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The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluc-
tuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not

thermal.

It is now generally accepted that the vacuum fluc-
tuations produce some thermal-like effects in an
accelerated system. If there is any hope of observing
these effects in the future, a uniformly rotating frame
seems to be the simplest system which could be stud-
ied in a laboratory. In particular, it would be inter-
esting to see whether there are measurable effects
associated with the electromagnetic vacuum fluctua-
tions, which are known to produce the Casimir effect
and the Lamb shift.

The vacuum stress of a massless scalar field has
been analyzed by many authors [ [-5]. The aim of
the present article is to generalize the results of Letaw
and Pfautsch [1] to the case of an electromagnetic
field. This is most easily achieved by using the for-
malism developed in a previous paper [6], which was
specially designed for handling the cases of massless
fields with arbitrary spin.

The world line of a detector in uniform rotation is
described by the parametric equations

t=y1, x=pyRcos(L21), y=yRsin(L1),
z=0, (1)

where 7 is the proper time, 2 the angular velocity,
v=0R, y=(1—v?)~"2, and yR the rotation radius
(c=1=n hereafter). Following ref. [6], we calculate
the Wightman function Das(7+ 30, T—30) at two
points on the detector world line (with proper times
t+10) and contract it with u“(7)u”(r), where
u*=dx%/dz is the four-velocity of the detector. The
result after some straightforward algebra is
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u*(uf(t)Dap(t+4i0,1—10)

=12/n(cFi0)* —2(yvR)*/n(c Fi0)?>

+n7 ' (32)*F(x) , (2)
where x=90/2 and
F,(x)=[(1=1*)/(x*=v* sin’x)?]

X [(34+v?)x*+ (14+3v?)v? sin’x

—8v?xsin x]

—3/x* +2y20%/x2 . (3)

In eq. (2) we have separated the terms containing
poles at g = 10, so that F(x) is finite for all real x.
The energy spectrum of the field turns out to be

de/dw = (17272 [w* +(yvR)* v
Q[
+E§JFV(X) cos[(2w/)x] dx. (4)
0
In order to clarify this result, we can compare it with
the similar case of a uniformly accelerated observer
who detects an energy spectrum given by [ 7]

de/dw=n"*(w’+a*)w
X{%+[exp(2nw/a)—l]*‘}, (5)

where a is the acceleration. The zero-point field con-
tributes with a term (w?>+a’w)/2x°, instead of the
usual @?3/2x72. This is due to a modification of the
density-of-states factor. Due to this factor, the energy
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Fig. 1. The spectral function H,(w) for (a) non-relativistic
velocities v=4x 10 °>-10 ~*, (b) relativistic velocities v=0.95 —
0.99.

spectrum is not strictly planckian; for instance, de/dw
has the finite value a*/27° if w =0.

Comparing eqgs. (4) and (5), we see that the den-
sity-of-states factor has the same form in the two
cases, with an acceleration given by a=y0vQ. The
integral in eq. (4) is thus the analogue of the thermal
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function in eq. (5). The integral in eq. (4) has been
evaluated numerically and the function defined as
JFV(X) cos(wx) dx, (6)

0

W2
H(W)=—5———
= @

(where w=2w/) is plotted in fig. 1, for low and high
values of v. For the sake of clarity, we have included
the factor w?/[w?+ (yv£2)?] in order to reproduce
functions similar to planckian distributions. Thus, the
energy density per unit frequency is

de 1
dw  167°R>3

° +CE)V2”Q)2 H,(20/Q) . (7)

where, as usual, we have discarded the infinite energy
associated to the zero-point field. The total energy
density of the field can be obtained by integrating eq.
(4). The result is
4 4

o= (0 =1 (). (8)
In order to have some feeling of the orders of mag-
nitude involved, we may compare eq. (8) with the
corresponding value of the black-body energy den-
sity epp; namely, we evaluate the effective tempera-
ture T for which e=egp. A simple calculation shows
that

ho(v? 17
kTCﬁ:HG?)”Zy(? +11—ZC’—2>”4 . (9)

This temperature can be significative for a beam of
ultrarelativistic electrons in a storage ring (see, e.g.,
ref. [3]).
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