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We present a model in which the immediate environment of a bistable system is a molecular chain
which in turn is connected to a thermal environment of the Langevin form. The molecular chain
consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and
mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs
and leads to different transition dynamics for the activated process. Thus, altteisgerature,
damping, coupling parameters between the chain and the bistable sstigig the same, the hard
chain may provide an environment described as diffusion-limited and more effective in the
activation process, while the soft chain may provide an environment described as energy-limited and
less effective. The importance of a detailed understanding of the thermal environment toward the
understanding of the activation process itself is thus highlighted.2080 American Institute of
Physics[S0021-96080)00723-9

I. INTRODUCTION mits of an underlying microscopic description of the thermal

. . environment and its coupling to the bistable system. For in-
The search for mechanisms that may induce the sponta- . . : .

L S . . stance, the usual Langevin equation with an instantaneous
neous localization of vibrational energy in molecular materi-

. : ; gissipation and Gaussiancorrelated fluctuations can be de-
als has surfaced in a variety of contexts where such localize

energy may then trigger other events. These may includgved from a picture in which the system is harmonically

switching and other threshold phenomena, chemical reacc_oupled to an infinite number of harmonic oscillators with a

tions, local melting and other deformational effects, and everlfqrm_spectrum. A generalized Langevin plcturg mvplvmg
detonation. In the Kramers probléfa particle moving in a d-|SS|pat|\./e memory terms and correlateq fluctuations is asso-
bistable potential is used as a model for a chemical procesSiated with a more complex SPF‘-‘C”LM is clear, and has
The trajectory of the particle is associated with the reactio?€COMe a topic of considerable interest, that the nature of the
coordinate(RC). One well of the bistable potential represents&nvironment and its coupling to the bistable system pro-
the “reactant” state, the other the “product” state, and sepafoundly influence the transition rate.

rating them is the “activation barrier.” The bistable potential A different but related set of problems that has attracted
is connected to a thermal environment, typically throughintense interest in recent years concerns the spontaneous lo-
fluctuating and dissipative terms, and every once in a while &alization of vibrational energy in periodic nonlinear arrays.
large thermal fluctuation causes the particle to surmount th&he pioneering work of Fermi, Pasta, and Ufademon-
barrier and move from one well to the other. The averagetrated that a periodic lattice of coupled nonlinear oscillators
rate of occurrence of these events is associated with the ré not ergodic, and that energy in such a lattice may never be
action rate. This mesoscopic Langevin-type of approach addistributed uniformly. A great deal of work has since fol-
lowed in an attempt to understand how energy is distributed
in discrete nonlinear systems!’ The existence of solitons

dpermanent address: Departament dénfta-Fsica, Universitat de Barce-

lona, Avda. Diagonal 647, 08028 Barcelona, Spain. and more generally of breathers and other energy-focusing
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establish the important role of the nature of the environment
on these chemical model systems.

In Sec. Il we discuss the energy landscape typical of
various nonlinear chains in thermal equilibrium. In Sec. Il
the variant of the Kramers problem wherein a bistable sys-
tem is connected to each of the different chains is presented.
In Sec. IV our results for the transition statistics in the
bistable system are detailed. We compare and contrast the
transition statistics in the different chains and compare them
to those found in the standaftllarkovian Kramers and gen-
eralized Kramers problems. We conclude with a summary
and some notes on future directions in Sec. V.

FIG. 1. Schematic of a bistable impurityreaction coordinate” RC con-
nected to a chain that interacts with a heat bath at temperatdree chain
masses are indicated by rhombuses. Their interactahmsvn schematically ll. NONLINEAR CHAINS

as springs may be harmonic or anharmonic. Each mass in the chain is he si | l iodi . f
subject to thermal fluctuations denoted hyand the usual accompanying The simplest nonlinear periodic arrays consist of masses

dissipation. The bistable impurity interacts only with the chain, which thusconnected by springs that may be harmonic or anharmonic.
provides its thermal environment. The bistable system is inserted in thdfhe masses may also experience a local harmonic or anhar-
chain; its detailed interaction with the chain is discussed in the text. monic potential. In a recent paper we presented a detailed

view of the thermal landscape of arrays with local hétde

“ ¢* model”), harmonic, or soft potentials and harmonic

interactions’® Here we present the complementary analysis
calization mechanisms that are robust even when the arraymore interesting, it turns out, in the context of the Kramers
are in a thermal environméntt®1®2%has, on the one hand, problem of the thermal landscape of masses connected by
narrowed the problenifbecause some localization mecha- anharmonic springéwith no local potentials
nisms are fragile against thermal fluctuatiprmit on the The spontaneous localization of energy in any system in
other hand broadened (because new entropy-driven local- thermal equilibrium is simply a reflection of the thermal fluc-
ization mechanisms become possjblehermal effects may tuations described by statistical mechanics and is unrelated
be particularly important in biophysical and biochemical ap-to system dynamics. On the other hand, the way in which
plications at the molecular levél 23 these fluctuations dissipate and/or move and disperse, that is,

The interest in the distribution and motion of energy inthe temporal evolution of thermal fluctuations, is dictated by
periodic arrays arises in part because localized energy irthe system dynamics and, in particular, by the channels con-
these systems may Ipeobilg in contrast with systems where necting the chain to the thermal environmédissipation
energy localization occurs through disorder. Localized enand the masses to one anotkiatermolecular interactions
ergy that moves with little or no dispersion may appear at We pose the following question&t) How is the energy
one location on an array and may then be able to move tdistributed in an equilibrium nonlinear chain at any given
another where it can be used in a subsequent process. Tradistant of time, and how does this distribution depend on the
tional harmonic models suffer from the fact that dispersionanharmonicity? Can one talk abospontaneous energy lo-
thwarts such a mechanism for energy transfer. There hasalization in thermal equilibrium, and, if so, what are the
been a surge of recent activity in an attempt to understanthechanisms that lead to i2) How do local energy fluctua-
the thermal conductivity of nonlinear chaiffs2° tions in such an equilibrium array relax in a given oscillator?
The connection between the study of perfect nonlineaAre there circumstances in the equilibrium system wherein a

arrays and the Kramers problem arises because such arragiven oscillator remains at a high level of excitation for a
may themselves serve as models for a heat bath for othéong time?(3) Can local high-energy fluctuations move in
systems connected to théf2° Albeit in different contexts, some nondispersive fashion along the array? Can an array in
“perfect” arrays serving as energy storage and transfer asthermal equilibrium transmit long-lived high-energy fluctua-
semblies for chemical or photochemical processes are nadibns from one region of the array to another with little dis-
uncommort’~33and literature on the subject goes back forpersion?
two decades?®We thus consider the following variant of In our earlier work® we showed that in harmonically
the Kramers problem: a bistable system connected to a nomoupled nonlinear chaing“diagonal anharmonicity’j in
linear chain, which is in turn connected to a heat bath in thehermal equilibrium, high-energy fluctuation mobility does
usual Langevin mannesee Fig. 1. The bistable system is notoccur beyond that which is observed in a harmonic chain.
only connected to the environment through its embedding itHerein we show that the situation might be quite different if
the nonlinear chain, and therefore the ability of the chain tahere is “nondiagonal anharmonicity,” that is, if the
spontaneously localize thermal energy and perhaps to trangiteroscillator interactions are anharmonic.
port it to the location of the bistable system can profoundly =~ Our model consists of a one-dimensional arrajaemit-
affect the transition rate. We investigate the behavior of thisnass sites, each connected by a poteM{al,— x,+4) to its
model for different types of anharmonic chains and therebynearest neighbors that may be harmonic or anharmonic:
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We assume periodic boundary conditions and consider three
prototype potentials:

Vh(x)=3kx?+3k’x*  hard; 2)

Vo(x)=3kx?, harmonic; ©)

K , Soft. (4)
At small amplitudes the three potentials are harmonic with
the same force constakt The independent parametérand

k" allow control of the harmonic component and the degree
of anharmonicity of the chain. Elsewhéfé®we have argued
that the overarching characteristic of anharmonic oscillators
is the dependence of frequency on energy. For a harmonic
oscillator the frequency isk independent of energy; for a
hard oscillator the frequency increases with energy, and for &
soft oscillator the frequency decreases with energy.

The set of coupled stochastic equations of motion for the
masses is that obtained from the Hamiltonian, &g, aug-
mented by the usual Langevin prescription for coupling a
system to a heat bath at temperatlire

k 1
Vo(x)= —[|X|— PIn(H k'[x[)

. J .

Xp=— O—)_Xn[v(xn+1_xn)+V(Xn_xn—1)]_ YXnt 7n(1), (5)
where a dot represents a derivative with respect to time. The
n,(t) are mutually uncorrelated, zero-centered, Gaussian,
os-correlated fluctuations that satisfy the fluctuation—
dissipation relatior{ 77,(t) 7;(t")) =2ykgT 6p;8(t—t"). The
numerical integration of the stochastic equations for all our
simulations is performed using the second order Heun'$iG. 2. Energy(in gray scalesfor thermalized chains of 71 oscillators as a
method(which is equivalent to a second order Runge Kuttafunction of time. Thex-axis represents the chain and time advances along
integratior)39'4° with time stepAt= 0.005. In each simula- they-axis, witht,,,= 160. The temperature kg T=0.08 and the dissipation

. L . parameter isy=0.005. Top panel: hard chain witt=0.1, k’=1; middle
t!on the system is initially a”_‘?W‘?d to relax fO!‘ enough itera- panel: harmonic chain witlk=0.1; lower panel: soft chain witlk=0.1,
tions to ensure thermal equilibrium, after which we take ourk’ s,
“measurements.”
The equilibrium results to be presented here complement
our observations, presented elsewhere, on the way in whichism is robust against temperature increases—indeed, it be-
these same chains propagate an energy Pudsewell as a comes more effective with increasing temperature. A second
sustained signal applied at a particular §tte. distinctive feature of the soft chain is the persistence of the
A set of energy landscapes is shown in Fig. 2. Along theenergy fluctuations: damping is not particularly effective for
horizontal direction in each panel lies a thermalized chain okoft chains. The only other mechanism for the removal of
oscillators; the vertical upward progression shows the evolulocalized energy from a particular location is along the chain.
tion of this equilibrium system with time. The gray scale This is clearly not an effective mechanism, a result that is in
represents the energy, with darker shading reflecting moragreement with our analysis of the propagation of an exter-
energetic regions. nally applied pulse in the soft chaffi.The speed of propa-
Several noteworthy features are evident in the figuregation (in all chaing of a pulse of a given energy is essen-
The energy fluctuations are greatest in the soft chain. Thigally proportional to the average frequency associated with
feature, seen earlier in chains with local anharmonichat energy, and in the soft chain this average frequency
potentials:>?° is a consequence of the effect that we havedecreases with increasing enef§yAlthough we do not see
calledentropic localizationIn the soft chain not only are the an obvious connection between these excitations and solitons
thermal fluctuations greater at a given temperature, a resudtt zero temperaturéwhich are not entropic localization
easily obtained from a simple virial analysis, but the freemechanismg'®'’:31:33-35%there may be a closer connection
energy is minimized by a nonuniform distribution of energy with more generalized excitations such as breathti%?!
that populates regions of phase space where the density of In the hard chainNFermi—Pasta—Ulam chairthe total
states is high. We have argued that this localization mechanergy as well as the energy fluctuations are considerably
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smaller but quite mobile with little dispersion. In the hard 1.0
chain the average frequency increases with energy and there-
fore more energetic pulses tend to travel more rapidly. We
have also shown that the dispersion of energy in a hard chain
is slow®®—this is seen here in the integrity of the spontane-
ously localized pulses over a much longer time than in the  gg|
harmonic chain. “
An important question of course concerns the parameter
regimes where the differences illustrated in Fig. 2 are ob- 04
served. We have chosen potential parameters that ensure
clear distinctions in the displacement amplitudes associated
with the three potentials at the chosen temperature. The only
restriction is that the temperature not be “too low,” that is,
we avoid the region where all three potentials are essentially ¢4 . s ‘
harmonic. We have chosen very low damping for the illus- 0.001 0.010 0100 1.000 10.000
tration. The soft energy landscape is far less sensitive to ¥
damping than the hard array. An increase in damping wouldc. 3. Transmission coefficient versus dissipation parametgg for two
readily slow down the motion of the high-energy fluctuationstemperatures obtained from direct simulation of Ef. Solid circles:kgT
and would shorten their lifetime. Further, while the speed of=0-025; trianglesksT=0.05.
the energy fluctuation pulses is sensitive to the potential pa-
rameters, their lifetime and dispersion properties are less so

(as long as one is in the highly anharmonic regin@n the ;pare KTST is the rate obtained from transition state theory
other hand, the persistence of the fluctuations in the SOfltor activated crossing, which in our unit¥/¢=1, frequen-

array is quite sensitive to the harmonic contribution to thejag /2 at the bottom of the two wells and unit frequency at

potential. All else remaining fixed, the landscapes remain,o top of the barrigris

qualitatively similar as temperature increases: the fluctua-

tions in the soft array become even stronger relative to the 2

others, and the pulse speeds in the hard array become even kTST=7e‘ VakgT 9
higher.

Suppose now that a bistable “impurity” is embedded in ;g js the highest possible rate because it assumes no re-

each of these chains, as illustrated in Fig. 1. When Sumden&rossings of the barrier when the particle moves from one
energy reaches the impurity, a transition may occur from ong,q|| (5 the other. The “transmission coefficieni<1 cap-
well to the other. The statistical and dynamical properties of,.os the effects of recrossings. The dependenoeaf the
these transitions are not obvious, and are explored in the next 0 .5 parameters of the problem has been the subject of

section. intense study over many yed&r& **Its dependence oy,

and temperature is exemplified in the simulations shown in
Fig. 3. In particular, we note the occurrence of a maximum:
as predicted by Kramers, the transmission coefficient at high
friction (diffusion-limited regime decays a@zgl (and is in-

A. Traditional Kramers problem dependent of temperatyreat low friction (energy-limited
regime Kramers predicted that is proportional toy, /kgT.

An important generalization of the original Kramers

problem, the so-called Grote—Hynes probi&meformulates

08

02|

IIl. KRAMERS PROBLEM AND STATEMENT OF OUR
VARIANT

The original Markovian Kramers probléndescribes the
reaction coordinatg evolving in the bistable potential

Vy(y)= %(yz—l)z, ©6) the model in terms of the generalized Langevin equation,
. . - . dVy(y) t -
according to the usual Langevin prescription, y=— dy — | dt'T(t—t")y(t")+ ny(t), (10)
0
_dVily) . T+ 7
y= dy Yoy 7o(b), @) where I'(t—t’) is a dissipative memory kernel and the

fluctuation—dissipation relation is now generalized to
(mp(t) pp(t'))=kgTI'(t—t"). The dissipative memory ker-
nel reflects the dynamics of the thermal environment and is
tharacterized by its own time scales. A frequent choice is an
R . . exponential, but other forms that have been used include a
dissipation relation appropriate for temperaturg, . . . .
, , - Gaussian and a decaying oscillatory memory kernel. The in-
() 7p(t"))=2y,kgTS(t—t"). The rate coefficienk, for . .
o . troduction of additional parameters of course changes the
transitions from one metastable well to the other is expresse, . L .
as ehavior of the transmission coefficient.
The main point here is to call attention to the fact that
k=« k'ST, (8)  the transmission coefficient has the same value for two dif-

where vy, is the dissipation parametdthe subscript for

“bistable” distinguishes this from the other dissipation pa-
rameters and 7(t) represents Gaussian, zero-centered
é6-correlated fluctuations that satisfy the fluctuation—
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with these two trajectories are not too differéaee belowy,
but they correspond to different damping, placing them on
opposite sides of the turnover in thevs vy, curve. The
trajectory in the first panel is in the diffusion-limited regime;
the third panel shows an expanded view of a portion of this
trajectory. The particle performs rather erratic motion within
‘ ‘ one well and once in a while it surmounts the barrier. When
0.0 20000 4000.0 6000.0 8000.0 10000.0 the particle surmounts the barrier it does not spend much
time in the barrier region before being trapped again in one
or the other well. The crossing trajectories thus tend to in-
J volve only one or a very small number of crossings/
recrossings. The trajectory in the second panel, a portion of
which is expanded in the fourth panel, is energy-limited. The
particle performs a fairly periodic motion within one well.
0. \ \ ‘ s | Barrier crossing events tend to retain the particle in the bar-
0.0 2000.0 4000.0 6000.0 8000.0 10000.0 . . . .
(@) ¢ rier region for several recrossings; a phase space analysis
shows that the associated trajectories are rather smooth os-

2.0 ‘ T T T ‘

20 ‘ cillations from one side to the other of the potential well
10+ W i WJ\ .W ! above the barriet? Correlation functions associated with
/ W,\ these trajectories are presented and discussed in Sec. IV.
> 0.0
}I | i bl
10 A"NWJM WV "W”' y‘M"ﬁ,ﬂf“\H " LMM\ B. Variant of the Kramers problem
20 ‘ \ % We would like to understand the way in which the very
P 6290'0 o400 66000 e8000 70000 different thermal landscapes described in Sec. Il affect the
' dynamics of a reaction coordinate evolving in a bistable
10 Wu'N”ﬁ“'*"““"”""'Wl'iW'Jmu'w\aw 'p \' il M ” } “impurity” embedded in these environments. The connec-
- ool | P \ tion of the bistable impurity to the thermal environment oc-
' Y ill ’ \ H curs only through its connection to the chain, that is, we set
a0 l(M'f QLY Ww V L W WWW 7=0. | | |
i' We need to specify how the bistable system interacts
) 2.0 00 72000 72000 76000 28000 50000 with the chain. We insert the impurity along the chain be-

t tween sites andi+1 and connect it to each of these two

FIG. 4. Trajectory of a bistable impurity described by the Langevin equa—SIteS(See Fig. 1 It is customary to choose a simple interac-

tion, Eq. (7). The temperature ikgT=0.08. First panel:y,=5.0. Second tion potential with a harmonic dependendgy(x,y)>(x
panel: y,=0.02. The third(fourth) panel zooms in on a portion of the —Y)? for each chain site connected to the impurity. Hgie
high-damping(low-damping trajectory. the reaction coordinate andstands for the coordinate of the
chain site connected to the impurity. However, this interac-
tion tends to destabilize the bistability in that it causes the
ferent values of the dissipation paramejgr, and that there- neighbors to pull the bistable partickeward the barrier
fore one cannot conclude whether the system is in one rgather than toward its natural metastable states. The interac-
gime (diffusion-limited or another(energy-limited simply  tion thus lowers the barrier of the bistable impurity. Since we
from the value of the transition rate. One needs to know thglo not want to “bias” the problem in this way, we have
trend with a changing dissipation parameter, and one rechosen an interaction that instead tends to favor the already
quires further information about the dynamics underlying ametastable states:
given transition rate. Not surprisingly, these dynamics turn kit [ y2—1 2
out to be entirely different in different regimé&The time Vin(X,y) = '7m< 5 —x)
dependence of the transmission coefficient is a direct reflec-
tion of the explicit trajectories of the particle as it transits Near the bistable minimévhich are shifted by the interac-
from one well to the other. A number of investigators havetion) the total potential for the reaction coordinate is still
looked at the time dependence of the transmission coefficieftarmonic, and near the maximumyat O it is still parabolic.
in the diffusion-limited’=®! and energy-limite{**>re-  The barrier height is modulated by the motion of the neigh-
gimes, and also at the effect of different types of memorybors (somewhat reminiscent of the barrier fluctuations in
°0-52 resonant activation problemdAt large values of the inter-

(11

kernels?
Of interest to us here are the different dynamical behavaction hardens the bistable potential.

iors in the diffusion-limited regime and the energy-limited The equations of evolution then have the following con-

regime. In Fig. 4 we show two views of each of two typical tributions. For a site in the chain not connected to the

trajectories of the reaction coordinate for the Markovianbistable impurity we have, as before, Ef). For the bistable

Kramers problem. The transmission coefficients associateiinpurity,
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10 } 1.0
> 00 > 00
-1.0 -1.0
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1.0 1.0
> 00 > 00
10 -1.0
2% 20000 20000 6000.0 8000.0 10000.0 2% 20000 20000 6000.0 8000.0 10000.0

t t

FIG. 5. Trajectory of a bistable impurity embedded in a chain of 30 oscil-FIG. 6. Trajectory of a bistable impurity embedded in a chain of 30 oscil-
lators withkgT=0.08 andy=0.005. Top panel: hard chain wit+0.1 and lators. All parameters are the same as in Fig. 5 except that the dissipation
k’=1. Middle panel: harmonic chain witk=0.1. Bottom panel: soft chain ~parameter has been increasedyte0.05.

with k=0.1 andk’ =5.

A second set of trajectories associated with the same
bistable impurity in the same three chains at the same tem-
- dV(Y)  VindXi11Y)  VindXiLY) 1p  Perature but with 410-fold) higher dissipation parameter is
y= dy ay aay ' (12) shown in Fig. 6. Not surprisingly, the trajectories are now
more similar to one another, but nevertheless there are still
important and revealing differences that will be made evi-
N(Xi—=Xi—1)  NVim(Xiy) . dent in our discussion in the next section. Furthermore, a
- —yxi+ (), (13 comparison of the two sets will allow important observations
concerning the trends associated with increased damping.
and similarly forx;, ;. Comparisons are made for the same  In the next section we provide a quantitative character-
temperature, damping coefficients, and interaction parametézation of the differences in the trajectories and a comparison
(kine=0.1 throughout this wonkvarying only the nature of of these results with those of the traditional Kramers prob-
the chain. lem.
Figure 5 shows trajectories of the bistable impurity em-
bedded in each of the three chains. In the hard chain thg/ RESULTS FOR TRANSITION RATES
trajectory is rather similar to that of a Markovian Kramers
particle in the diffusion-limited regime, while in the soft
chain it is closer to that of the energy-limited regime. This is
a direct reflection of the behavior seen in Fig. 2, that is, of (y(t+7)y(1))
the fact that in the hard chain independent thermal fluctua- C(7)=———"—, (14)
tions created elsewhere along the chain have a good chance (y=(1)
of reaching the bistable impurity, causing erratic motion. Anwhere the brackets indicate an average dv&ince(y(t))
occasional large fluctuation causes a transition over the bar=0, this correlation function decays to zero. When the ther-
rier, usually unaccompanied by recrossings: the same energgal environment strongly and rapidly changes the particle
mobility that brings independent fluctuations to the impurity momentum, the trajectory is erratic and the correlation func-
also makes it easy for the impurity to then lose a particulation decays monotonically and exponentially. The decay
energy fluctuation back to the chain. In the soft chain, on theéime is a measure of the mean time between crossing events
other hand, the particle performs fairly periodic motionfrom one well to the other, and its inverse can be identified
within one well. Only fluctuations in the sites immediately with the transition raté, . If on the other hand the effects of
adjacent to the impurity can excite the impurity; fluctuationsthe thermal environment are weak, then the trajectory is de-
originating elsewhere do not travel to the impurity. Strongtermined mainly by the deterministic potential and remains
fluctuations are therefore rarer but more energetic and moreorrelated over much longer periods of time.
persistent, so transition events occur less often. However, The correlation functions for the Markovian Kramers
once such a fluctuation occurs it tends to remain in that retrajectories of Fig. 4 are shown in Fig. 7. In the high-
gion for a long time; the reaction coordinate therefore re-dissipation regime the correlation function is monotonic and
crosses the barrier a large number of times until it eventuallglecays exponentially over essentially all times. This is a re-
loses the excess energy and is trapped again in one of ttilection of the essentially random motion within each well
wells. and between wellgthe correlation functions for portions of

For the site to the left of the bistable impurity,

= —
: L?Xi (;'Xi

A useful description of the bistable system in different
regimes is provided by the normalized correlation function
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FIG. 7. Correlation functions for the Markovian Kramers problem associ-
ated with the trajectories of Fig. 4. Dashed curvgs=5.0, dotted curves:  FIG. 8. Correlation functions associated with the trajectories of Figfsh

v,=0.02. First panel: short-time behavior. Second panel: correlation funcpane) and 6(second pangl Dashed curves: hard chain; solid curves: har-
tions on a logarithmic time scale. monic chain; dotted curves: soft chain.

the trajectory entirely within one well are also monotonically kgT are the same in all cases, as is the coupling of the chain
decreasing, albeit not to zgroThe slope of the highy, to the bistable system; only the nature of the chain has
curve in the right panel leads to a mean time between crosshanged. The first panel shows a correlation function for the
ings of 7.~250. harmonic chain that is oscillatory at early times, and quite
The oscillations in the lowy, correlation function reflect similar to the energy-limited Markovian Kramers casee
mainly the systematic periodic motion of the particle within also the corresponding trajectories in Figs. 4 and \We
each well, i.e., of the portions of the trajectory that evolve forconjecture that the harmonic chain provides a thermal envi-
a long time neay=1 or neary=—1. The period of these ronment comparable to the low-damping Markovian Kram-
oscillations for the parameters used herg,ig,= 27, and  ers environment. The correlation function associated with the
this is very nearly the period of the oscillations in the figure.hard chain is similar to the behavior at higher damping in the
Crossing events from one well to the other are mostly sepakramers case. The correlation function associated with the
rated by long times and are essentially independkotv-  soft chain also decays in an oscillatory fashion, but in a more
ever, see a further discussion bejowence the logarithmic complex way than in the energy-limited Markovian Kramers
rendition in the right panel gives a straight line. Its slopecase.The alternation in the amplitudes is a consequence of
leads to a mean time between crossing events,sf450. the presence of sustained bursts of energy that cause a finite
The Kramers correlation functions serve as a point offraction of the trajectory to occur above the barrier, leading
reference for an interpretation of the correlation functionsto many correlated recrossing evente particle oscillates
associated with our variant of the Kramers problem. Thesabove the barrier for intervals much longer than in the Mar-
are shown in a number of figures starting with Fig. 8, whichkovian Kramers trajectory. The typical oscillation period
shows the correlations functions associated with the trajectaabove the barrier is about twice as long @S m in our
ries in Figs. 5 and 6. We stress that in each panehtlad  example(detailed discussions of these times can be found in
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our earlier work®=®Y. This effect is already slightly visible 1.0

in the low-y, Kramers correlation function in Fig. 7, but it is

much stronger in the soft chain. To reproduce this behavior A

in the Kramers model it is necessary to considerghaer- o8 | \/\a\i’-;\\; AR A
alized Kramers model with a memory friction: there is \\\‘:\_\

clearly an additional memory effect in the soft chain that \~\\\\\—-~\_

allows the energy to remain trapped in the region of the & AN \\\\\ Tl

bistable impurity for a long time. This is in accord with the & %€ [ O
notion that transitions in the soft chain are caused by local 420001 \\\ \\\\\\\ )
thermal fluctuations in the nearest neighbors of the impurity. —— ¢=0.005 T~ =
The impurity may periodically exchange energy with these 0.4 |~~~ ¥=0.05 \\\
neighbors before the fluctuation eventually dissipates away __ 7;8;; I
and this causes repeated recrossings. This in turn leads to tF

conclusion that the memory friction in the Kramers model

needed to reproduce the soft chain environment would mos 0.0 20.0 40.0 80.0 80.0 100.0
likely be oscillatory®! (@

The periods of oscillations in the harmonic and soft 1.0 . ,
chains are somewhat different from those of the Kramers
curve in Fig. 7 and from each other. This is due to differ-

ences in the effective potentials. 08l N |
The eventual decay of the correlation functions for all Ne
three chains is exponential. We find for the times between \\Q\;\\\_/\Av
transition eventssingle or bursts as appropriate.,~ 101 for = ™~ \\5:\-\ N\ﬁ\f\m\
the hard chain,7;~453 for the harmonic chain, and, & 96| NN ]
~ 1540 for the soft chain. TOse TN
L . . . . —— 4=0.001 ~~ -
A similar set of correlation functions associated with the — y-0.005 TN -
higher-damping-parameter trajectories of Fig. 6 is shown in g4 | ---- v=0.05 ‘\7\\_\\(
the second panel of Fig. 8. The dynamics of the bistable . ﬁg'; T~
system in the hard chain with increasing damping do not '
change in character, whereas the oscillations in the harmoni 02 ‘ ‘ ‘ ‘
and soft chains become less pronounced as these systen 0.0 20.0 40.0 60.0 80.0 100.0
move toward the diffusion-limited regime. First we note that b) T

all the curves become steeper, which translates gshater G, 9. Correlation functions for the bistable impurity in the soft chéinst
mean time between Crossing events and therefdm'glaer pane) and harmonic chaifsecond pangffor various values of the dissipa-
transition rate for all three chains. The specific values wd'o" parameter.

obtain arer.~72 for the hard chainy.,~170 for the har-

monic chain, and-.~215 for the soft chain. The decrease in . . .

. . . ter. The other parameters, including the temperature, remain
time between crossing events is most pronounced for the So(fitxed and equal to the values given earlier
chain. This is consistent with the notion that the soft chain is 9 g '

i the enerav-limited regime where small increases in effec: Figure 9 shows results for the soft and harmonic chains.
I rgy-=iimi gime where ! ! With increasing damping the early-time oscillations in the

Fi The h i chain lies ol in th %brrelation function in the soft chain first lose some of the
rate(see Fig. 3 The harmonic chain lies closer in this sense.,temation” features typical of a long oscillatory dissipa-

to the turnover region, and the hard chain even closer ye e memory kernel and eventually the correlation function

The second point is that this apparent trend for the hard chaigeg its oscillatory character altogether. The crossing rate
indicates that it, too, lies on the low-damping side of the.,ntinyes to increase as damping increases, so throughout
turnover in spite of the diffusion-limited aspects of its dy- ihis series one is still on the low damping side of the turn-
namics. This is the reason for the very small oscillationsyyer. The second panel of Fig. 9 shows the correlation func-
visible at the earliest times in the hard chain correlation functjgns for the impurity in the harmonic chain. The trend is
tions. It is apparent that neither the trajectory itself nor eversimilar to that of the soft chain but, in all respects, indicative
the shape of the correlation function at one value of thesf the fact that the harmonic environment is closer to the
damping provides unequivocal information to determineturnover region than the soft environment. Thus the oscilla-
which side of the turnover regime one is on; it is necessary t@ions disappear sooner, and the increase in the transition rate
investigate the trend. with increasing damping is smaller.

It is interesting to investigate whether our variants of the  Perhaps the most interesting features are seen in Fig. 10.
thermal environment can actually be “pushed” across theHere we clearly see the very small short-time oscillations,
turnover point by increasing the damping on the chain. Fowhich disappear as damping increases. The transition rate is
this purpose we present a series of correlation functions foguite insensitive to damping in the rangg=0.005-0.1
each of the chains for different values of the damping paramshown in the figuréthe line fory=0.2, not explicitly shown,
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1.0 ‘ ‘ - - energy-limited regimé! while a hard chain provides an en-
X 0005 \_/irqnment gkin to th_at_of the Kramers model in the diffusion-
N\ —mm- 420.05 limited regime*® This in turn means that in such parameter

0s | « ——- =0.1 | regimesthe hard chain is a more effective mediator of the
N, = e activation process than is the soft chain
~. A number of interesting questions concerning these sys-
= S tems are currently under investigation. One concerns the in-
| R ~. fluence of boundary conditions on the behavior that we have
N ~o described’ A second problem concerns the effect on the
N S~ reaction coordinate of a pulse or a sustained signal applied
04 | NS T~ somewhere else along the chain. We have showed that the
= propagation of such a pulse or signal is strongly affected by
RN the nature of the chaift* and we expect these differences
0.2 ‘ ‘ . . in turn to affect the response of a bistable impurity to these
@ °° 200 400 800 800 100.0 excitations. Such models are interesting in the context of
physical or biophysical situations wherein energy is released
0.0 ‘ at some locatioriprovided perhaps by a chemical reaction or
N an absorption process at that locajiomhich must then
> move to another locatiofthat of the bistable impuriyto
~. effect some further chemical processpresented by the ac-
~ tivation procesp The usual linear chain models are plagued
Y by the excessive dispersion that would make such a trans-
N mission inefficient. Nonlinearities in the environment may
-1.0 N ~ 1 provide the necessary mobility with little attendant disper-
N ~. sion, thus greatly increasing the efficiency of such a process.

log C(z)
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