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Harvesting thermal fluctuations: Activation process induced
by a nonlinear chain in thermal equilibrium
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We present a model in which the immediate environment of a bistable system is a molecular chain
which in turn is connected to a thermal environment of the Langevin form. The molecular chain
consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and
mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs
and leads to different transition dynamics for the activated process. Thus, all else~temperature,
damping, coupling parameters between the chain and the bistable system! being the same, the hard
chain may provide an environment described as diffusion-limited and more effective in the
activation process, while the soft chain may provide an environment described as energy-limited and
less effective. The importance of a detailed understanding of the thermal environment toward the
understanding of the activation process itself is thus highlighted. ©2000 American Institute of
Physics.@S0021-9606~00!00723-6#
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I. INTRODUCTION

The search for mechanisms that may induce the spo
neous localization of vibrational energy in molecular mate
als has surfaced in a variety of contexts where such local
energy may then trigger other events. These may incl
switching and other threshold phenomena, chemical re
tions, local melting and other deformational effects, and e
detonation. In the Kramers problem1,2 a particle moving in a
bistable potential is used as a model for a chemical proc
The trajectory of the particle is associated with the react
coordinate~RC!. One well of the bistable potential represen
the ‘‘reactant’’ state, the other the ‘‘product’’ state, and sep
rating them is the ‘‘activation barrier.’’ The bistable potenti
is connected to a thermal environment, typically throu
fluctuating and dissipative terms, and every once in a whi
large thermal fluctuation causes the particle to surmount
barrier and move from one well to the other. The avera
rate of occurrence of these events is associated with the
action rate. This mesoscopic Langevin-type of approach
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mits of an underlying microscopic description of the therm
environment and its coupling to the bistable system. For
stance, the usual Langevin equation with an instantane
dissipation and Gaussiand-correlated fluctuations can be de
rived from a picture in which the system is harmonica
coupled to an infinite number of harmonic oscillators with
uniform spectrum. A generalized Langevin picture involvin
dissipative memory terms and correlated fluctuations is a
ciated with a more complex spectrum.3 It is clear, and has
become a topic of considerable interest, that the nature o
environment and its coupling to the bistable system p
foundly influence the transition rate.

A different but related set of problems that has attrac
intense interest in recent years concerns the spontaneou
calization of vibrational energy in periodic nonlinear array
The pioneering work of Fermi, Pasta, and Ulam4 demon-
strated that a periodic lattice of coupled nonlinear oscillat
is not ergodic, and that energy in such a lattice may neve
distributed uniformly. A great deal of work has since fo
lowed in an attempt to understand how energy is distribu
in discrete nonlinear systems.5–17 The existence of solitons
and more generally of breathers and other energy-focu
mechanisms, and the stationarity or periodic recurrence
even slow relaxation of such spatially localized excitatio
are viewed as nonlinear phenomena with important con
quences in many physical systems.13,18,19The search for lo-
5 © 2000 American Institute of Physics
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calization mechanisms that are robust even when the ar
are in a thermal environment13,15,16,20has, on the one hand
narrowed the problem~because some localization mech
nisms are fragile against thermal fluctuations! but on the
other hand broadened it~because new entropy-driven loca
ization mechanisms become possible!. Thermal effects may
be particularly important in biophysical and biochemical a
plications at the molecular level.21–23

The interest in the distribution and motion of energy
periodic arrays arises in part because localized energy
these systems may bemobile, in contrast with systems wher
energy localization occurs through disorder. Localized
ergy that moves with little or no dispersion may appear
one location on an array and may then be able to mov
another where it can be used in a subsequent process. T
tional harmonic models suffer from the fact that dispers
thwarts such a mechanism for energy transfer. There
been a surge of recent activity in an attempt to underst
the thermal conductivity of nonlinear chains.24–26

The connection between the study of perfect nonlin
arrays and the Kramers problem arises because such a
may themselves serve as models for a heat bath for o
systems connected to them.27–29 Albeit in different contexts,
‘‘perfect’’ arrays serving as energy storage and transfer
semblies for chemical or photochemical processes are
uncommon,30–33 and literature on the subject goes back
two decades.34–36 We thus consider the following variant o
the Kramers problem: a bistable system connected to a
linear chain, which is in turn connected to a heat bath in
usual Langevin manner~see Fig. 1!. The bistable system is
only connected to the environment through its embedding
the nonlinear chain, and therefore the ability of the chain
spontaneously localize thermal energy and perhaps to tr
port it to the location of the bistable system can profoun
affect the transition rate. We investigate the behavior of t
model for different types of anharmonic chains and there

FIG. 1. Schematic of a bistable impurity~‘‘reaction coordinate’’ RC! con-
nected to a chain that interacts with a heat bath at temperatureT. The chain
masses are indicated by rhombuses. Their interactions~shown schematically
as springs! may be harmonic or anharmonic. Each mass in the chai
subject to thermal fluctuations denoted byh and the usual accompanyin
dissipation. The bistable impurity interacts only with the chain, which th
provides its thermal environment. The bistable system is inserted in
chain; its detailed interaction with the chain is discussed in the text.
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establish the important role of the nature of the environm
on these chemical model systems.

In Sec. II we discuss the energy landscape typical
various nonlinear chains in thermal equilibrium. In Sec.
the variant of the Kramers problem wherein a bistable s
tem is connected to each of the different chains is presen
In Sec. IV our results for the transition statistics in th
bistable system are detailed. We compare and contras
transition statistics in the different chains and compare th
to those found in the standard~Markovian! Kramers and gen-
eralized Kramers problems. We conclude with a summ
and some notes on future directions in Sec. V.

II. NONLINEAR CHAINS

The simplest nonlinear periodic arrays consist of mas
connected by springs that may be harmonic or anharmo
The masses may also experience a local harmonic or an
monic potential. In a recent paper we presented a deta
view of the thermal landscape of arrays with local hard~the
‘‘ f4 model’’!, harmonic, or soft potentials and harmon
interactions.20 Here we present the complementary analy
~more interesting, it turns out, in the context of the Krame
problem! of the thermal landscape of masses connected
anharmonic springs~with no local potentials!.

The spontaneous localization of energy in any system
thermal equilibrium is simply a reflection of the thermal flu
tuations described by statistical mechanics and is unrel
to system dynamics. On the other hand, the way in wh
these fluctuations dissipate and/or move and disperse, th
the temporal evolution of thermal fluctuations, is dictated
the system dynamics and, in particular, by the channels c
necting the chain to the thermal environment~dissipation!
and the masses to one another~intermolecular interactions!.

We pose the following questions:~1! How is the energy
distributed in an equilibrium nonlinear chain at any giv
instant of time, and how does this distribution depend on
anharmonicity? Can one talk aboutspontaneous energy lo
calization in thermal equilibrium, and, if so, what are th
mechanisms that lead to it?~2! How do local energy fluctua-
tions in such an equilibrium array relax in a given oscillato
Are there circumstances in the equilibrium system where
given oscillator remains at a high level of excitation for
long time?~3! Can local high-energy fluctuations move
some nondispersive fashion along the array? Can an arra
thermal equilibrium transmit long-lived high-energy fluctu
tions from one region of the array to another with little di
persion?

In our earlier work20 we showed that in harmonically
coupled nonlinear chains~‘‘diagonal anharmonicity’’! in
thermal equilibrium, high-energy fluctuation mobility doe
not occur beyond that which is observed in a harmonic cha
Herein we show that the situation might be quite differen
there is ‘‘nondiagonal anharmonicity,’’ that is, if th
interoscillator interactions are anharmonic.

Our model consists of a one-dimensional array ofN unit-
mass sites, each connected by a potentialV(xn2xn61) to its
nearest neighbors that may be harmonic or anharmonic:
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H5 (
n51

N pn
2

2
1 (

n51

N

V~xn2xn21!. ~1!

We assume periodic boundary conditions and consider t
prototype potentials:

Vh~x!5 1
2 kx21 1

4 k8x4, hard; ~2!

V0~x!5 1
2 kx2, harmonic; ~3!

Vs~x!5
k

k8
F uxu2

1

k8
ln~11k8uxu!G , soft. ~4!

At small amplitudes the three potentials are harmonic w
the same force constantk. The independent parametersk and
k8 allow control of the harmonic component and the deg
of anharmonicity of the chain. Elsewhere37,38we have argued
that the overarching characteristic of anharmonic oscilla
is the dependence of frequency on energy. For a harm
oscillator the frequency isAk independent of energy; for
hard oscillator the frequency increases with energy, and f
soft oscillator the frequency decreases with energy.

The set of coupled stochastic equations of motion for
masses is that obtained from the Hamiltonian, Eq.~1!, aug-
mented by the usual Langevin prescription for coupling
system to a heat bath at temperatureT:

ẍn52
]

]xn
@V~xn112xn!1V~xn2xn21!#2g ẋn1hn~ t !, ~5!

where a dot represents a derivative with respect to time.
hn(t) are mutually uncorrelated, zero-centered, Gauss
d-correlated fluctuations that satisfy the fluctuation
dissipation relation̂ hn(t)h j (t8)&52gkBTdn jd(t2t8). The
numerical integration of the stochastic equations for all
simulations is performed using the second order Heu
method~which is equivalent to a second order Runge Ku
integration!39,40 with time stepDt50.005. In each simula
tion the system is initially allowed to relax for enough iter
tions to ensure thermal equilibrium, after which we take o
‘‘measurements.’’

The equilibrium results to be presented here complem
our observations, presented elsewhere, on the way in w
these same chains propagate an energy pulse38 as well as a
sustained signal applied at a particular site.41

A set of energy landscapes is shown in Fig. 2. Along
horizontal direction in each panel lies a thermalized chain
oscillators; the vertical upward progression shows the ev
tion of this equilibrium system with time. The gray sca
represents the energy, with darker shading reflecting m
energetic regions.

Several noteworthy features are evident in the figu
The energy fluctuations are greatest in the soft chain. T
feature, seen earlier in chains with local anharmo
potentials,15,20 is a consequence of the effect that we ha
calledentropic localization. In the soft chain not only are th
thermal fluctuations greater at a given temperature, a re
easily obtained from a simple virial analysis, but the fr
energy is minimized by a nonuniform distribution of ener
that populates regions of phase space where the densi
states is high. We have argued that this localization mec
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h

e

rs
ic

a

e

a

e
n,

r
’s

r

nt
ch

e
f
-

re

.
is
c
e

ult

of
a-

nism is robust against temperature increases—indeed, it
comes more effective with increasing temperature. A sec
distinctive feature of the soft chain is the persistence of
energy fluctuations: damping is not particularly effective f
soft chains. The only other mechanism for the removal
localized energy from a particular location is along the cha
This is clearly not an effective mechanism, a result that is
agreement with our analysis of the propagation of an ex
nally applied pulse in the soft chain.38 The speed of propa
gation ~in all chains! of a pulse of a given energy is esse
tially proportional to the average frequency associated w
that energy, and in the soft chain this average freque
decreases with increasing energy.38 Although we do not see
an obvious connection between these excitations and soli
at zero temperature~which are not entropic localization
mechanisms!,10,17,31,33–35there may be a closer connectio
with more generalized excitations such as breathers.13,16,21

In the hard chain~Fermi–Pasta–Ulam chain! the total
energy as well as the energy fluctuations are consider

FIG. 2. Energy~in gray scales! for thermalized chains of 71 oscillators as
function of time. Thex-axis represents the chain and time advances al
they-axis, withtmax5160. The temperature iskBT50.08 and the dissipation
parameter isg50.005. Top panel: hard chain withk50.1, k851; middle
panel: harmonic chain withk50.1; lower panel: soft chain withk50.1,
k855.
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smaller but quite mobile with little dispersion. In the ha
chain the average frequency increases with energy and th
fore more energetic pulses tend to travel more rapidly.
have also shown that the dispersion of energy in a hard c
is slow38—this is seen here in the integrity of the spontan
ously localized pulses over a much longer time than in
harmonic chain.

An important question of course concerns the param
regimes where the differences illustrated in Fig. 2 are
served. We have chosen potential parameters that en
clear distinctions in the displacement amplitudes associ
with the three potentials at the chosen temperature. The
restriction is that the temperature not be ‘‘too low,’’ that
we avoid the region where all three potentials are essent
harmonic. We have chosen very low damping for the illu
tration. The soft energy landscape is far less sensitive
damping than the hard array. An increase in damping wo
readily slow down the motion of the high-energy fluctuatio
and would shorten their lifetime. Further, while the speed
the energy fluctuation pulses is sensitive to the potential
rameters, their lifetime and dispersion properties are les
~as long as one is in the highly anharmonic regime!. On the
other hand, the persistence of the fluctuations in the
array is quite sensitive to the harmonic contribution to
potential. All else remaining fixed, the landscapes rem
qualitatively similar as temperature increases: the fluct
tions in the soft array become even stronger relative to
others, and the pulse speeds in the hard array become
higher.

Suppose now that a bistable ‘‘impurity’’ is embedded
each of these chains, as illustrated in Fig. 1. When suffic
energy reaches the impurity, a transition may occur from
well to the other. The statistical and dynamical properties
these transitions are not obvious, and are explored in the
section.

III. KRAMERS PROBLEM AND STATEMENT OF OUR
VARIANT

A. Traditional Kramers problem

The original Markovian Kramers problem1 describes the
reaction coordinatey evolving in the bistable potential

Vb~y!5
V0

4
~y221!2, ~6!

according to the usual Langevin prescription,

ÿ52
dVb~y!

dy
2gbẏ1hb~ t !, ~7!

where gb is the dissipation parameter~the subscript for
‘‘bistable’’ distinguishes this from the other dissipation p
rameters! and hb(t) represents Gaussian, zero-center
d-correlated fluctuations that satisfy the fluctuation
dissipation relation appropriate for temperatureT,
^hb(t)hb(t8)&52gbkBTd(t2t8). The rate coefficientkr for
transitions from one metastable well to the other is expres
as

kr5k kTST, ~8!
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wherekTST is the rate obtained from transition state theo
for activated crossing, which in our units (V051, frequen-
ciesA2 at the bottom of the two wells and unit frequency
the top of the barrier! is

kTST5
A2

p
e21/4kBT. ~9!

This is the highest possible rate because it assumes no
crossings of the barrier when the particle moves from o
well to the other. The ‘‘transmission coefficient’’k,1 cap-
tures the effects of recrossings. The dependence ofk on the
various parameters of the problem has been the subjec
intense study over many years.2,42–44 Its dependence ongb

and temperature is exemplified in the simulations shown
Fig. 3. In particular, we note the occurrence of a maximu
as predicted by Kramers, the transmission coefficient at h
friction ~diffusion-limited regime! decays asgb

21 ~and is in-
dependent of temperature!; at low friction ~energy-limited
regime! Kramers predicted thatk is proportional togb /kBT.

An important generalization of the original Krame
problem, the so-called Grote–Hynes problem,45 reformulates
the model in terms of the generalized Langevin equation

ÿ52
dVb~y!

dy
2E

0

t

dt8G~ t2t8!ẏ~ t8!1hb~ t !, ~10!

where G(t2t8) is a dissipative memory kernel and th
fluctuation–dissipation relation is now generalized
^hb(t)hb(t8)&5kBTG(t2t8). The dissipative memory ker
nel reflects the dynamics of the thermal environment and
characterized by its own time scales. A frequent choice is
exponential, but other forms that have been used includ
Gaussian and a decaying oscillatory memory kernel. The
troduction of additional parameters of course changes
behavior of the transmission coefficient.

The main point here is to call attention to the fact th
the transmission coefficient has the same value for two

FIG. 3. Transmission coefficientk versus dissipation parametergb for two
temperatures obtained from direct simulation of Eq.~7!. Solid circles:kBT
50.025; triangles:kBT50.05.
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ferent values of the dissipation parametergb , and that there-
fore one cannot conclude whether the system is in one
gime ~diffusion-limited! or another~energy-limited! simply
from the value of the transition rate. One needs to know
trend with a changing dissipation parameter, and one
quires further information about the dynamics underlying
given transition rate. Not surprisingly, these dynamics t
out to be entirely different in different regimes.46 The time
dependence of the transmission coefficient is a direct refl
tion of the explicit trajectories of the particle as it trans
from one well to the other. A number of investigators ha
looked at the time dependence of the transmission coeffic
in the diffusion-limited47–51 and energy-limited47,49–51 re-
gimes, and also at the effect of different types of mem
kernels.50–52

Of interest to us here are the different dynamical beh
iors in the diffusion-limited regime and the energy-limite
regime. In Fig. 4 we show two views of each of two typic
trajectories of the reaction coordinate for the Markovi
Kramers problem. The transmission coefficients associa

FIG. 4. Trajectory of a bistable impurity described by the Langevin eq
tion, Eq. ~7!. The temperature iskBT50.08. First panel:gb55.0. Second
panel: gb50.02. The third~fourth! panel zooms in on a portion of the
high-damping~low-damping! trajectory.
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with these two trajectories are not too different~see below!,
but they correspond to different damping, placing them
opposite sides of the turnover in thek vs gb curve. The
trajectory in the first panel is in the diffusion-limited regim
the third panel shows an expanded view of a portion of t
trajectory. The particle performs rather erratic motion with
one well and once in a while it surmounts the barrier. Wh
the particle surmounts the barrier it does not spend m
time in the barrier region before being trapped again in o
or the other well. The crossing trajectories thus tend to
volve only one or a very small number of crossing
recrossings. The trajectory in the second panel, a portio
which is expanded in the fourth panel, is energy-limited. T
particle performs a fairly periodic motion within one wel
Barrier crossing events tend to retain the particle in the b
rier region for several recrossings; a phase space ana
shows that the associated trajectories are rather smooth
cillations from one side to the other of the potential w
above the barrier.49 Correlation functions associated wit
these trajectories are presented and discussed in Sec. IV

B. Variant of the Kramers problem

We would like to understand the way in which the ve
different thermal landscapes described in Sec. II affect
dynamics of a reaction coordinate evolving in a bista
‘‘impurity’’ embedded in these environments. The conne
tion of the bistable impurity to the thermal environment o
curs only through its connection to the chain, that is, we
gb50.

We need to specify how the bistable system intera
with the chain. We insert the impurity along the chain b
tween sitesi and i 11 and connect it to each of these tw
sites~see Fig. 1!. It is customary to choose a simple intera
tion potential with a harmonic dependenceVint(x,y)}(x
2y)2 for each chain site connected to the impurity. Herey is
the reaction coordinate andx stands for the coordinate of th
chain site connected to the impurity. However, this inter
tion tends to destabilize the bistability in that it causes
neighbors to pull the bistable particletoward the barrier
rather than toward its natural metastable states. The inte
tion thus lowers the barrier of the bistable impurity. Since
do not want to ‘‘bias’’ the problem in this way, we hav
chosen an interaction that instead tends to favor the alre
metastable states:

Vint~x,y!5
kint

2 S y221

2
2xD 2

. ~11!

Near the bistable minima~which are shifted by the interac
tion! the total potential for the reaction coordinate is s
harmonic, and near the maximum aty50 it is still parabolic.
The barrier height is modulated by the motion of the neig
bors ~somewhat reminiscent of the barrier fluctuations
resonant activation problems!. At large values ofy the inter-
action hardens the bistable potential.

The equations of evolution then have the following co
tributions. For a site in the chain not connected to t
bistable impurity we have, as before, Eq.~5!. For the bistable
impurity,

-
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ÿ52
dVb~y!

dy
2

]Vint~xi 11 ,y!

]y
2

]Vint~xi ,y!

]y
. ~12!

For the site to the left of the bistable impurity,

ẍi52
]V~xi2xi 21!

]xi
2

]Vint~xi ,y!

]xi
2g ẋi1h i~ t !, ~13!

and similarly forxi 11 . Comparisons are made for the sam
temperature, damping coefficients, and interaction param
(kint50.1 throughout this work! varying only the nature of
the chain.

Figure 5 shows trajectories of the bistable impurity e
bedded in each of the three chains. In the hard chain
trajectory is rather similar to that of a Markovian Krame
particle in the diffusion-limited regime, while in the so
chain it is closer to that of the energy-limited regime. This
a direct reflection of the behavior seen in Fig. 2, that is,
the fact that in the hard chain independent thermal fluct
tions created elsewhere along the chain have a good ch
of reaching the bistable impurity, causing erratic motion.
occasional large fluctuation causes a transition over the
rier, usually unaccompanied by recrossings: the same en
mobility that brings independent fluctuations to the impur
also makes it easy for the impurity to then lose a particu
energy fluctuation back to the chain. In the soft chain, on
other hand, the particle performs fairly periodic motio
within one well. Only fluctuations in the sites immediate
adjacent to the impurity can excite the impurity; fluctuatio
originating elsewhere do not travel to the impurity. Stro
fluctuations are therefore rarer but more energetic and m
persistent, so transition events occur less often. Howe
once such a fluctuation occurs it tends to remain in that
gion for a long time; the reaction coordinate therefore
crosses the barrier a large number of times until it eventu
loses the excess energy and is trapped again in one o
wells.

FIG. 5. Trajectory of a bistable impurity embedded in a chain of 30 os
lators withkBT50.08 andg50.005. Top panel: hard chain withk50.1 and
k851. Middle panel: harmonic chain withk50.1. Bottom panel: soft chain
with k50.1 andk855.
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A second set of trajectories associated with the sa
bistable impurity in the same three chains at the same t
perature but with a~10-fold! higher dissipation parameter i
shown in Fig. 6. Not surprisingly, the trajectories are no
more similar to one another, but nevertheless there are
important and revealing differences that will be made e
dent in our discussion in the next section. Furthermore
comparison of the two sets will allow important observatio
concerning the trends associated with increased dampin

In the next section we provide a quantitative charact
ization of the differences in the trajectories and a compari
of these results with those of the traditional Kramers pro
lem.

IV. RESULTS FOR TRANSITION RATES

A useful description of the bistable system in differe
regimes is provided by the normalized correlation functio

C~t![
^y~ t1t!y~ t !&

^y2~ t !&
, ~14!

where the brackets indicate an average overt. Since^y(t)&
50, this correlation function decays to zero. When the th
mal environment strongly and rapidly changes the part
momentum, the trajectory is erratic and the correlation fu
tion decays monotonically and exponentially. The dec
time is a measure of the mean time between crossing ev
from one well to the other, and its inverse can be identifi
with the transition ratekr . If on the other hand the effects o
the thermal environment are weak, then the trajectory is
termined mainly by the deterministic potential and rema
correlated over much longer periods of time.

The correlation functions for the Markovian Krame
trajectories of Fig. 4 are shown in Fig. 7. In the hig
dissipation regime the correlation function is monotonic a
decays exponentially over essentially all times. This is a
flection of the essentially random motion within each w
and between wells~the correlation functions for portions o

-FIG. 6. Trajectory of a bistable impurity embedded in a chain of 30 os
lators. All parameters are the same as in Fig. 5 except that the dissip
parameter has been increased tog50.05.
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the trajectory entirely within one well are also monotonica
decreasing, albeit not to zero!. The slope of the high-gb

curve in the right panel leads to a mean time between cr
ings of tc'250.

The oscillations in the low-gb correlation function reflect
mainly the systematic periodic motion of the particle with
each well, i.e., of the portions of the trajectory that evolve
a long time neary51 or neary521. The period of these
oscillations for the parameters used here istbottom5A2p, and
this is very nearly the period of the oscillations in the figu
Crossing events from one well to the other are mostly se
rated by long times and are essentially independent~how-
ever, see a further discussion below!. Hence the logarithmic
rendition in the right panel gives a straight line. Its slo
leads to a mean time between crossing events oftc'450.

The Kramers correlation functions serve as a point
reference for an interpretation of the correlation functio
associated with our variant of the Kramers problem. Th
are shown in a number of figures starting with Fig. 8, wh
shows the correlations functions associated with the traje
ries in Figs. 5 and 6. We stress that in each panel theg and

FIG. 7. Correlation functions for the Markovian Kramers problem asso
ated with the trajectories of Fig. 4. Dashed curves:gb55.0, dotted curves:
gb50.02. First panel: short-time behavior. Second panel: correlation fu
tions on a logarithmic time scale.
s-

r

.
a-

f
s
e

o-

kBT are the same in all cases, as is the coupling of the ch
to the bistable system; only the nature of the chain
changed. The first panel shows a correlation function for
harmonic chain that is oscillatory at early times, and qu
similar to the energy-limited Markovian Kramers case~see
also the corresponding trajectories in Figs. 4 and 5!. We
conjecture that the harmonic chain provides a thermal e
ronment comparable to the low-damping Markovian Kra
ers environment. The correlation function associated with
hard chain is similar to the behavior at higher damping in
Kramers case. The correlation function associated with
soft chain also decays in an oscillatory fashion, but in a m
complex way than in the energy-limited Markovian Krame
case.The alternation in the amplitudes is a consequence
the presence of sustained bursts of energy that cause a fi
fraction of the trajectory to occur above the barrier, leadin
to many correlated recrossing events. The particle oscillates
above the barrier for intervals much longer than in the M
kovian Kramers trajectory. The typical oscillation perio
above the barrier is about twice as long astbottom in our
example~detailed discussions of these times can be found

i-

c-
FIG. 8. Correlation functions associated with the trajectories of Figs. 5~first
panel! and 6~second panel!. Dashed curves: hard chain; solid curves: ha
monic chain; dotted curves: soft chain.
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our earlier work49–51!. This effect is already slightly visible
in the low-gb Kramers correlation function in Fig. 7, but it i
much stronger in the soft chain. To reproduce this beha
in the Kramers model it is necessary to consider thegener-
alized Kramers model with a memory friction: there
clearly an additional memory effect in the soft chain th
allows the energy to remain trapped in the region of
bistable impurity for a long time. This is in accord with th
notion that transitions in the soft chain are caused by lo
thermal fluctuations in the nearest neighbors of the impur
The impurity may periodically exchange energy with the
neighbors before the fluctuation eventually dissipates aw
and this causes repeated recrossings. This in turn leads t
conclusion that the memory friction in the Kramers mod
needed to reproduce the soft chain environment would m
likely be oscillatory.51

The periods of oscillations in the harmonic and s
chains are somewhat different from those of the Kram
curve in Fig. 7 and from each other. This is due to diffe
ences in the effective potentials.

The eventual decay of the correlation functions for
three chains is exponential. We find for the times betwe
transition events~single or bursts as appropriate! tc'101 for
the hard chain,tc'453 for the harmonic chain, andtc

'1540 for the soft chain.
A similar set of correlation functions associated with t

higher-damping-parameter trajectories of Fig. 6 is shown
the second panel of Fig. 8. The dynamics of the bista
system in the hard chain with increasing damping do
change in character, whereas the oscillations in the harm
and soft chains become less pronounced as these sys
move toward the diffusion-limited regime. First we note th
all the curves become steeper, which translates to ashorter
mean time between crossing events and therefore ahigher
transition rate for all three chains. The specific values
obtain aretc'72 for the hard chain,tc'170 for the har-
monic chain, andtc'215 for the soft chain. The decrease
time between crossing events is most pronounced for the
chain. This is consistent with the notion that the soft chain
in the energy-limited regime where small increases in eff
tive damping cause the greatest increases in the trans
rate~see Fig. 3!. The harmonic chain lies closer in this sen
to the turnover region, and the hard chain even closer
The second point is that this apparent trend for the hard c
indicates that it, too, lies on the low-damping side of t
turnover in spite of the diffusion-limited aspects of its d
namics. This is the reason for the very small oscillatio
visible at the earliest times in the hard chain correlation fu
tions. It is apparent that neither the trajectory itself nor ev
the shape of the correlation function at one value of
damping provides unequivocal information to determ
which side of the turnover regime one is on; it is necessar
investigate the trend.

It is interesting to investigate whether our variants of t
thermal environment can actually be ‘‘pushed’’ across
turnover point by increasing the damping on the chain.
this purpose we present a series of correlation functions
each of the chains for different values of the damping para
r
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eter. The other parameters, including the temperature, rem
fixed and equal to the values given earlier.

Figure 9 shows results for the soft and harmonic cha
With increasing damping the early-time oscillations in t
correlation function in the soft chain first lose some of t
‘‘alternation’’ features typical of a long oscillatory dissipa
tive memory kernel and eventually the correlation functi
loses its oscillatory character altogether. The crossing
continues to increase as damping increases, so throug
this series one is still on the low damping side of the tu
over. The second panel of Fig. 9 shows the correlation fu
tions for the impurity in the harmonic chain. The trend
similar to that of the soft chain but, in all respects, indicati
of the fact that the harmonic environment is closer to
turnover region than the soft environment. Thus the osci
tions disappear sooner, and the increase in the transition
with increasing damping is smaller.

Perhaps the most interesting features are seen in Fig
Here we clearly see the very small short-time oscillatio
which disappear as damping increases. The transition ra
quite insensitive to damping in the rangeg50.005–0.1
shown in the figure~the line forg50.2, not explicitly shown,

FIG. 9. Correlation functions for the bistable impurity in the soft chain~first
panel! and harmonic chain~second panel! for various values of the dissipa
tion parameter.
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also falls in the same regime!. The turnover value mus
therefore be within this range. To ascertain if this is so,
also exhibit the correlation function for a considerably larg
value of the dissipation parameter,g51.0. The slower decay
for g51 is clear in both panels.

V. CONCLUSIONS

There has been a dearth of information on the effects
the activation process ofnonlinearitiesin the environment.
We have taken an approach here that goes part way, mu
the tradition of modeling efforts for a variety of system
interacting with a complex environment: the ‘‘immedia
surroundings’’ of the reaction coordinate are described
croscopically, while the interaction of this immediate en
ronment with other degrees of freedom is handled phen
enologically.

We find that the dynamics of the activation process
some parameter regimes are profoundly affected by the
ture of the chain. If the damping parameter connecting
chain to the heat bath is sufficiently low, a soft chain p
vides an environment very similar to that of the Grote
Hynes model with an oscillatory memory kernel in th

FIG. 10. Correlation functions for the bistable impurity in the hard chain
various values of the dissipation parameter. First panel: short-time beha
Second panel: correlation function on a logarithmic scale.
e
r

n

in
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energy-limited regime,51 while a hard chain provides an en
vironment akin to that of the Kramers model in the diffusio
limited regime.49 This in turn means that in such paramet
regimesthe hard chain is a more effective mediator of t
activation process than is the soft chain.

A number of interesting questions concerning these s
tems are currently under investigation. One concerns the
fluence of boundary conditions on the behavior that we h
described.37 A second problem concerns the effect on t
reaction coordinate of a pulse or a sustained signal app
somewhere else along the chain. We have showed tha
propagation of such a pulse or signal is strongly affected
the nature of the chain,38,41 and we expect these difference
in turn to affect the response of a bistable impurity to the
excitations. Such models are interesting in the context
physical or biophysical situations wherein energy is relea
at some location~provided perhaps by a chemical reaction
an absorption process at that location!, which must then
move to another location~that of the bistable impurity! to
effect some further chemical process~represented by the ac
tivation process!. The usual linear chain models are plagu
by the excessive dispersion that would make such a tra
mission inefficient. Nonlinearities in the environment m
provide the necessary mobility with little attendant disp
sion, thus greatly increasing the efficiency of such a proc
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