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We examine, from both a qualitative and a numerical point of view, the evolution of Kantowski-Sachs
cosmological models whose source is a mixture of a gas of weakly interacting massive paMidiExs) and
a radiative gas made up of a “tightly coupled” mixture of electrons, baryons and photons. Our analysis is valid
from the end of nucleosynthesis up to the duration of radiative interactiorfsk(0r >4x 10° K). In this
cosmic era annihilation processes are negligible, while the WIMP’s only interact gravitationally with the
radiative gas and the latter behaves as a single dissipative fluid that can be studied within a hydrodynamical
framework. Applying the full transport equations of extended irreversible thermodynamics, coupled with the
field and balance equations, we obtain a set of governing equations that becomes an autonomous system of
ordinary differential equations once the shear viscosity relaxation tighés specified. Assuming that is
proportional to the Hubble time, the qualitative analysis indicates that models begin in the radiation-dominated
epoch close to an isotropic equilibrium poiisiaddle. We show how the form of-, governs the relaxation
time scale of the models towards an equilibrium photon entropy, leading to “near-Eckart” and transient
regimes associated with “abrupt” and “smooth” relaxation processes, respectively. Assuming the WIMP
particle to be a supersymmetric neutralino with a mags-100 GeV, the numerical analysis reveals that a
physically plausible evolution, compatible with a stable equilibrium state and with observed bounds on CMB
anisotropies and neutralino abundance, is only possible for models characterized by initial conditions associ-
ated with nearly zero spatial curvature and total initial energy density close to unity. An expression for the
relaxation time, complying with physical requirements, is obtained in terms of the dynamical equations. It is
also shown that the “truncated” transport equation does not give rise to acceptable physics.
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[. INTRODUCTION neutrinos and assume the baryon-electron-photon mixture to
evolve with a common temperatufocal thermal equilib-
The radiative era of cosmic evolution extends from therium) and to behave as a single fluid, the “radiative fluid.”
end of cosmological nucleosynthesis to the decoupling offhis fluid must be dissipative in order to provide an adequate
baryonic matter and radiation, covering the temperaturenacroscopic model for these interactid8s Ideally, all dis-
range 4<10°—10° K (roughly between 1 eV and 1 k@V sipative fluxesheat flux, bulk and shear viscositieshould
During this period cosmic matter can be descrifkd3] asa be taken into consideration in the study of this tight coupling.
mixture of two main non-interacting components: one, aHowever, in order to deal with a mathematically tractable
non-relativistic and collisionless gas of weakly interactingproblem, while still aiming at a physically interesting gener-
massive particle$WIMP’s) [cold dark matteCDM)], the  alization of previous work, we shall study the case in which
other a tightly coupled mixture of non-relativistic baryons, only shear viscosity is present. Bulk viscosity is not signifi-
electrons and ultra-relativistic mattéradiation,” i.e., pho-  cant in the temperature ranges we are considdihgand,
tons and neutrings The standard approach to the radiativealthough neglecting the contribution of heat flux carries
era consists of using a Friedmann-Létr&Robertson- physical limitations, this is compensated by the ensuing
Walker (FLRW) space-time background1-3] whose mathematical simplification of the field and transport equa-
sources are described either by equilibrium kinetic theorytions. This approach has already been tested in various
[4], gauge-invariant perturbatiofs], or by hydrodynamical known and new exact solutiof42].
models[6—8], which in general fail to incorporate a physi-  The simplest class of metrics allowing for anisotropic
cally plausible description of the matter-radiation interactionshear viscous stresses are the Kantowski-Sachs cosmologies
since they assume a full thermodynamical equilibrium[13,14], characterized by a 4-dimensional isometric group.
throughout the evolution. Since the tight coupling betweenAs the source of space-time we consider a momentum-
electrons, baryonic matter and radiation follows from variousenergy tensor made of CDMhe WIMP ga$ and the dissi-
processes of radiative interacti¢@—11], mostly involving  pative radiative fluid whose anisotropic pressure can be iden-
photons and electrons, we can ignore the non-interactingfied with shear viscous pressure. Considering the WIMP
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particle to be the supersymmetric lightest neutralino, withlution close toy=0, and(b) using the full(not truncateg
mass 100 GeV15-17, we can safely assume that through- shear viscosity transport equation of EIT. A detailed discus-
out the radiative era these WIMP’s are non-relativistic, col-sion and summary of these results is provided in Sec. IX.
lisionless and only interact gravitationally with radiation and

baryonic matter. It is also reasonable to assume, for the pre- Il. KANTOWSKI-SACHS COSMOLOGIES

vailing temperatures of this era, that the pressure of the WITH ANISOTROPIC STRESSES

WIMP gas and the internal energy of the baryons and elec-
trons are negligible in comparison W'th the r_ad|at|or_1 equlllb'for anisotropic pressure is that of Kantowski-SadKsS)
rium pressure. Although the radiative era is dominated by odels:

radiation, the rest mass-energy density of the WIMP’s is not" '
negligible and dominates that of the baryons and electrons, g2 — c242+ A2(t)dr2+ B2(t)[d 62+ sir’(6)d 2]
hence the full source, CDM plus radiative fluid, can be well (1)
approximated by a momentum energy tensor in which CDM

provides the bulk of the rest mass enefgmatter,” which For a co-moving 4-velocityu?, the expansion scalar and
ends up dominating the whole dynamicahile the photons shear tensor associated with the metticare

(“radiation”) provide the bulk of thermal and dissipative ef-

The simplest non-FLRW cosmological metric allowing

fects. The shear viscosity associated with this source must A 2B a ) 1 B A
_satisfy gppropriate constit_utive and transport equatio_ns from® = A + B 76T diad0,—20,0,0], o= 3BT A
irreversible thermodynamics that comply with causality and 2)

stability [18—21]; these thermodynamical theories are known

generically as extended irreversible thermodynaniied)  where a dot denotes the derivative with respect to proper
[22—24. The application of such theories to particular physi-time of fundamental observers, which for the KS mettig

cal systems requires phenomenological coefficients, like thgy co-moving coordinates is given by (i.e., A:A,t
coefficient of shear viscosity, to be provided by kinetic —=y2A ). We consider as the source (), the following
theory. In particular, for the tight coupling of electrons, bary- stress-energy tensor:

onic matter and radiation and its associated photon-electron

interaction, the coefficients corresponding to the “radiative Ta= puduP+ phaP-+I12°, ©)
gas” model[9,23,25-27 should be employed. The entropy ) ) )
production must be positive definite and the relaxation timevhereh®*=c~2u?u’+g andI1%, is the anisotropic pres-

of shear viscosity must be a positive and monotonously inSure tensor satisfyingl,,u’=112,=0. The most general
creasing function, somehow related to the collision times oform of this tensor for the metritl) is

the radiative processes associated with the radiative era. All a .

these time scales must overtake the Hubble expansion time p=diad 0,-2P,P,P], 4

as baryonic matter and radiation decouple. whereP=P(t) is an arbitrary function to be determined by

The paper is organized as follows. Sections Il to IVthe field equations and subjected to an evolution law for a
present and discuss the field equations of Kantowski-Sachs q )

geometry for a mixture of CDM and a radiative fluid, the gg’l(ejnep{g;fi ;r;](;dnelljssjgczated with E¢8) and (3). The

application of extended irreversible thermodynamics and the q

appropriate set of equations of state for the models, as well 82 BA 1

as the evolution equations for the geometric and state vari- kp=—Gl=—+2=— —+ —, (5)

ables. The dynamical analysis is carried on in Sec. V by 2 BA B2

defining a set of normalized variables, which then leads to a

self-consistent and well-behaved autonomous system of or- B2 2A 48 BA 1

dinary differential(governing evolutionequations. From the 3kp=2G’p+G i =—— - ——— 22 +——, (6
2 ; . . ; ; B A B BA B2

qualitative analysis, we identify a saddle point associated

with a radiation-dominated FLRW cosmology and contained .

in the invariant sefy=0, associated with the flat Bianchi | e . B?

model. We argue that initial conditions must be defined near 3kP=G%~G g2

this point. In Sec. VI we discuss various assumptions on the

form of the relaxation time for shear viscosity, these assumpwhere x=87G/c?, while the energy balance is given by

tions lead to the identification of a “near-Eckart” and tran-

sient regimes, respectively, associated with a swift and slow p+(p+p)O+60P=0. (8)

rate of transiency. The effects of using a “truncated” trans-

port equation are discussed qualitatively in Sec. VII, while

Sec. VIII deals with the numerical analysis of the models

bearing in mind the qualitative results obtained in previous We will assume that the stress-energy ten@)rcorre-

sections. The main result that follows from the qualitativesponds to a mixture of a non-relativistic gas of WIMP’s and

and numerical analysis is the fact that a physically plausiblea radiative fluid with shear viscosity corresponding to a

evolution is possible only fofa) initial conditions and evo- “tightly coupled” mixture of photons, electrons and baryons

A B BA .
Ate Batge

Mixture of cold dark matter and a radiative fluid
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sharing a common temperatufeHence,p andp in Eq. (3) N, ng e o
are the total mass-energy density and equilibrium pressure V=N 267X 10 ph” (15
given by v

1 where ), is the baryon abundance toddyoughly 0.04
P=Put ot Pt Py P=Put Pyt Pet Py Py=3py, +0.01) andh=0.7 is the adimensional Hubble fact#8].

Regarding the WIMP gas, if we assume that it is made up of
9 the lightest supersymmetric neutralinos witk),~100 GeV

with the subindices,w,b, ande denoting photons, WIMP's, [15-17, we have thaf16]

baryons and electrons, respectively. The three latter compo- N, n,
nents satisfy each the equation of state of a non-relativistic YW= N —=2.82x10 8Q,,h?, (16
ideal gas: y Ny
3 where(2,,=0.3+0.1 is the neutralingCDM) abundance to-
Pu= ( m,,c2+ EkBTW) Nws Pw=NuK T, day. Using Eqgs(10), (12) and(14), we can rewrite Eq(9) as
mpv Mev
3 p=m,c2n,| 1+ ——2 4 —=< e)
Pp= ( mbC2+ EkBT) nb, pb: nkaT, wVw I"nWVW
vp Ve Pyly
+ +=+=+ =
, 3 kT 1273 ZT)’
pe=| ML+ EkBT Ne,  Pe=NeK.T, (10
Tw
wherem,,,m,,m, are the respective particle masses of the p=n7kBT THwptvet VW?)' (a7

WIMP’s, the baryonga proton magsand the electrong_ is S
Boltzmann's constantT,, is the temperature of the WimMp Bearing in mind that for electronS.~Ny, S0 thatve~ vy,
gas andT is the common temperature of the radiative mix- While Me<my~1 GeV, »,<1, andve~w,<1, then,

ture. During the radiative era creation or annihilation pro-

cesses cease to be significant and so the particle number Mo?s :1072%<11 Meve :10*5%<1,
densitiesh,,,ny,N,, satisfy conservation laws of the form My Vw Qy wVw Qy
- . . _ while for the temperature rangex4l0® K<T<1Cf K, we
n+n®=0 with n=n,,ny,N, (11 have
which can be integrated, leading to m.c2n
W w
0.013s ————=3.25, (18
N nk.T
n=——:, with N=N,,Ny,N (12
A82 wsNbsNe

showing that the radiative era is initially radiation-dominated
) but rest mass energy density is not negligible and ends up
whereN,,,N,N, are the constanti.e., conservednumber  pecoming dominant. Therefore, evenTif,/T in Eq. (17) is

of WIMP’s, baryons and electrons, respectively. not negligible, we have
The radiation component of the radiative fluid can be
given either in terms ofi) the Stefan-Boltzmann law: p=m,cn,+ 3nk. T, p=nkT, (19
pr= aT pr: EaT“ 13 The same type of approximati_on can be _obtained if we use
Y ’ Y 3 ’ the Stefan-Boltzmann la¥d3), since the ratio of pressures in

) s .o Egs.(10) and(13): p‘;b/pb= aT3/[3nka], is proportional to
wherea= "k /(15,°C") is Stefan-Boltzmann constant, or ,, (jikewise for WIMP's). Therefore, the mixture of a gas of

(ii) an ultra-relativistic ideal gas: WIMP’s and a radiative fluid can be accurately described in
i i the desired temperature range by the approximated equation
PY=3nk T, pY=nkT, (14  of state:

wheren,, is the number density of ultra-relativistic particles,
subjected to a balance law analogous to @d) and given
by an expression similar to E¢L2) with the conserved pho-
ton numberNy. with m=m,, n(m = Ny, p(r)z P, (20
In order to simplify Eq.(9), we can examine the ratios of

particle numbers and rest mass densities of the different pawhere p(r) follows from either one of Eqs(13) or (14),
ticle components. Considering the currently estimg®da-  hencen(" = n, andp™=m,,c?n,,. For the remaining of this
tio of photons per baryon, we have paper, the superindicgs) and (m) will refer to quantities

1
=mcnt’+ = =
p ¢ P, P=P 3 p
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associated with photongradiation”) and WIMP’s (“mat- shear viscosity tensors, respectively. The paramejecan
ter”), respectively. From Eqg5) and (6), the equation of take only two valuesey=1 (“full” transport equation and

state(20) can be given as the following constraint: €0o=0 (“truncated” transport equation, also known as the
o Israel-Stewart equatiof20,21,23), while Eckart's non-
A 2B 2AB B? 1 1 causal transport equation follows by setting=0. The co-

A + B + A §+ B? + B2 —Exmczn(m)=0. (2D efficient of shear viscosity as well as other related quantities
can be obtained by a variety of medi®§ including kinetic
theory, statistical mechanics or bd26—27,3Q. Unless spe-
Ill. EXTENDED IRREVERSIBLE THERMODYNAMICS cifically stated otherwise, we shall consider only the full
If the source(3) is meant to describe a mixture of non- transport equatiosy,=1. We will discuss the implications of
relativistic CDM and a radiative fluigas argued in previous the truncated equationeg=0) in Sec. VII. EvaluatingS
section$, the anisotropic pressure must be identified with afrom Eq.(22) and using Eqs(23), (25), and(26), we obtain
shear viscous stress of the latter fluid and must be compatible
with a suitable thermodynamical formalism. We shall con- . I1%° 2[S—S] ~0
sider the so-called “extended irreversible thermodynamics” 2T T
(EIT) [20-23, a theory complying with causality and stabil-
ity requirementg24] and supported by the kinetic theory of where we have used E(2) ande,=1 in Eq.(26). Notice
gases, information theory and by the theory of hydrodynami, gy, S takes a very simple form, illustrating the role g, as
cal fluctuationg23]. When shear viscosity is the only dissi- {he reference time scale associated with the entropy change
pative agent, the corresponding generalized entropy currengym sto Siey>S. Also, the second law of thermodynamics,
$?, obeying the usual balance Iavxt/) with non-negative diverﬁ_e_, Eq. (24)] is fulfilled if =0 or, equivalently, ifrg
gence, and up to second orderIif®, takes the form >0 and Si,=S hold. Another important requirement that
G follows from the second law of thermodynamics and the sta-
L, (22)  bility of equilibrium states is tha be a convex functional,
2nT i.e., 82S<0. For the KS models all quantities depend only
on time and so a necessaltyut not sufficient condition is

given by S<0, which leads to

(27)

Sa:nSlP, S:S(e)_

where S is the entropy per particlen=n®+n(M=(1
+1,,)n"") is the total particle number density=0("), « is a
phenomenological coefficient to be specified later Spglis 1
defined by the equilibrium Gibbs equation: (1+ E%rel)HabHab+2770'abHab>0- (28)

. . n .
NTSe=p—(p+ p(r))ﬁ=3p+4p(~) =—0,11%°, (23)  For the applicability of the general relations, E(2), (24),
(25), (26), (27) and (28), to the models we are concerned
with, we must impose the equation of st&g®) with either

. ) . one of the choices Eq13) or Eq.(14). As a physical refer-
fillment of the second law of thermodynamics requiis ence to infer the form that the coefficientg,, 7, may take

=0, which from the definition 06" andSin Eq. (22) leads  ¢q the radiative fluid, consider the“radiative gas” model as-

to sociated with the photon-electron interactif®22,23,25,
characterized by,p complying with the equations of state

where we have used Eg4.1) and (20) to eliminatep. Ful-

S=0, (24) discussed in Sec. lll. For the radiative gas the formsy af
together with in terms of the relaxation time of the dissipative process,
Trel, are
Trel
“:zﬁ’ 9 4o °
g N(g) =5 P Trels “(rg):W’ (29
and the evolution equation of the viscous pressure, i.e., the
transport equatiofi24,29: wherep( is eitheraT*3 or n(”kBT [Eq. (13) or (14), re-
, 1 Trel spectively} and the subscript “(g)” emphasizes that these
rre|1'[cdhghg+l'[ab 1+ EeonT(Tiuc) +2n0,p quantities are specific to the radiative gas. Applying 2§)
ORAT: into Egs.(22) and(23), we get for the entropy per particle:
. 1 T 77 .7'rel 2
= 7'reIHthghg—i_ I—[ab[ l-Seome|l =+ ———— _ 15P
2 T T S=So—————, (30)
7] rel (e) 8p(r)n(r)T
+2n0,,=0, (26)
wheren, T, 7, 0ap, 114 are the coefficients of shear viscos- 'S(e): — SU_P’ (31
ity, the temperature, the relaxation time, and the shear and nT

124001-4



QUALITATIVE AND NUMERICAL STUDY OF THE.. .. PHYSICAL REVIEW D 66, 124001 (2002

where we have neglected the entropy of the non-relativisti¢ion equations. The relaxation time,y, is qualitatively
matter, so thah™+n(=(1+»,)nV~n() andSis ap-  analogous to and larger than the mean collision time between
proximately the photon entropihis is justified because the particles and it may, in principle, be estimated by collision
number of photons is so much larger than that of WIMP's,integrals provided the interaction potential is known. Since
baryons and electronsThe transport equatiof26) becomes we are concerned with mixtures of baryons, electrons and
photons evolving in the temperature range ¥0° K<T
o, <10° K (from the end of cosmic nucleosynthesis to decou-
P+N—P2=0, (32 . . :
p™ pling), convenient references for comparing, are the col-
lision times associated with Compton and Thompson scatter-
whereA=1+1/(2\o) and\o=1/2 or 2 [for p{") given by  ings[31]:
the Stefan-Boltzmann lawl3) or the ideal gas law(14),

P+8<f) +4(E)+1
5P TIZP T,

Trel

respectively; also condition(27) takes the form mgc?
te="t, (36
) kT
15P 2[S(e)—S] 5
= — = =0. (33
4pOnTrg T 1 [y 4h3nbeBO’kBT)1’2} -
t,=r——1+| 1+ — = ,
. Y
Notice thatS< Sy and 7,0 must hold in order fo5>0 2Co My (2mmek,T)

to be satisfied, while Eq(23) implies that we must have
oP<0 in order thaIS(e)>0. Regarding the interpretation of

S(e), if we assumé S, >0 and the Steffan-Boltzmann law
(13), Eq. (23) then yields

whereot,Bg,mg, andh are the Thompson scattering cross
section (6.6% 10 2° cn?), the hydrogen atom binding en-
ergy (13.6 eV}, and the electron mass and Planck’s constant,
respectively. EquatiofB87) is obtained from the number den-
4aT? sity of free electrons provided by the Saha equation. Notice
= (34) that we are using the baryon number density, and not the
3nM number density of WIMPsy(™. For higher temperatures in
) ) o the range of interest, Compton scattering is the most efficient
a function that is only constafiequilibrium photon entropy  ragiative process keeping baryonic matter and radiation
if P=0. This constant is given explicitly by the black body tightly coupled, though it is no longer effective in lower and

Ste)

formulas[28]: intermediate temperature rangeB<(10* K). The photon-
306(3)aTe 24K electron in.te.racti.on of the radiative era requires that micro-

NO[p_ :ﬂzs lp_o= B 3.6k scopic collision times,,t., as well asr,;, be much smaller
P=0 o (©)1P=0""45;(3) B’ than the time scale of cosmic expansion given by the Hubble

8 (35) time, approximatelytHESIG). For the lower temperature

range of the radiative era, just before recombination, Thom-
where{ is the Riemann zeta function. However, if we char-son scattering becomes the dominant radiative process, so
acterize the evolution to equilibrium &—0, then, as this  that the decoupling of baryonic matter and radiation can be
evolution proceedsgq) in Eq. (34) must tend to the constant associated with the condition,=t , which should be ap-
entropy given in Eq(35). Hence, we can identify E¢35) as proximately equivalent torg=t .
the equilibrium state associated with E87) and Eq.(33), rel
attained aP—0 andS— S (i.e. as the radiation relaxes
in the time scale provided by the relaxation timg. For the IV. EVOLUTION EQUATIONS
ideal gas law, Eq(23) does not yield Eq(34), but S,
ok In(T%n®), an expression that coincides with Eq84)

H

Since we need to determine a self-consistent set of ordi-
) nary differential equations governing the KS models, it is
and (35) only in equilibrium (if Se=0). However, since convenient to express the field equations and @4) in
both EIT and Eckart’s theory assume near equilibrium state§erms of® ando by eliminatingA, B from Eq. (2):
quantities likeP? and oP, appearing in Eqs(30) to (33)
must be small, hence the rafid/n") is nearly constant and A
So we can also assume ti&y, given by Eq.(34) is approxi- =
mately valid for the ideal gas law. A
Conditions (33) and §°S<0 associated with Eq(28)
must be satisfied by any self-consistent thermodynamical B
system. The importance of these conditions will become evi- B~
dent when discussing the numerical integration of the evolu-

—20, (383

+ o, (38b)

which leads to

INotice thatS(e)>0 is a sufficient but not necessary condition for

$>0. Under the framework of extended irreversible thermodynam- kp=——30%+—, (39
ics, the latter is the physicaly relevant condition. 3 B2
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02 2@ 1 text 7, Might be proportional to the time scale defined by
kpt=— ?_?_302_—2, (40)  the expansion scalgapproximately the Hubble time
Tt =3/0. (49
. 1 i
=0+00+— : ;
KP=oto6 3B2’ “D Alternatively, and depending on the temperature and energy

range one is considering, could be identified as propor-
while, using Egs.(39) and (40), the equation of stat€21) tional to a collision timgsay, Thomson or Compton scatter-
becomes ing) given by Eq.(36) or (37), i.e.,

2
3

- 11 xt,(n,T),  Trexte(n,T). 50
O+ ®2+302+§—§Km02n(m)=0. (42) TN T), - Trafete(.T) 50

Since we can assume in E@7) two different equations of
We can eliminateB from the equations above with the help State for the radiation component, strictly speaking, Egs.

of Eq. (39) (which becomes a constrajrand Eq.(38b) (the ~ (43—(47) constitute two different systems of evolution equa-
evolution equation foB). Using Eq.(20), Egs.(41) and(42)  tions parametrized by the two possible values\gfand A,

then become the Stefan-Boltzmann law:
: 0% « 3pN=aT* with \y=2 and A=5/4, 51
o+ 02+ 00—+ Zmen(M+ kp®— kP =0, (43) P ° (13
and the ideal gas law:
- 092 K
®+?+602+§mczn(m)+3kp(r)=0, (44) p=nk T, with \o=1/2 and \=2. (51b

which are the evolution equations foarand®. Since we are

assuming particle number conservation, an evolution equa-
tion for non-relativistic particle number densitythe A. The governing equations
WIMP’s) follows from Eq.(11):

V. DYNAMICAL ANALYSIS

Let us define

nM4+nM@E=0, (45) p
a conservation law satisfied also b{/)=n(™/y,, [if using Q= F
the ideal gas law(14)]. Another evolution equation is pro-
vided by Eq.(8), which applied to the equation of staf20)  a ratio that is relatedfrom Eq. (30)] to the deviation from
and usingo,,I12°=60P yields equilibrium:

(52

o)+ 25060 1 20P=0 (46) 15
p 3p agr=y, S(e)_S: g)\on, Where

becoming the evolution equation fqs{”). The transport

equation(32) derived in the previous section, namely, p(r) ;S(e), Stefan-Boltzmann law
. 8 4 1 ¢ Mo~ T K . 53
P+—-pWo+|=0+—|P+N—P2=0, (47 B’ ideal gas law
5 3 Trel p(r)

) ) ) - with S given by Eq.(34). Therefore,Q must be a small
is the evolution equation for the shear strBs$n addition to 4 aniity for the cosmic times we are interested in. Note that

these evolution laws, Eq33) can be thought of as an evo- henp (and henceQ) is zero, the shear vanishes and the
lution equation forS, while we can transform Eq46) into  kantowski-Sachs model reduces to an isotropic FLRW

an evolution equation fof by using either Eq(13) or (14), model. In principle,P (and henceQ) can be positive or

leading to negative, but sinc® represents a viscous pressure it should
be negative in the expanding regime. We shall focus hence-

9+ P=0. (48) forth on the case in whick) is negative. The energy condi-

3 Aop" tions imply that —1<Q=<1/2. In addition, on physical
grounds we expect the second term in E8). to dominate

Equations(43), (44), (45), (46), and (47) represent a self- the third term in this equation, which is satisfied whenever

consistent and closed system of first order ODE’s fora?Q?/(®/3)?<4. However, since physically we expedf

n™ P.p( o,0. Notice that this set of evolution equations to be small, these constraints are satisfied handily.

is fully determined ifr,¢ is known. In the cosmological con- We introduce now the new normalized variables:

T
T'F
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oo mcn(m xp® define<|j.db¥ norlT?IiZirs]l:nggit[f?2+ B2 S\nsteﬁd pfz) that
= = = , are valid for all times[32]; however, the physical assump-
073 03 (0/3)? tions used here are not valid at later times.

(54) In addition to Eqs(56) to (59), evolution equations for

_— ; ; ; ; ,T,Se) andSfollow by using the variables defined in Egs.
a definition that is motivated by the fact th@{3 is apprOX|- M, 1) - ]
mately the Hubble expansion factbt=0/3+ o,,n?n® for (54) and (55) in Eqgs.(45), (48), (31) and(33):
unit space-like vectors defined by'n,=1,u*n,=0, hence /= _3n n(r)=ne 3" where n=n™ or n®,
Q(m) and () are approximately equivalent to the observa-

tional parametergthe ()'s) for the CDM and radiation con- (62
tents of the mixture. We also definéor ®>0) the new e
independent variable: T =-T1+ )\_o} (63
d /
R jg (55  Sio=—3Mo3Q, (64
the evolution equation&t3) to (47) become '’ 2tH _ 15tH 2
S'=—[Se—SI= 4Trel)\0Q ) (65
Qi =~ Q[ 1 =422 = Q= 2Q ], (56)
wherel is given by Eq.(53), the subindex denotes evalu-
- 82 ) ation at an initial timer=7;, andtH=3/® is approximately
Q'=-5>" Tre|®/3Q_()\_2)2Q ' (57 the Hubble time which follows from Eq60) as

Q(,r):_ﬂ(r)[2+ ZE(Q_ZE)_Q(m)_ZQ(r)], 1+222+ (m) +Q(r)

(58) =—epr d ] (66)
) (m) while the relation between physical tinteand = follows
3'=(1-23)(1-2°)———(2—-3) from Eqgs.(55) and (60):

—0H(1-Q-3), (59 t:ftﬂﬂ 67)

where we have used
wheret , is given by Eq.(66) above.
3@ ®’ 5 Q(m)
@z - —1-2%°- —Q, (60) B. Qualitative properties

Consider the dynamical implications of assuming that
and a prime denotes differentiation with respectrtoNote g given by Eq.(49), namely,

that this last equation implies th& is monotonically de-

creasing. The constraid2) becomes Yo

7'rel_ = '}’OtHa (68)

X= 1—22—Q(m)—9(,): __BZ®2 . (61) whereyy>0 is a constant. For the range we are interested in,
<1. Equation(57) becomes

We note that

’ 8 1 2

X' = X[25(25 = 1)+ Qm+ 29 ]. Q=52 Q- (\=22Q% 69
Clearly y=0 is an invariant set of the above differential and so Eqs(56), (58), (59) and(69) now constitute a closed
equations, which corresponds to the Bianclizéro curva- four-dimensional system of first order autonomous differen-
ture) sub-case. tial equations for Qy,Qm),>,Q), a system that depends

Eventually, the models re-collapse aficchanges sign. At on the value of the constant paramejgr. Moreover, from
the point of maximum expansiqwhen® =0) the variables Eq. (61) and the above discussion, in the regime we are
above diverge and the normalized equations are no longénterested inQ(,,Qy, and> are bounded and physical
valid. However, for the times we are interested in, in theconditions imply that—1<Q=<1/2. Consequently a local
expanding phase far from re-collapse, the above variableanalysis of the stability of the equilibrium points of this sys-
and equations are valid. Indeed, in principle we can use theem will provide useful dynamical information.
above system to follow the evolution of the models all the Setting the right-hand side of E¢9) to zero we obtain
way back to the big bang. From E@l4) we can see that in L g
this regime the curvature is small and that the variables 2 _
EZ,Q(m) Q) are well behaved. Compact variables can be (A=2)2Q%+ 70Q+52_0’ (70
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which is a quadratic equation fd@ if 3 is given and\ At an equilibrium point we immediately see that
#2.

Stefan-Boltzman lay\ =5/4). The equilibrium points at Q=— %2 (72)
finite values ardnote that all such points are given below; 5 7
however, Q(m),Q(r),Ez) are not necessarily bounded by
unity] as follows. However, there are no major qualitative changes in the
(i) Qmy=0=10Q,, six points: analysis. In particular, there are fewer equilibrium points.
(i) 3 =1/2 andQ. =4[ 3y~ 972+ 2/15]/(912); () Lmy=0=0y, three points:
(ib) =1 andQ. = 2[3yo* 972+ 8/15//(972): E:E‘; éz 1’2ar?d”g‘?: ;47?5/_5*
; _ _ 2 = =~ 9%0/9,
(ic) ¥=-1 andQ- 2[3ypE \/9)/02-!- 8/15]/(97;)- (ic) S=—1 andQ=8y,/5.

(i) Qm=0,.,#0, four points:

(ia) Qy=—(12y,+ 17/19/(9v3), and (i) Qmy=0,Q#0:

2=0=0Q,Q)=1is a particular solution; otherwise, it is

2.=Q.=%23%+8/15/(3yy); a quadratic equation f& which gives another two equi-
(iib) = .= (4+3y0)/[2+3yo(1FU)], librium points.
Q) + == (17) (44 370)[2+ yo(1 2 U) ] (iii) Q(ry=0,2(my#0, one particular solution:
I[2+3yo(1+u)], 3=0=Q andQy=1.
and Q. =(2x3yqu)/(4+3yo), (iv) Q(m#0.0Q()#0, two points that imply:
whereu=21+ (870/5)(4+370)/ (370); 32=5/(16y,) =5/16 (for y,<1),
%=0=0Q,Q)=1 is a particular solution. which leads taQ yy+ 2 )= 1-5/(4y,) <0.

(iii) Qy=0,2(m#0, one particular solution:
EIOIQ, andQ(m):l.

. . VI. ASSUMPTIONS ON THE RELAXATION TIME
(iv) Qm#0, Q()#0, two points:

QO (my=(40+79/y,)/(64v,), In the general dynamical system, E@56)—(59), the re-
Qry=—15(8+3y,)/(128yy), laxation timer,, needs to be specified in order for the gov-
3 =%/5(8+3y0)/(2y0)/8, erning system of equations to be closed. For the qualitative
and Q. = ¥4y2(8+3vy)/(45yy). dynamical analysis we have assunmé8), so that 1/¢,,®)

The two equilibrium points given bgia) can be shown to is @ constant, since otherwise we would either not be dealing
lead to a value fof which is unphysical in the sense that its with an autonomous system, or would be looking at an au-
magnitude is much too largéin fact, when ;=0 tonomous but _much more Qlifficult dynamical system. How-
=0(,Q would be expected to vanishThe equilibrium  €Ver, Eq.(69) is a S|mp||fy|n_g assumption that cannot be
points(iv) are also unphysical: since cleatlyy<1/4 and we supported by thermodynamical arguments, perhaps a more
get from(iv) that>2Q%= 1/4, this would imply thaQ?=1. realistic assumption would be to consider instead:

At the equilibrium points(ii) when (),)#1 we have that

3 =20Q/[ yo(15Q2%—32)], which leads to a quartic equation r :LT) = (7t (73

for Q; however, for physical values of the parameggy this ANCYE! H

equation has no real roots and hence no solutions of physical

interest. The two equilibrium points given by the particular SO that Eqs(57) and(65) become

solution of (i) and by(iii ), corresponding to FLRW models, 8 1

namely € ),Qm),>,Q) given by (1,0,0,0) and (0,1,0,0), Q=—-35———0Q-(A-2)3Q% (74)
can easily be shown to be saddles. The equilibrium points 57 y(n)

(ib) and (ic), namely €y, Qm.2,Q)=(0,0+1Q-),

which belong to the invariant sgt=0 (i.e., correspond to a 5= L[S _g] 75
Bianchi | model with no curvatuiehave eigenvalues 3, y(r) e b
—1/y9+3\%2Q/2,2—23Q,4—3. In this case, the eigen-

value — 1/y,+ 3123 Q/2 can only be positive if we take the Wherey=y() is a function that could be suitably adjusted
“positive square root” of Eq(37) (i.e., Q=Q.,). However, SO thatrg has a form that is qualitatively analogous to that
for {\?,yo}=<1, i.e.,\? yo=<1, it follows that the eigenvalue Of microscopic time scales like E{36) or (37), time scales
2—23Q, can never be positive. Consequently, this equilib-that are physically relevant for the matter source under con-
rium point cannot be a source. sideration. The ratio 3#(©)=t /7= 1/y should provide

We note that there are no sinks at finite values. Howevera comparison of the time scale for the relaxatitnansien}
this is to be expected since the models evolve toward maxieffects in the radiative fluid with the time scale of cosmic
mum expansion at which the variables become unbounde@xpansion. Hence this ratio should approach unity as bary-
The models subsequently re-collapse. onic matter and radiation decouple, so that1l should be a

Ideal gas casé\=2). Equationg56), (58) and(59) re-  consistent choice for near decoupling conditions, while
main unchanged and the governing equaft®® becomes >1 or y<1 correspond to after decoupliritate times and

much before decouplingearlier time$. Ideally, we should
8 1 . Y ) )
Q'=—-3-—Q. (72) obtain Trel from_ C(_)II|S|on integrals assc_)ma_ted with _ea_ch of
S) Yo the various radiative processes occurring in the radiative era,
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FIG. 1. A physically plausible evolution. These figures illustrate the fulfillment of conditions 1, 2 and 3 for a physically plausible
evolution given in Sec. VIII B. The functioB, in (c) is given in cgs units and is almost equal to the equilibrium photon entropy. These

figures(as well as those of Fig.)2vere obtained using initial conditiond04), with 7,=0.7. Notice in(b) that S(e) becomes negative
(though small near the initial time. This behavior does not denote an unphysical situationSin@eholds throughout the evolution.

but such an endeavor would merit a separate paper by itseffuantities. Hence the tern® and>Q? in Eq. (74) will be
and will not be attempted here. Instead, we will consilgr  much smaller tharQ(0)/y, and so we have that near

as an “effective” relaxation time, encompassing the different=0,Q"~ — Q/vy,, so that
radiative processes. We will examine the non-transient limit

(or near-Eckart regimeand use the dynamical equations Q%Q(O)exr<_—7),
themselves in order to suggest a suitable formsgr. The Yo

discussion of this section will be complemented and tested

numerically in Sec. VIII. 15 ) 27
S~S(e)~ g hQ(0)ex o (76)

A. The “near-Eckart” and the transient regimes L )
g where\, is given by Eq.(53). Since the process of relax-

In order to examine the relaxation processSasS(), we  ation to equilibrium can be characterized as the decay of the
will assume thaty( 7) in Eq.(73) is a smooth function so that dissipative fluxQ—0 as S grows and asymptotically ap-
we can always expand it in the formp~vy(0)++y'(0)7  proaches the equilibrium state given by E8f), the numeri-
+4"(0)7%/2. Therefore, at early times~0 we can always cal value ofy, in Eq. (76) may be interpreted as a measure
associate the constamg in Eq. (68) asy,= y(0), sothat the  of the “rate of transiency” in terms of how fast or slow the
corresponding form ofr, is approximately correct at least System accomplishes this relaxation in comparison with the
nearr=0. Also, at early times we must hayé0)<1, and timescale provided byH. We can then identify two possible
so 1lhp>1, while 3(0) and Q(0) are necessarily small situations.
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LogyoT (a) given by its equilibrium form(the hypothesis of “local equi-

60d librium,” see section 1.3.1 of23]). The near-Eckart regime

is appropriate to describe a given radiative process for which
microscopic time scales are much smaller than the cosmo-
551 logical expansion time scat%. See Sec. VIIID.

The transient regime.If o<1 but y,~0O(10 %)

551 —0(1), thenQ and S also decay but the relaxation process
is much slower, hence the term “transient.” In this case, the
expressions in Eq.76) and the assumptioy= y, are only
good approximations fory,Q(7) and S(7) near 7=0. In
general, we must use

45
= 10 K

dr
4% 10° K Q%Q(O)GXF{—f W}

=]
|

40

]
[]

3.5

2dr

w7

15
S~Se~ gkon(O)eXI{ - f

logig (sec)
141

leading to Eq(75) and to

2(1+9")(Se—S)

y? ’

S”% (,e) - (78)

so that the fulfillment ofS’>0 andS’<0 can be examined
in terms of y(7) and S, . Sufficient (but not necessajy
conditions follow by demanding thay is a monotonically
increasing function ¢'>0) and Si,,>0,S<0. Another

condition ony is furnished by Eq(28), which together with
Egs.(29), (52), (54), (55), (60), and(73) yield

24+ 402 E _ 2 Qm) 2
Y QP+y 5 3Q—| 142324+ —= 40, |Q%>0,

0 1 2 3 4 5 [ (79)

a condition that should be tested numerically for any given
choice of . The relaxation timer,, can be approximated
%@ a giveny=1y,, but as the decoupling era is reached,
must increase t@(1) allowing for 7 to overtaket .

FIG. 2. Range of validity of the models. The range 8<6
corresponds to the temperature range of the radiative era, betwe
T;=10° K and the baryon-radiation decoupling temperature 4
X 10° K (roughly atr=5.5). A logarithmic plot of the various time
scales used in the papén secondsare depicted in Fig. ®): the
Thomson and Compton scatterinds ,t.), the Hubble time,; and B. Dynamical relaxation times
physical timet. Notice how the decoupling temperature occurs at ider the followi tz:
the samer as the conditiort, =t,,, while radiation-matter equality, Let us consider the following ansatz:
Qy=Qm (see Fig. 1a corresponds toT=10* K (roughly = 1 8y

=4.6). - -z r
) =g gl (80)

The near-Eckart regimef y,<1, then Eq(76) indicates  which provides an exact relation for the relaxation time in
a very fast relaxation with a very abrupt decay@andSto  Eq. (73). In regimes in which the Eckart theory is a good
Sie) - In the very limit yo—0 (so that7—0 as wel) we  approximation, we can assumes= y,<1, so that Eq(80)
haveQ—Q(0)4(7), so that the relaxation is infinitely fast, impliesQ«3 but|X/Q|>1 and{ is “small.” Such regimes
in agreement with the non-causal nature of Eckart’s classicalould correspond to a radiative process that takes place in
theory. The fast relaxation associated with a very snygll  time scales smaller than a mean collision time, thus decaying
implies a very short duration of the relaxation processall  very fast to equilibrium. In case we wish to consider pro-
Trel), INdicating that the approximatiop= vy,, as well as the cesses taking place on time scales comparable and larger
expressions in Eq(76) for Q(7) and S(7), are approxi- than main collision times, then transient effects are important
mately valid for the whole evolution time. Hence, sin@e and the near-Eckart regime is no longer appropriate. In par-
practically vanishes very quickly, we have for most of theticular, we can construct an expression fgy that acts as an
evolution time thatS~ S, agreeing with the fact that in “effective” relaxation time that encompasses the relaxation
Eckart’s theory the entropy is rigorously and unambiguoushjtimes for the main radiative processes acting in the radiative
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era under consideration. Having this idea in mind, a reasonwhere the full and truncated theories are, respectively, given
able and more general expression faran be obtained from by e;=1 ande;=0. Assuming a transient regime, instead of
the dynamical equations themselves. Consider the conditiorsq. (76) we have near=0:

discussed above for a near-Eckart regime, and assume that

r
Q= S, (81) Q~Q<0>exr{— A€o,
where g iS @ non-negative constant. We obtain an expres- 15
sion analogous to Eq80) by substituting Eq(81) into the S~S(e)— E)\OQZ(O)
(full EIT) evolution equation$57) and (59), leading to the
consistency requirement r
Xexp{z —y—+4(1—60)7'], (85)
0

—l+ Q b22+(1 1) 82
=% 2o (m)—bo Mo~ 5| X (82

R |

so that using the truncated transport equatiey=0) intro-
duces a large linear terme@7) that is absent in the full
where theory. This linear term could change dramatically the form
of Q and the relaxation o8to Sy . As we show below, the

1 8 truncated transport might lead €@ being positive(imply-

—=1+pugt —=1+4\/=>1, . : . .

Yo Sug 5 ing that S <<0), so even at this levelearly times there
might be problems of consistency in the truncated approach
of EIT.

aOEE—,uO, bo=1+(N—3)ug, (83 A comprehensive analysis in the case of the truncated

theory, similar to that presented in Sec. V, can be undertaken.
. ) The evolution Egs(56), (58), and (59) remain unchanged,

— 2

andy is the curvature termy=1—Q )~ Q. —2° given by \hije the evolution Eq(57) for Q must be replaced by the

Eq.(61), a term that is very small and can be neglected. Thi%runcated equation that follows by settieg=0 in Eq. (84)
is an extremely simple dynamical relation for the relaxation

time, and for a wide range of conditions it might be a very 8 1
good approximation. In addition, it has some important Q' =- —2—(——4
physical properties. For early times in which > Yo

X X2 Q (m) .32 are very small, we have a near-Eckart re- o )

gime associated with~y,<1, as expected. This is appro- At @n equilibrium point

priate for the Compton scattering, the dominant radiative

process in the early part of the period under consideration, a 250Q%— (i_4> Q_ﬁzzo_ (87)
process that quickly thermalizes and ceases to be effective. Yo 5

At later times, as()(,, increases toward a value of order

unity at recombinatiorfand to a lesser extent, the curvature However, we immediately note from E(7) that close to an
term also growks the constantsg,aq,bg in Eq.(83), as well  equilibrium point for small%, andQ,

as the initial conditions, can be selected in such a wayhat

given by Eq.(82), increases sufficiently as to allow,, to 1
overtaketH and to approach the characteristic timescale of Ezg 4- %

Thomson scattering in Eq37). We show in Sec. VIII that

adequate parameters and initial conditions can be found sso that fory,=% we have that andQ have the same sign
that 7, associated with Eq82) has the expected behavior (unlike the non-truncated theory casand hence it is imme-

Q+23Q2. (86)

Q, (88)

(see Sec. VIII E diately clear that there will be a different qualitative dynami-
cal behavior in the truncated theory.
VII. TRUNCATED THEORY In particular, close to the FLRW equilibrium point

(), Q(my»2,Q)=(1,0,0,0) (which we will use to deter-

The discussion so far has been based on the full transportine the initial conditions in our numerical analysis in the
equation. In order to appreciate the effect of considering théollowing section, from a calculation of the corresponding
truncated transport equation, it is useful to rewrite E2f) eigenvalues we have that
with z and 7, given by Eqs(29) and(73) in terms ofQ and
>, thus allowing the full and truncated equations to appear Qmyxe’, (1—0(,))o<e27, (89
jointly. This yields

2, Qoue+"+ Be-7, (90

1
———4(1—€p)

e Q- (Nep-2)3Q?,

Q=-z3-

from Egs.(56)—(59) in the non-truncated case, wheses a
(84) constant, and
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FIG. 3. Sensitivity toy(0)=0. Positive curvature. These figures displayy ,Q ), Q ot =Q(m)+ Q) andS/ S for initial conditions
(105 with —0.01< §<0. The numerical values &f appear next to each curve. Notice h@y, .y, and{} ) branch upward an/ S,
downward, with the branching smaller for|s| larger. This branching up corresponds@s-0, marking the re-collapsing stage of the
models. Comparinga), (b), and(c) with (d), and with Figs. 2a and 2b, it is evident that a physically plausible evolution for the duration of
the radiative era (& r<6) and for the appropriate temperature ranges is only possiblesifar10~55.

1 , time period for which the assumptions are valithis break-
. :2—%[70— 1= V(y0—1)2—4yo(1+8y/5)]. down is seen in the numeri¢Sec. VIII F). As a comparison,
o1 for %»=1/2, a.=3(1+1.1); the growing mode which

evolves approximately &7, leads to a rapid increase in the

For physical valuey, =<1, botha. have negative real parts magnitudes ok andQ and the models fail after a relatively

and as noted earlier, this FLRW equilibrium point is a saddleshort cosmological timésee Sec. VIII F.

(e.g., foryy=1/2,0. = — 1/2+i67/20).

I_n the truncated case we hav_e_ th_at H@Q) and (90) are_ VIIl. NUMERICAL INTEGRATION
satisfied close to the FLRW equilibrium point, but now with

From the dynamical analysis carried out in Sec. V, there
o N 5 are no sourcegat finite valueg in the physical regime; that
ai=2—y0[5'yo—1_ V(50— 1)%+4y0(12ye/5-1)]. is, during the time period for which the various physical
(92) assumptions used here are valid there are no past attractors.
It is reasonable to assume, as conditions prevailing at the
We first note that fory,=1/5, at least one of the" has a  beginning of the regime we are interested in, that the uni-
positive real part which leads to a change of stabilitgleed, verse is approximately isotropic and spatially homogeneous
for 1/5< y4=<5/12, this equilibrium point is a sourcePhysi-  (e.g., almost FLRW with/Q|<1 andX<1) and that the
cally, this means that in the truncated casendQ in Eq.  radiation component is dominant. These assumptions are
(90) have a growing mode, and hence their magnitudes ineonsistent with current observations, and we are also assum-
crease leading to a breakdown in the physical m¢aledl the  ing that some mechanisfsuch as, for example, inflatipmat
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early times has driven the universe toward this configurationall times, then the near-Eckart regime can be associated with
Thus the model is close to the particular solution mentionedy,<O(10 2), while a transient regime follows by setting

in (i) with (Q),Qm),=,Q) given by (1,0,0,0). As noted

yo~0(1)<1.

above, this equilibrium point is a saddle; however, it is a The constanty; and Q . From the evaluation of E453)
“stronger” attractor than other saddles in that it has moreat =0, the constanQiz is proportional to the initial devia-

positive eigenvalues. Also, this equilibrium point lies in the
invariant subspacg=0, associated with the zero curvature
Bianchi | sub-case. SincéX),Q,,2,Q)=(1,0,0,0) is an

equilibrium point lying in an invariant set, if a model is

driven toward this point in phase space it can stay an arbi-

trarily long time close to this poinfi.e., the universe can
spend an extended period close to this FLRW mpdEhe

universe will then eventually begin to evolve away from this
configuration and from the invariant set as time evolves

Therefore, we shall assume initial conditions for our numeri-( > LS o
@bles 0(,0/3). Since we are choosing initial conditions

cal integration based on the fact that the universe star
evolving from situations close to this equilibrium point.

A. Initial conditions

Since we must havéfor physical reasonsQ<0 and
QX <0, initial conditions close to Q(y,Qm).2.Q)
=(1,0,0,0) can be given by

Q(r)(O):l_& Q(m)(0)26—5>0,

%(0)=%;>0, Q(0)=Q;<0, (93

wheree, 8,3 ,Q; are real small constants. The initial values
of “total omega™: Q=2 m+ Q) and x given by Eq.
(61) are
Qoy(0)=1-5,  x(0)=6—(2)?, (94)

so that the value ob reflects the deviation 0f) ) from
unity, while the deviation from the invariant sgt=0 de-
pends ond and ;)2

The factory. As discussed earlier, during the interactive

range we are interested in, the various time scales must sat-

isfy

t,>1e>t>t,, (95

wheret =3/0, 7, follows from Eq.(73) andt, ,t, are given
by Egs. (36) and (37). Considering that @;/3)?

w(1/3)Kan‘ and inserting the constants appearing in Egsy)

(36) and(37), we arrive at the following initial values:

logyo(t,)|i~8.8, lodtc)]i=7.6,
loglo(ty)|i~3.4, (96)
thus suggesting the range
0.06<y,<1 @7

for the initial valuey(0)=y; .2 If assuming thaty= y, for

2We distinguish between the constant initial valyeand the case
in which y= vy, for all the evolution period.

tion of the photon entropy from its equilibrium value:

_ S0
Se)(0)’

(98)

where we have used Eq$34) and (35) so that\y/S
~0(1), with A given by Eq.(53). Both numberg,; ,Q; are
initial ratios of off-equilibrium and anisotropic variables
(I,p,0,p) With respect to equilibrium and isotropic vari-
close to a saddle point associated with near FLRW condi-
tions and we must assume near thermal equilibrium, then
3i,|Qi| must necessarily be small numberg). A maxi-
mal bound onQ;| and|Z;| can be fixed from CMB obser-
vations[33], making it reasonable to take

|Qi|<0.01-0.1, |¥;/<0.001-0.01. (99
However, we will comment further ahead on the sensitivity
of the functions to these initial values.

The constants and §. The values fore and § are re-
stricted by the ratio of photons to WIMP’s. Considering the
neutralino as the WIMP particle witim~100 GeV, using
the ideal gas law and Eq18) yields

€e=5 Qm(0) mc

T~ 0)(0) _3kBTi v,~0.013, (100
leading to the following constraint:
6~1.013—-0.013, (10D

which must be satisfied by all initial conditions compatible
with T;=10° K and with the observational constrairt,
~0.3+0.1 andh=0.7. Further restrictions oa and ¢ fol-
low by demanding thaf) ) decreases and , increases at
the initial time 7=0. From the expressions fd?, and

(’,) in the differential equations, these conditions imply

—1-432<—e—6<—23,|Q;| -432,

so thate+ 6>0 must hold, leading to the following minimal
values ofe and é:
€>0.0064, 5> —0.0065. (102

The condition thaf),, decreases at=0, together withQ;
<0 andX;>0, imply

|Qil

- (103

1
o<2i<Z\/Q$+4(e+ 8)—

124001-13



COLEY, SARMIENTO G., AND SUSSMAN PHYSICAL REVIEW 66, 124001 (2002

B. A physically plausible evolution and the range of validity of ~ nance taking place at about=4 (T~10" K). Numerical
the models integration of the governing equations for initial conditions

It is important to specify a criterion in order to distinguish different from Eq.(104) might yield important qualitative
a physically plausible evolution for the models. We definechanges in the state variables plotted in Fig. 1, like
such an evolution by the following conditions that must hold{)m) .y or S, but not of those plotted in Fig. 2, such &s
all along the range of validity discussed previously: or the time scale$36), (37), (66), 7, or physical timet.

(1) Q(ny increases whil&},, decreases. The transition Therefore, Fig. 2 provides a general estimation of the range
from a radiation- to a matter-dominated epoch occurs withirof validity of the models for a wide range of initial condi-
the radiative era. However, the ratip,, /€,y must remain  tions. We will consider more general initial conditions in the

finite in all the validity range. following section.

(2) Smust be an increasing and convex function, tending
asymptotically to the equilibrium photon entropy given by C. Sensitivity to deviations from y=0
Eq. (35).

. We will test the effect of initial deviations from the in-
(3) Siy* —=Q must be very small. Ideally, we should |53t sety=0 on state functions obtained by numerical

haveSe,) >0, though this condition might fail to hold as long integration of the governing equations. We consider initial

as S>0 holds(see[23] for examples conditions as in Eq(93), keeping,;, andQ; fixed, but now
(4) Initially, we have Eqs(95), (96), and(97), but then at  we take§#0:

later stagest. (the Compton scattering time scales no

longer relevant, whilé,, and 7 should overtake ,, so that Qm)(0)=0.0128-5, (0)=0.9872,

the baryon-photon decoupling is defined Bs=t, and
should occur at-=7_ such thafT(7 )=T =4x10° K.
i D i D D .
We will not be concerned with the evolution of the mod- Quon(0)=1-5, x(0)=6- 10°6. (105

els after the radiative era, since the assumptions regarding a

hydrodynamic description of the radiative fluid break down.gince 5 can be given in terms of by Eq. (101 and e

After the baryon-photon decoupling, an appropriate treat—_ g qq2g corresponds t6=0, testing values of near e

ment of cosmic matter requires a different theoretical frame-zo 0128 determines the initial deviation fraffy,,,=1 and
. o

work based on kinetic theory34]. x=0. Notice thats can be positive or negative, respectively,
Consider a transient reging =~ yo=O(1)=1], together ¢, .0 0128 ore<0.0128, so thaty(0)=0 if 5=3?

with “test” initial conditions given by Eqs(93) with §=0, s . . " A 2 6
o =10"°, while x(0) is positive/negative i5>2;=10"° or
satisfying Eds. (99), (101, (102, and (103, hence e 5<32=10"° [though, from Eq(61), curvature has the op-

=0.0128. For the time being,; will be taken to be two ; ) . . ;
orders of magnitude smaller th&) . This yields the follow- POSIté sign toy]. We integrate numerically the governing
equations for initial condition$105), y= y,=0.7 (transient

ing initial diti lyi 0)=0:
ing initial conditions lying very neag(0) regime and for various values of. The resulting forms of

3,(0)=0.001, Q(0)=-0.1,

Q(m)(0)=0.0128, €1(0)=0.9872, %(0)=0.001, Qm) Q) Loy, and S are, respectively, plotted in Figs.
3a—3d(for positive curvatureg<0) and in Figs. 4a—4¢for
Q(0)=-0.1, (1049  negative curvaturg>0). These figures clearly show that a
physical evolution is only possible for initial conditions that
so that deviate very slightly fromy(0)=0 (less than~10"°9),
s leading to orbits that remain very close to the invariant set
Qoy(0)=1, x(0)=-10". (104 y=0. If we fix € and & (for any combination of values

. . . compatible with Eqs(101), (102 and(103) and vary,;, so
In order to illustrate how the different variables should be-y ~."aviation fromy(0)=0 is governed by, , we obtain

have in a physipal evolution taking place in thg appropri'ateexactly the same behavior displayed by Figs. 3 and 4, lead-
time scale, we integrate the system of governing equation

i?\g to the same conclusion: a physical evolution is only pos-
(56), (58), (59), and(69) for Eq. (104 and y= y,=0.7. The : L L : : 55
results are displayed in Figs. 1 and 2. As shown by Figs.Slble for initial conditions for which x(0)[=10">"

1(a), 1(b), 1(c) and Xd), the functionsQ ), ),2,Q,S _

and S comply with conditions 1, 2 and 3 of the physical D. The near-Eckart regime

evolution mentioned aboveve shall discuss condition 4 in We examine the near-Eckart regime by assumjsgy,
Sec. VIIIB). Figure 2a depicts joint logarithmic plots of the =0.001<1, together with initial condition§104). As shown
various time scales, t;,t , and physical timet, respec- in Fig. 5a, the function§(r) andS(7) clearly have the form
tively, given by Egs.(36), (37), (66) and (67), while the  (76), indicating a quick relaxation in terms of an abrupt ex-
radiation temperaturg is displayed in Fig. 2b. By compar- ponential decayin about 7~0.01). Figure 5b shows how
ing Figs. 1 and 2, it is evident that the range of validity of thethe equilibrium entropyS,, tends to a constant value in
models is roughly & 7<6, corresponding to POK>T  aboutr~0.02, a longer time than the relaxation S,
>10° K, with t=10° years(the physical time for the radia- thus indicating that the effective relaxation time is provided
tive era, while the transition from radiation to matter domi- by Sy, andSi,>0 holds for all the evolution, in agreement
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FIG. 4. Sensitivity to x(0)=0, negative curvature. Analogues of Fig. 3 fé>0. A similar branching of the functions
Qmy Q) s Qrory S/ Sey is Observed even though the models do not re-collapse. Again, the furiBpy satisfies the conditions for a
physically plausible evolution only if initial conditions are given by 10>, Notice that the(),(7) curves in(a) with 5~10~>°bend
downward, so that for>6 they tend to the currently accepted values of present CDM abund@pges0.3.

with the “local equilibrium hypothesis{see Sec. VI A Fig-  practically unaffected. The effect of varying, (as long as
ure 5c reveals how (5/8/%— y,=0.001, so that Eckart's we have small values;0.01) is simply to make the decay of
transport equatiopP +27o=0 with  given by Eq.(29)]is  Q and S, slightly more or less abrupfdepending on
approximately valid once the quick relaxation is over. Awhethery, is smaller or larger than 0.001) and has no no-
good approximation to the relaxation time in a near-Eckartjceable effect on numerical curves of other functions.
regime is given by the assumptioni73) with y=

—(5/8)yo(Q/%) and y,=0.001. Figure 5d illustrates that

this is a correct assumption, since the obtainggovertakes E. Testing the relaxation times numerically
t, in the very short period that coincides with the duration of
the relaxation process0.02). The assumptiony=y,<1 leads to a reasonable relax-

The plots of the function§) . (7) andQ (1) are iden- ation time only in the earlier stages of the evolution, while a

tical to those that would have resulted in the transient regimgéhoice y=y,>1 might work for later conditions(near

had we chosen initial condition€l04) and a much larger matter-radiation decouplindgout not for earlier times. This
value of yo. The function3 (7) is affected, becoming almost ¢an be appreciated in Fig. 6b, since the relaxation times ob-
constant for very smaly,. This is reasonable, since E§6)  tained for different values of= y, would be curves parallel
does not contai®, while Egs.(58) and (59) do contain this  tot,. As we mentioned beforey, controls the rate of decay
function, but|Q(7)| and Q' decay very fast becoming al- of Q andS but it is still interesting to check if other func-
most zero for most of the time range and so the differentiations are sensitive to changes in the numerical constant value
equations for the function§ , and (), (but notX) are  of y,. Assuming initial conditiong104) and integrating the
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dynamical system for various values ¢§>0.1 (thus ex- numerical value ofy,.

cluding the non-transient zopshows that the other func- Since y constant is not very realistic, we test now the
tions (such asQ ) ,{(;) or X) are essentially identical to expression forr. that follows from Eqs.(82) and (83) in
those shown in Figs 1 to 4, being thus unaffected by theSec. VI B. Ignoring the curvature term, we have

Mo
Y= .
8/5+ puo( 1+ wo) + po( 1= 240) Q(my/2— ol 1+ (X —3) po] 22

(106)

It is evident that choosing a sufficiently smalh, yields y;  tified with ny, instead ofn,, and Q; would correspond to
~5u0/8<1, an initial value characteristic of a near-Eckart the baryonid,. It is interesting to examine numerically the
regime. As expected, numerical tests wijilp<1 lead to  consequences of this “baryonic scenario.” Considering the
practically identical curves as those corresponding to théaryon-photon number ratio in EL5), the baryonic sce-
near-Eckart regime¢Figs. 5a, 5b and 5cHowever, forug  nario implies replacing Eq$100 and(101) by

>1/2, the factor multiplying , in the denominator of Eq. )
(106 can become negative for some thus opening the €—6 M
possibility that the denominator might become small and so 1—€ 3K T
v might increase to=O(1) ast reaches later times related ¢
to the baryon-photon decoupling era. In order to explore this

possibility, we integrated the dynamical system for initial \while initial conditions are then given by Eqé104 and
conditions(104) and under the assumption gfgiven by Eq.  (105), but 5=0 now corresponds te=0.00199 instead of
(106), with various values of.o>1/2. As shown by Fig. 6a, ¢=0.0128. Intuitively, we do not expect a major qualitative
the choiceuo>15 leads toy diverging as(approximately  change in the resulting graphs, though it is reasonable to
7—7, this leads tory overtakingt  (Fig. 60 around7  expect thak) y, will be smaller and ) larger, since bary-
~6.8. It would have been nicer to havg, overtakingt at ~ ons have less rest mass dendiby one or two orders of
an earlier timgsay 7~5-5.5) as required by condition 4 for Magnitudg than WIMP's and so it should take longer for
a physically plausible evolution, but we feel that the form ofaryons to dominate over radiation. The numerical curves
7, @ssociated with EG106) is a reasonable approximation that result are as expected intuitively, withy, £y, and

to a physical relaxation time that acts as an “effective” re-S/S(e having very similar forms as the curves of Figs. 3 and
laxation time for the radiative era. Finally, another conse-4 With ) decreasing slightly slower than in the case with
quence of dealing with a more reasonable formdgris the ~ WIMP’s. Since the obtained curves {0k, in the baryonic

¢ : " : i lose to those obtained in Figs. 3 and 4 for
fact thatS, < —2Q being positive and very sma(tondi- scenario are so ¢ :
(e) ;
tion 3 of a physically plausible evolutioris better satisfied the case with WIMP's, these curves yield baryon abundances

. . that are clearly incompatible with the bounds placed by cos-
than in the case of constapt (compare Figs. 1b and B¢ mic nucleosynthesis(l,~10~2).

r,~0.002, 6=1.002—0.002, (107)

F. The truncated equation

Considering initial condition§104) and y=y,=0.7, the IX. DISCUSSION AND CONCLUSION
integration of the goverming equationss), (58), (5_9)' an_d We have studied a class of dissipative Kantowski-Sachs
(86) yield the curves forQ,%, Oy, and €, depicted in odels describing the cosmological evolution during the ra-

Figs. 7a, 7b and 7c. These figures reveal that a physical;

the qualitative analysis clearly emerge, making all these,qiive “radiative” fluid. We also assumed the presence of
functions to undertr_;lke an unphysical growth. We tes_te_d_ othe&DM' in the form of a non-relativistic gas of WIMPgight-
values ofyo andy given by Eq(106), as well as other initial gt heytralings Although this gas does not interact with the
conditions and obtained very similar curves to those of Figs, o iative fluid, it provides the bulk of the rest mass energy
7a-7c, all failing to comply with the criteria for a physically gensity and thus it strongly influences the dynamics of the
plausible evolution. models and the resulting values of cosmological time scales,
such ag . On the other hand, the radiative fluid provides the

bulk of thermal and dissipative effects, related to the rate of
If we had considered only the radiative flui{Baryons, change and relaxation of the radiation entropy to its equilib-

photons and electrohss the matter source of the models, rium value.

then the bulk of the rest mass energy density would have After defining new normalized variablé¥ g, 2,0,

been due to the baryons, so t&t) would have been iden- a set of evolution equations has been derived based upon

G. A baryonic scenario without CDM
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FIG. 5. "Near-Eckart” regime. FunctionsS/S, S(e)/kB, and —(5/8)(Q/X) correspond to initial conditiong104) with v,
=0.0015/S, in (@) relaxes much fasterré&=0.002) than in Figs. 1d, 3d or 4d, associated with the transient regime. The deSgyinf(b)
takes longer £~0.01) than that of§5 henceS, is an adequate entropy function in agreement with the “local equilibrium” hypothesis
characteristic of the Eckart regimcs(g)>0 holds throughout the evolutipn(c) shows how— (5/8)(Q/X)— y,=0.001, indicating that
Eckart's transport equation is approximately valid for0.02. In(d) we used initial condition§102 and y= —(5/8)(Q/X) yo with vy,
=0.001(instead ofy=y,=0.7), which yields an excellent approximation to the relaxation parameter of a near-Eckart regime, overtaking
tH at the relaxation time scale~0.01; this time scale, however, is too short in comparison with the relaxation time scale of the Compton
scattering also shown i), hence this and other radiative processes must be studied within a transient regime.

appropriate thermodynamical laws and equations of statavhile a “transient regime y~0O(1)<1] can be associated
The qualitative and numerical study of these evolution equawith a slower decay. Both the near-Eckart and the transient
tions has clarified various aspects of the dynamical behaviafegimes are compatible with a physically plausible evolution.
of the models, their physical viability, as well as a peculiarThe difference between the two regimes is the time scale of
sensitivity to certain initial conditions related to deviation theijr relaxation process: for the transient regime this time
from the invariant sety=0. We discuss below the main scale can be comparable with the duration of the radiative
features emerging from previous sections. _ era, for the near-Eckart regime it is much shoftdrout eight
The definiion of the phase space variablesqgers of magnitude in physical timéhis is well illustrated
Q). ,2,Q leads in a natural way to expressing the re-py the differences in evolution time scales between Fig. 5
laxation time e as proportional td, =3/0 [see Eqs(68)  ang Figs. 1-4. Comparing Figs. 2b and 5d, it is evident that
and(73)]. The understanding of the relaxation process can beéhe relaxation time scale of the near-Eckart regime
accomplished by studying the effect of different choices of(~10° sec) is much shorter than that of the Compton scat-
the proportionality factory()>0, on the exponential decay tering (~10'! sec). Therefore the near-Eckart regime yields
of the dissipative stres@elated toQ) and of the photon a relaxation that is too swift and so it is inadequate to exam-
entropySto its equilibrium valueS, . We have identified a ine the two main radiative processes of the radiative era: the
“near-Eckart” regime if this decay is abrupty1, and be- Compton scattering an@nore s9 the Thomson scattering. It
coming instantaneous in the limig—0, so thatr,,—0), is important to mention this fact in view of recent claif3$]
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FIG. 6. Dynamical relaxation timéga) displaysy obtained from
integrating the governing equations for the form given by @§6),
the numbers next to each curve correspond to the chosen numeriqﬂ
values ofug;y diverges foruy> 15. (b) displays the corresponding S
form for ¢ which overtaked  for 7~6.8. (c) showsS(e)/k for

to=200. A comparison with Flg. 1b shows that requmﬁg)/ks
to be small is better satisfied with given by Eq.(104) than with a

constant valuey=0.7 (as in Fig. 1.
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that a transient theory of irreversible thermodynamics is not
really necessarysee[36] for a comprehensive discussijolft

is evident that the cosmological study of radiative processes
in pre-decoupling times needs to be accomplished with a
transient regime.

As revealed by Figs. 1—-4, a physically plausible evolution
is possible for all the duration of the radiative era for initial
conditions given by an initial state very close ¥¢0)=0,
hence lying very close to the invariant set of zero curva-
ture y=0. All models complying with a physical evolution
begin their evolution near the equilibrium point
(), Q(my»2,Q)=(1,0,0,0), a saddle with positive eigen-
values(i.e., stabl¢ associated with the FLRW sub-case of the
models, and the proceeding evolution remains very close to
the invariant sefjy=0. This is an extremely interesting fea-
ture of these models, as it relates a geometric property of KS
solutions with the constraints imposed by the physics and by
observational evidence, since recent data from CMB obser-
vations |nd|cate$)(tot) 1. By looking at the curves di
andQ(mt) with <10 ° in Figs. 4a and 4¢negative curva-
ture), it is evident that forr>6 these curves decrease from
their values(),~1 andQ,y~1 aroundr=6. Had we
plotted these curves for larger valuesfextending to the
present era{~15), we would have obtaine@ ;~Q gy
~0.3, in agreement with the currently accepted value of
Q(my, but not of Q) . Of course, the estimated contribu-
tion to Q10 , today, for non-relativistic matteiCDM plus
baryons is only ~0.3, with the remaining two-thirds of the
critical density probably related to &-type “dark energy”
interaction whose precise nature and properties are still un-
certain. However, this discrepancy with regard€}g,;, to-
day is not surprising since we did not consider amtype
interaction, and so it does not affect our results. Also, the
models we are considering are only valid for a specific range
of cosmological times: T8sz=<10°, in which this “dark en-
ergy” would likely not have been dominant. Still, the close
link between a physically plausible evolution afigh, near
unity is remarkable.

It is interesting to compare our results to those reported
previously[37] dealing with the perfect fluid sub-case of the
KS models examined in this papghough these models did
not consider a CDM componenfAs reported in37], there
are numerical solutions in which both matter and radiation
normalized densitied) ) ,{(, decay to zero as the mod-
els re-collapse and approach a crunch singularity. By looking
at the forms of} ,; and(),y in Fig. 4, itis evident that such
evolution is similar to that depicted by curves associated
with initial conditions=10"3. However, the evolution that
results from these initial conditions fails to comply with our
physical criteria, since the entrogis no longer a convex
function for all of the time rangdsee Fig. 4¢ and starts
decreasing at too early times. In the perfect fluid case, these
examples satisfy an appropriate equation of state and all of
e energy conditions and also the photon entropy is simply
) and is constant for all times, hence there is no physical
reason to discard these curvésther than remarking that
such behavior of) () is not observed in the real uni-
versg. However, for the dissipative source under examina-
tion here,SandS, are not constant and the conditions for a
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physical evolution are more stringent, hence we can apply
clear physical criteria to discard these perfect fluid “strange”
cases.

For initial conditions near the equilibrium point
(), Q(m),2,Q)=(1,0,0,0)[as in Eq.(104)], the numeri-
cal curves of the “equilibrium variables(), and(} are
not affected by the choice af= v,, the constant proportion-
ality factor betweerr,q andtH. This is a consequence of the

fact that for these initial conditions the values fQ and
S—S¢) remain small during all of the evolution. Therefore,
the evolution equations fof), and Q. [Egs. (56) and
(58)] are practically unaffected by the presenceoandQ,

and so are insensitive to the rate of transiency givenyby
constant. Since® and Q govern the deviation from the
FLRW equilibrium point, this decoupling df(;y and Q)
from 2 andQ is then a consequence of the evolution of the
system always remaining close to thermal equilibrium. We
tested this behavior for a particular form ¢f[Eq. (106),
Sec. VI Bl: the curves for)(,,Q),%, andQ are practi-
cally identical with those that follow from choosing=0.7

in Figs. 1 to 4. However, as shown in Figs. 6a and 6b, for
large values ofu, defined by Eq(83), the obtained relax-
ation timer,, behaves similarly to what one would expect of
a relaxation parameter for the radiative era. Although it has
become common practice to simply equatg with a micro-
scopic interaction time, lik¢, or t., the relaxation time is
not a microscopic but a mesoscopic or even macroscopic
quantity (though it must be qualitatively analogous to inter-
action timeq 36]). Since it can be extremely cumbersome to
evaluater,q, it is useful to have a concrete example where
this relaxation parameter can be adequately approximated by
the same dynamical equations associated with the models.

Finally, by means of qualitative arguments supported by
the numerical analysis, we have shown in Sec. (#ig. 7),
that the truncated equation does not comply with a physically
plausible evolution. This is an important result, since we
have found a concrete example in which a truncated trans-
port equation leads to unphysical evolution of dissipative
fluxes. Although this conclusions strictly applies to the KS
models under consideration, we must point out that one
should be very cautious when applying these equations to
other models and other equations of state.

A possible extension of this work would be to consider
instead of CDM other forms of dark matter, such as “warm”
dark matter(WDM) or axions. Another possibility is to in-
clude, together with dark matter, a scalar field associated
with “dark energy.” Another route to generalize the present
work is use a class of metrics associated with a geometry that
is less restrictive than KS, for example the non-static spheri-
cal symmetry (perhaps under the assumption of self-
similarity). We regard the present analysis of the Kantowski-
Sachs models as a first step toward an understanding of the
dynamics of cosmic matter in more general and physically

)r/’notivated inhomogeneous models.
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