ldots, 6$. Our results are displayed in Table 6 . We consider all these instances as difficult

Table 3
Data for instances I013-I015 proposed in [12] as P7-P9, respectively.

Instance $\mathbf{1 0 1 3}$$\begin{aligned} & m=30, \quad t=4 \\ & C_{1}=13.44, \quad C_{2}=18676 \end{aligned}$			d_{i}	$\begin{aligned} & \text { Instance } \mathbf{I 0 1 4} \\ & m=40, \quad t=4 \\ & C_{1}=13.44, \quad C_{2}=18676 \end{aligned}$			d_{i}	Instance $\mathbf{I 0 1 5}$$\begin{aligned} & m=50, \quad t=4 \\ & C_{1}=13.44, \quad C_{2}=18676 \end{aligned}$			d_{i}
1	1000	26	26000	1	700	26	16100	1	750	26	32700
2	1500	27	26000	2	1100	27	19000	2	1000	27	34300
3	2500	28	27000	3	1800	28	22000	3	1450	28	36000
4	5000	29	28000	4	2650	29	25000	4	2900	29	37000
5	6000	30	30000	5	3000	30	26700	5	3000	30	38900
6	7500			6	4000	31	27000	6	4000	31	39000
7	9000			7	4200	32	27000	7	4500	32	43000
8	9000			8	4300	33	29000	8	6000	33	43500
9	10000			9	5000	34	30500	9	7800	34	50000
10	10500			10	5000	35	32500	10	10000	35	51000
11	11000			11	6300	36	37000	11	10000	36	52100
12	13000			12	8000	37	41500	12	11000	37	55500
13	13500			13	9100	38	45500	13	11900	38	57650
14	14000			14	10000	39	47000	14	14000	39	60000
15	15000			15	10000	40	50000	15	16050	40	61700
16	15000			16	10700			16	19000	41	67000
17	16000			17	11300			17	21000	42	67000
18	17000			18	12000			18	21000	43	69000
19	18000			19	12000			19	22400	44	70500
20	19000			20	12900			20	25500	45	72300
21	20000			21	13000			21	26350	46	77000
22	20000			22	13000			22	28000	47	80000
23	22000			23	13500			23	28300	48	85500
24	22000			24	14000			24	30000	49	90000
25	23000			25	15000			25	30000	50	95000

Fig. 1. Solution of Algorithm \mathscr{H} for instances $\mathbf{I 0 1 3}$-I015, with 11,14 , and 19 grids, respectively.
because not only their optimal solutions yield zero paper wastage, and they do not have feasible solution with less than $t / 2$ grids, but we could not devise a simple procedure to solve them.

4.3. Evaluating the needed computer time

For each of twelve selected combinations of $m \in\{10,25,50,100\}$ and $t \in\{6,8,12,16,20$, 25\}, we created ten instances where the demand of each cover was randomly generated with uniform distribution in the range [10000, 100000]. Then we computed the running time of Algorithm \mathscr{H} for each of these 120 instances (R001-R120), with $C_{1}=1$

Table 4
Solutions of Algorithm \mathscr{H} for instances I007-I012. Daggers indicate the best previous results, which come from [15,14,13], for instances I007-I008, I010, and 1011-I012, respectively.

and $C_{2}=3000$, obtaining reasonable results. Table 7 shows the minimum, average, and maximum CPU time needed by Algorithm \mathscr{H} when solving the ten instances for each selected combination.

5. Discussion

For the cover printing problem - in which the cost for producing plates is disregarded - we have proposed a mathematical programming formulation in Section 2, and several solution procedures in Section 3. These methods were tested with all specific instances known to us as well as with randomly generated instances of size up to $m=113$. The results shown in Section 4 indicate a clear superiority of our approach over those proposed elsewhere, whenever we had data to compare with. We hope that our investigation will be an incentive to discover better discrete optimization techniques for this challenging problem.

One final word. In case we want to solve the cover printing problem taking into account the cost of plates we propose the following procedure: first use the methods of Section 3 to solve the problem without the cost of plates, and denote K the set of grids obtained. Then form a complete non directed graph G whose set of vertices corresponds to K, and for $x, y \in K$ the length of edge (x, y) is the number of plates that one would need to replace in grid x to obtain grid y. Finally, process the grids in K in the order $\tilde{b}=\left(b_{1}, b_{2}, \ldots, b_{|K|}\right)$, where \tilde{b} is a Hamiltonian path of minimum length in graph G. This procedure minimizes the number of required plates - and hence the cost - once the set of grids and number of imprints has been found. Although no polynomial algorithm is known to find an optimal Hamiltonian path, a branch-and-bound technique would yield a solution in small time for the typical instance size encountered in printing shops.

Table 5
Solution of Algorithm \mathscr{H} for instance I016, yielding 8 grids, 2.40\% wastage, and 265918 total cost.

Grid imprints	$\begin{aligned} & 1 \\ & 82188 \end{aligned}$	$\begin{aligned} & 2 \\ & 63077 \end{aligned}$	$\begin{aligned} & 3 \\ & 41004 \end{aligned}$	$\begin{aligned} & 4 \\ & 18800 \end{aligned}$	$\begin{aligned} & 5 \\ & 17315 \end{aligned}$	$\begin{aligned} & 6 \\ & 12135 \end{aligned}$		$\begin{aligned} & 7 \\ & 5540 \end{aligned}$	$\begin{aligned} & 8 \\ & 1859 \end{aligned}$
	Grid		Grid		Grid				Grid
i	12345678	i	12345678	i	12345678		i		12345678
1	00020000	26	00100101	51	10000011		76		00010000
2	10000000	27	00101000	52	01000101		77		00020000
3	00100000	28	10000020	53	01000101		78		01001000
4	10000000	29	01000010	54	00020000		79		00010000
5	00100011	30	10000000	55	01001000		80		10000001
6	00100001	31	00100000	56	00100010		81		00001001
7	10000001	32	00000101	57	01001000		82		00100020
8	00100011	33	00100001	58	00010100		83		10000020
9	00001000	34	01000011	59	00101000		84		01000100
10	00010101	35	01000100	60	00020000		85		00010010
11	00100101	36	00020000	61	10001000		86		00100010
12	10001000	37	00100000	62	10000010		87		10000001
13	00020000	38	00100001	63	01000011		88		10000100
14	00101000	39	10000100	64	01000000		89		01000011
15	10000000	40	01000000	65	00000100		90		00110000
16	10001000	41	01000000	66	01000101		91		00010010
17	01001000	42	00000100	67	00100000		92		10001000
18	00010100	43	10001000	68	00100000		93		00011000
19	00001000	44	00010100	69	01000011		94		01000000
20	01000101	45	00010010	70	00100100		95		00101000
21	10000110	46	10000100	71	01000101		96		00011000
22	01000101	47	01001000	72	00101000		97		00101000
23	01000020	48	00011000	73	00001000		98		01000001
24	10001000	49	00101000	74	10000010		99		01000100
25	00100010	50	10000100	75	10000100		100		10000000

Table 6
Minimum, average, and maximum error $-\rho_{\min }(j), \hat{\rho}(j)$, and $\rho_{\max }(j)$, respectivelyof Algorithm \mathscr{H} solutions with respect to the global optimum of ten random instances for cases $j=1, \ldots, 6$. Figures in percent.

j	1	2	3	4	5	6
m	13	25	41	61	85	113
t	6	8	10	12	14	16
$\rho_{\min }(j)$	0.0	0.3	3.3	2.4	0.9	0.9
$\hat{\rho}(j)$	2.9	5.1	4.8	4.7	3.2	2.9
$\rho_{\max }(j)$	5.9	8.5	6.3	6.6	4.1	3.8

Table 7
Minimum, average, and maximum time (in seconds, rounded to nearest integer) required by
Algorithm \mathscr{H} to solve 10 random instances of 12 selected combinations of t and m.

m	10	10	25	25	25	50	50	50	100	100	100	100
t	6	8	8	12	16	12	16	20	12	16	20	25
\min	0	0	0	0	0	9	10	13	87	136	166	210
avg	1	0	1	2	1	20	14	15	119	189	225	270
\max	2	1	2	6	2	29	22	20	155	249	320	321

References

[1] L.E. Carrera, Algoritmo para encontrar el óptimo a una simplificación de un problema combinatorio presente en la industria editorial, Graduate Thesis, Mathematics Department, Cinvestav, Mexico City, 2006 (in Spanish).
[2] G. Wäscher, H. Haussner, H. Schumann, An improved typology of cutting and packing problems, European Journal of Operational Research 183 (2007) 1109-1130.
[3] Q.-S. Hua, Y. Wang, D. Yu, F.C.M. Lau, Dynamic programming based algorithms for set multicover and multiset multicover problems, Theoretical Computer Science 411 (2010) 2467-2474.
[4] A. Ekici, O. Ergun, P. Keskinocak, M.G. Lagoudakis, Optimal job splitting on a multi-slot machine with applications in the printing industry, Naval Research Logistics 57 (2010) 237-251.
[5] M. Balinski, Personal communication.
[6] M. Naya, Problème du mariage des couvertures posé par la S.A. Casterman, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1990.
[7] C. Antoniadis, Problème du mariage des couvertures: résolution par la méthode du recuit simulé, Graduate Thesis, Université de Mons-Hainaut, Belgium, 1992.
[8] C. Carrein, Problème du mariage des couvertures par la méthode tabou, Graduate Thesis, Faculté Polytechnique de Mons, Belgium, 1994.
[9] G. Fasbender, A branch and price algorithm for the book cover printing problem, Graduate Thesis, Université Libre de Bruxelles, Belgium, 2000.
[10] J. Teghem, M. Pirlot, C. Antoniadis, Embedding of linear programming in a simulated annealing algorithm for solving a mixed integer production planning problem, Journal of Computational and Applied Mathematics 64 (1995) 91-102.
[11] S. Elaoud, J. Teghem, B. Bouaziz, Genetic algorithms to solve the cover printing problem, Computers and Operations Research 34 (2007) $3346-3361$.
[12] D. Tuyttens, A. Vandaele, Using a greedy random adaptative search procedure to solve the cover printing problem, Computers and Operations Research 37 (2010) 640-648.
[13] K.F.C. Yiu, K.L. Mak, H.Y.K. Lau, A heuristic for the label printing problem, Computers and Operations Research 34 (2007) 2576-2588.
[14] S.R. Mohan, S.K. Neogy, A. Seth, N.K. Garg, S. Mittal, An optimization model to determine master designs and runs for advertisement printing, Journal of Mathematical Modelling and Algorithms 6 (2007) 259-271.
[15] L. Trilling, Personal communication.
[16] V. Klee, C. Witzgall, Facets and vertices of transportation polytopes, in: Mathematics of the Decision Sciences, American Mathematical Society, 1970, (Part 1).

[^0]: * Corresponding author. Tel.: +52 777 3291721; fax: +52 7773291722.

 E-mail addresses: davidr@matcuer.unam.mx (D. Romero), falonso@matcuer.unam.mx (F. Alonso-Pecina).

[^1]: ${ }^{1}$ Graduate thesis [6-9] are cited in [10-12], and were not available to the authors.

[^2]: 2 For vectors $\bar{u}=\left(u_{1}, \ldots, u_{m}\right)$ and $\bar{v}=\left(v_{1}, \ldots, v_{m}\right)$, vector \bar{u} is lexicographically greater than \bar{v} if there is and index $\hat{\imath}$ such that $u_{\hat{\imath}}>v_{\hat{i}}$, and $u_{i}=v_{i}$ for every $i \in\{1, \ldots, \hat{\imath}-1\}$.

[^3]: Algorithm \mathscr{H}
 $S^{*} \leftarrow S^{\circ} ; \hat{e} \leftarrow d_{1}$;
 While $\Theta(\hat{e}) \neq \emptyset$ do
 (*) set $S \leftarrow \min \left\{S_{1}, S_{2}\right\}$, where S_{1} (respectively, S_{2}) is the heuristic solution to
 $\min _{S \in \Theta(\hat{e})} \pi(S)$ obtained with Algorithm $\mathscr{H} 1$ (respectively, $\mathscr{H} 2$);
 While there are two grids in S such that:
 when excluded from S the number of covers with unsatisfied
 demand is in the range $[2 t-2,2 t$], and
 when replaced by the grids obtained through Algorithm \mathcal{F} of Section 3.2 a solution \bar{S} arises with $C(\bar{S})<C(S)$ do

 $$
 S \leftarrow \bar{S}
 $$

 EndWhile;

