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Enhanced pulse propagation in nonlinear arrays of oscillators
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The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by
its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others
a pulse can be slowed down by raising the temperature. We begin by showing that an energypmilse
dimension or energy front(two dimensiony travels more rapidly and remains more localized over greater
distances in an isolated arréyicrocanonical of hard springs than in a harmonic array or in a soft-springed
array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged
in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal
environment(canonical affects these results very differently in each type of array. In a hard chain the
dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite
occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a
harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are
explained on the basis of the frequency vs energy relations in the various 484063-651X99)11411-9

PACS numbgs): 05.40.Ca, 05.45.Xt, 02.50.Ey, 63.20.Pw

[. INTRODUCTION our work, and we have separated our inquiries into three

In recent years there has been a great deal of interest dhistinct groups of question$i) The study of such arrays in
the interplay of nonlinearity and applied forciridetermin-  thermal equilibrium{9]. The questions here concern the spa-
istic and/or stochastjan the stationary and transport prop- tial and temporal “energy landscape” that determines the
erties of discrete spatially extended systdihs The ability  degree of spontaneous energy localization due to thermal
of discrete anharmonic arrays to localize and propagate erfluctuations and the temporal persistence of high or low en-
ergy in a persistent fashion, and the fact that noise may aergy regions{2) The study of the propagation of a persistent
(sometimes against one’s intuitipto enhance these proper- signal applied at one end of the arrgd0]. The questions
ties, has led to particularly intense activi®—4]. Interesting  here concern the signal-to-noise ratio and distance of signal
noise-induced phenomena include stochastic resondijce propagation;(3) The study of the propagation of an initial
noise-induced phase transitior$], noise-induced front §-function energy pulséhis work). The questions here con-
propagation[7], and array-enhanced stochastic resonanceern the velocity of propagation and the dispersion of such a
[8]. pulse.

Our interests in this area have been motivated by the rela- It is useful and relevant to provide a very brief summary
tive dearth of information concerning the effects of a thermalof our conclusions on the first two sets of questions. Our
environment on the sometimes exquisite balances that amork on equilibrium energy landscapg8] was based on
required to achieve these interesting resonances and persgdiains of harmonically coupled oscillators subject to a local
tences[3,9,10. At the same time, we have also noted thatpotential that may be anharmonic. Each oscillator is con-
most of the literature has concentrated on overdamped arraygected to a heat bath at temperatdreWe analyzed the
(often motivated by mathematical or computational con-thermal fluctuations and their persistence as influenced by
straints rather than physical consideratiomsrestriction that the local potentialwe compared hard, harmonic, and soft
leaves out important inertial effects and that is easily overpotentialg, the strength of the harmonic coupling between
come. the oscillators, the strength of the dissipative force connect-

Perhaps the simplest generic discrete arrays in which tong each mass to the heat bath, and the temperature. Among
analyze these issues are systems of oscillators consisting ofir conclusions are the followindg1l) An increase in tem-
masses that may be subject to local monostable potentiafgerature in weakly coupled soft chains leads not only to
(harmonic or anharmoniand nearest neighbor monostable greater energy fluctuations but also to a slower decay of
interactions(harmonic or anharmonidother generic arrays these fluctuations(2) an increase in temperature in weakly
of current interest are bistable units linearly or nonlinearlydissipative hard chains leads not only to greater energy fluc-
connected to one anothelhese are the systems of choice in tuations but also to a slower decay of these fluctuati®)s;

high-energy-fluctuation mobility in harmonically coupled
nonlinear chains in thermal equilibrium doest occur be-
*Permanent address: Instituto de Astronayipartado Postal 70- yond that which is observed in a completely harmonic chain.
264, Ciudad Universitaria, Méco D.F. 04510, Mexico. However, we noted earlier that interest in energy localiza-
TPermanent address: Departament dén@ea-Fsica, Universitat ~ tion in perfect arrays, as contrasted with localization induced
de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain. by disorder, arises in part because localized energy in these
*present address: Max-Planck-Institiitr fiestkoperforschung,  systems may benobile Dispersionless or very slowly dis-
Heisenbergstrasse 1, 70569 Stuttgart, Germany. persive mobility would make it possible for localized energy
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to reach a predetermined location where it can participate in 8 —T T - T y -
a physical or chemical event. Our results raised the possibil- \
ity of observing such localized mobility if the anharmonicity \
lies in the interoscillator interactions rather thi@m in addi- 6r \
tion to) the local potentials. We ascertained that a persistent I \
sinusoidal force applied to one site of a chain of masses '\‘
connected by anharmonic springs may indeed propagate \
along the chaini10]. Furthermore, we demonstrated a set of I \
resonance phenomena that we have catlegimal reso- . \
nancesbecause they involve optimization vieamperature 21
control. In particular, these results establish the existence of b\ LT
optimal finite temperatures for the enhancement of the . = _.‘_/ """ .
signal-to-noise ratio at any site along the chain, and of an -4 -2 0 2 4
optimal temperature for maximal distance of propagation y
along the chain. These resonances differ from the usual R
noise-enhanced propagation where the noise is external 205 e - 1
and/or the system is overdamped. T ]

This work addresses the third set of questions posed 170 1 T e ]
above concerning the way in which a nonequilibrium initial e T
condition in the form of an energy pulse propagates as the 135 -7 .
system relaxes toward equilibrium. More specifically, we in-
vestigate the motion and dispersion of such an energy pulse 1.00 |
and the effects of finite temperatures on pulse propagation. './
In view of our earlier results on thermal resonances, perhaps 065 B
the most interesting question to be asked at this point is this: (T
Is it possible to enhance pulse propagation via temperature 030 e —
control? 0 1 2 3 4 5

In order to monitor the evolution of the nonequilibrium E
initial condition it is useful to partition the Hamiltonian as FIG. 1. First panel: the potentials defined in E6®—(5) with

k=1. Solid curve: harmonic potentiad¥/o(y). Dashed curve: hard
H= 2 E,, (1) a_mharmonic potential,(y). Dotted curve: soft a_nharmonic po_ten-
n tial, V¢(y). Second panel: frequency as a function of the oscillator
energy for these potentials. The dot-dashed line shows the fre-
whereE,, contains the kinetic energy of siteand an appro- quency curve for the commonly used potentigl(y) +Vy(y).
priate portion of the potential energy of interaction with its
nearest neighbor&l/2 in one dimension, 1/4 in two dimen-

V(y)
I

o(E)
\
\

sions. In one dimension Vi(y) = Zy4’ (4)
2
pn 1 1 and a soft anharmonic,
En="% + 5V(n11.X) +5V(Xe Xn-1).  (2)
Vs(y)=K[|y[=In(1+]y])]. 6)

In Sec. Il the potentials considered in this paper are _ . .
briefly presented. Section IIl contains our analysis and red Ne an.harmomc potentlals have been c_hosen to b.e strictly
sults for one-dimensional oscillator chains. Here we discus§ardening and strictly softening, respectively, with increas-
ways to characterize the mobility and dispersion of an initial"d @mPplitude. The potentials are shown in the first panel in
localized impulse, and compare the behaviors of harmonid;19: 1. In almost all our simulations we take=1.
hard anharmonic, and soft anharmonic chains. In Sec. IV we ' N€ displacement variablg of a single oscillator of en-
present some results for isolated two-dimensional arrays arfef9Y E in @ potentialvV(y) satisfies the equation of motion
note some interesting geometric features with perhaps unan- dy
ticipated consequences. Section V is a summary of results. e +\2[E—V(y)]. (6)

Il. POTENTIALS This equation can be integrated and, in particular, one can

The particular potentials as a function of the relative dis-€xpress the period of oscillatior(E) and the frequency of
placementy=x,—x,_, used in our presentations are the oscillationw(E) as

harmonic,
(E) 2 4 Ymax dy (7)
T =" —.
Vo(y)= Eyz, (3) (E) 0 N2[E-V(y)]

The amplitudey,,a, is the positive solution of the equation
a hard anharmonic, V(y)=E. The resulting oscillation frequencies obtained
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from the integration of Eq(7) for the three potentials with tunity to organize the effects of different parameters on the
k=1 as well as that of the frequently used “quadratic plusbehavior of the chains.
quartic potential” are shown in the second panel of Fig. 1 In all cases at timé=0 a kinetic energy is imparted to
[11]. one particular oscillatofthe oscillator an=0) of the chain.
The frequency vs energy variations seen in Fig. 1 can b# the chain is isolated or at zero temperature, this initial
shown via rescaling and bounding arguments to represeinpulse is applied to an otherwise quiescent chain. At finite
general features of hardening and softening monostable pdéemperatures the chain is first allowed to equilibrate and then
tentials. The exercise is trivial if the potential is of the form this impulse is imparted in addition to the thermal motions
already present. We then observe how this inifidlinction
V(y)zhy“ ) impulse propagates and spreads along the chain, and how
a these behaviors depend on system parameters.

since then A. Isolated chains

The equations of motion for an isolated chain are

(E)_4JYmax dy
0 V2E—kya]

.. J
Xp=—==—[V(Xnp=Xn-1) + V(Xn4+1—Xn) . (11

1/ IX
=4 E lLEllaflIZEB El/a*l/Z (9) "
k 02(1-2% “ The initial conditions are
whence Xp(0)=0 forall n,
2m X,(0)=0 for n#0, (12)
w(E) — B_E1/2— 1/01_ (10) n

a

Xo(0)=Po= 2.
The coefficientB, can be expressed exactly in terms of the . )
8 function and is equal to 2 for the harmonic potential. For a harmonic array_thls syste_m can of course be solv_ed
If the potential is not of the simple single-power form it is €xactly, and we do so in Appendix B. The analytic harmonic
still possible to bound the resulting energy dependence tgeSults are helpful and informative, although our discussion
establish the trenftL1]. For example, the soft potential, Eq. IS Primarily based on simulation results since the anharmonic
(5), is bounded below byk{2)|y| and above by|y|. These ~chains cannot be solved analytically. The numerical integra-

bounds immediately lead to the conclusion that the assocfion of the equations of motion is performed using the sec-
ated o(E) must decrease aE Y2 The argument for a ond order Heun’s metho@vhich is equivalent to a second

mixed power potential such ag(y)=3y2+1y* is a bit order Runge Kutta integratiorpi12,13 with a time stepAt
more cumbersome but otherwise similar: by making the=0.0001. ) ) i o
change of variables fromto 2y2+ y4=EZ one can show One can .thlnk of.the dynamlcs ensuing from _the mmal
not only thatw(E) is an increasing function d but that it ~Mmomentum impulse in two equivalent ways. One is to inter-
lies above the harmonic potential result for any posifive  pret thex, andx, as displacements and momeaiang the
Figure 1 summarizes the well known frequency characterchain. Two symmetric pulses start from site zero and move
istics of oscillators: for a harmonic oscillator the frequency isto the left and to the right along the chain, and our discussion
independent of energgand, with our parameters, equal to focuses on either of these two identical pulses. This symme-
unity); for a hard oscillator the frequendgcreaseswith en-  try occurs regardless of thsign of the initial momentum
ergy, while that of a soft oscillatodecreasesith energy.  since the energy does not depend on the sign, i.e., the con-
The hard oscillator frequency curve starts below the othetraction of the spring between sites=0 andn=1 that fol-
two if a harmonic portion is not included. These frequency-lows an initial positive impulse has exactly the same effect
energy trends are generalized to oscillator chains in Apperas the equal extension of the spring between site® and
dix A. The frequency vs energy behavior will figure promi- n=—1. Alternatively, one can think ok, and x, as dis-
nently in our subsequent interpretations. In particular, theplacements and momenta perpendicular to the chain, the sign
following broad view seems to be overarchingly supportedthen simply representing motion “up” or “down.” The
the speed and dispersion of pulse propagation in discreteymmetry around the site=0 is then even more obvious.
arrays of oscillators are principally dependent on the mean |n any case, the energy excites the displacements as
frequency associated with the energy in the pulse. Highefell as momenta of other oscillators as it moves and dis-
frequencies lead to faster propagation and slower dispersioperses. The evolution can be characterized in a number of
ways. We have found the most useful to be the mean dis-

I1l. ONE-DIMENSIONAL ARRAYS tance of the pulse from the initial site, defined as
We consider one-dimensional arrays ™2 1 sites num-
bered from— N to N with periodic boundary conditions. We E In|E,
distinguish isolated chainghat is, ones not connected to a (x)= I (13
heat bath, chains connected to a heat bath at zero tempera- 2 E
ture, and finite temperature chains. This provides an oppor- U
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(1) The pulse velocity in the harmonic chainirgepen-

— hlarmo'nic, plo=2 ' / o . . .
50 r harmonic, p,=8 ,/ 7 dentof the initial amplitude. This reflects the energy inde-
i :Z:g po=§ // pendence of the mean frequen@nd in fact of the entire
0r soft ;’)0=pZ° / A frequency spectrujrfor harmonic chaingalso see Appendix
————— soft, p=8 7 P B).
230 // 7 g (2) The pulse velocity in the hard chaincreaseswith
v J/ - increasing initial amplitude. This is because the mean fre-
20 L / /// 4 guency for the hard chains increases with increasing energy.
/ 7 -7 (3) The pulse velocity in the soft chaidecreaseswith
ot S /// _______ i increasing initial amplitude. This is because the mean fre-
/i/f e quency for the soft chains decreases with increasing energy.
0 T ) ) ) We note that with our choice of potentials the velocity in
0 10 20 30 40 50 the hard chain for very weak initial amplitudes may actually
t lie below that of the harmonic chain or even the soft chain
60 : , because we have omitted a harmonic contribution to the hard
h . potential, but the hard chain velocity necessarily increases
armonic + . . . . ..
50 F ——— hard and surpasses that of the other chains with increasing initial
pulse amplitude.
40+ Not only is the pulse transmitted more rapidly in the hard
isolated chains than in the others, but the pulse retains its
% 30 | integrity over longer distances in the hard chain. This is seen
in the second panel in Fig. 2. The dispersighis shown for
20 the three chains for a particular initial pulse amplitude.
Rather than the dispersion as a function of time, the disper-
10 | sion is shown as a function of position along the chain so
that the pulse widths at a particular location along the chain
0 can be compared directly. Clearly the hard chain pulse is the

<X>

most compacat a given distance from the initially disturbed
site (a plot of ¢ vs t would show the opposite trend, that is,

FIG. 2. First panel: Mean distance traveled by the initial energythe pulse in the hard chain would have the greatest width, but

pulse as a function of time for the hard, harmonic, and soft chaingt will have traveled a much greater distance than the pulses
with several initial momentum amplitudes. Second panel: pulse disin the other chains This combination of results leads to

persion as a function of mean pulse position for the three chaininteresting geometrical consequences in higher dimensions
with initial amplitudepy=8. (see Sec. V.

and the dispersion
B. Chains at zero temperature
> n’E,
n
o?=(x%) = (x)2=———— ()%

> E,

n

If the chains are connected to a heat bath at zero tempera-
ture, the equations of motion E¢L1) are modified by the

14
(14 inclusion of the dissipative contribution,

. Jd .
= = V(X Xn_1) +V(Xns 1~ Xn) ]~ ¥Xq, (15
(The sums oven extend from— N to N.) Here theE,, are the Xn axn[ O =Xn—1) TV (1= Xn) = 7%, (19

local energies defined in E¢R) and, since these depend on

time, so do the mean distance and the variance. The time

dependence of the mean distance traveled is a measure of tivbere y is the dissipation parameter. The initial conditions

velocity of the pulse, and that of the dispersion is a measurare as set forth in Eq$12).

of how long the pulse survives before it degrades to a uni- The mean distance traveled by the pulse is shown in Fig.

form distribution. An indication of the progression of a pulse 3 for each of the chains with and without friction so that the

is shown in Appendix B for a harmonic chain. frictional effects can be clearly established. The salient re-
Results for the mean distance traveled by the pulse as sults can again be understood from the frequency vs energy

function of time for isolated chains of 151 sites are shown intrends in Fig. 1.

the first panel in Fig. 2 for the hard, harmonic, and soft (1) The pulse velocity in the harmonic chainiredepen-

potentials and for various values of the initial pulse ampli-dentof friction. This again reflects the energy independence

tude pp. The mean distance varies essentially linearly withof the mean frequency for harmonic chains. The energy loss

time in all cases(this is only approximately true in all suffered through the frictional effects therefore does not af-

cases—even the harmonic oscillator exhibits early deviationgect the pulse velocity.

from linear behavior due to inertial effe¢tsThe important (2) The pulse in the hard chaslows downwith time in

results apparent from Fig. 2 are summarized as follows anthe presence of a frictional force. This is because the chain

can be understood from the frequency vs energy trends iloses energy via friction, and the mean chain frequency de-

Fig. 1. creases with decreasing energy.
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FIG. 3. Mean pulse position as a function of time for the hard,
harmonic, and soft chains with initial amplitugg=8, with and
without friction.

FIG. 4. Energy profile vs time at the fifth site for hard and
harmonic chains at different temperatures. The damping parameter
in all cases isy=0.2 and the initial pulse amplitude 5 =38.

(3) The pulse in the soft chaispeeds upvith time in the o )
presence of a frictional force. This is because the chain loses 1€ pulse dynamics is no longer conveniently character-

energy via friction, and the mean chain frequency increase€d by the mean pulse velocitglthough this was the most
with decreasing energy. useful and direct characterization in the absence of thermal

The dependence of the pulse width on frictiot shown fluctuations. This is because there is now a thermal beck—
explicitly) follows trends that are consistent with our other 9round that causes fluctuations and distortions of the infor-
results. An increase in friction causes the pulse to narrow ifnation in this meartas well as in other simple moments and
the soft chain. This is consistent with the observation thaff€@sures such as the pulse maximue find that the most
higher frequencies are associated with narrower pulses. In $9gestive presentation of the dynamics is that of the energy
harmonic chain there is also some narrowing of the pu|Se;:')rof|le !tself. An |IIustrat|ye set of typma} profiles for chelns
but not nearly as much as in the soft chéitetailed expla- of 51 s_ltes is presented |n_F|g. 4 shovv_lng energy profiles as
nation of this would require consideration of the spectrum@ function of time on the fifth site on either side#0 as
beyond just the mean frequencyn the hard chain we can- & fl_Jnct|on of temperature. In all cases 'ghere is a delay time
not make an unequivocal claim from our numerical resultsntil the pulse reaches the fifth siteeflecting a finite veloc-
because the dependence of pulse width on friction for oufty)- The local energy around this site then reaches a maxi-

parameters is extremely weak, with perhaps a very smafiUm, and the pulse moves on, leaving behind a series of
amount of narrowing. later energy oscillations at ever decreasing amplitudes that

eventually settle down to the appropriate thermal levels. The
after-oscillations are derived analytically in Appendix B for
the harmonic case. The discussion below concentrates exclu-
If the chains are connected to a heat bath at temper@ure sively on the first pulse, which we think of as characterizing
the equations of motion E@15) are further modified by the the arrival of the disturbance at that site.
inclusion of the fluctuating contribution, The important conclusions, some illustrated in the figure,
5 can once again be understood from the trends in Fig. 1 and
o _ 7 _ _ o include the following.
n= axn[v(x" Xn-1)FV(Xn+ 17 X0) 1= ¥Xn+ 70(1). (1) The pulse velocity in the harmonic chainiislepen-
(16) dent of temperature. This is illustrated in the figure by the
fact that the peak of the pulse reaches the particular site
The 7,(t) are mutually uncorrelated zero-centered Gaussiamnder observation at the same time for the two temperatures
o-correlated fluctuations that satisfy the fluctuation-shown. The reason once again is that the characteristic fre-

C. Chains at finite temperature

dissipation relation: quencies of the chain are independent of energy and there-
fore the inclusion of thermal effects is immaterial to this
(mn(1)=0, (mn(t)m;(t"))=2ykgT p;o(t—1"). measure.
17) (2) The pulse velocity in the hard chaincreaseswith

increasing temperature. This is illustrated by the ever earlier
The initial conditions are now no longer given by E@k2). arrival of the pulse at the site under observation with increas-
Instead, the chain is allowed to equilibrate at temperalure ing temperature. The reason is that the mean frequency of the
and at timet=0 an additional impulse of amplitudé2e is  chain increases with energy, so that the hard chain at higher
added to the thermal velocity of site=0. The integration of temperatures is associated with a higher frequency than at
the equations of motion proceeds as before, but now we rdewer temperatures and hence with a faster pulse.
port averages over 100 realizations. The system is initially (3) The pulse velocity in the soft chaidecreaseswith
allowed to relax over enough iterations to insure thermaincreasing temperature. This is not explicitly illustrated in
equilibrium, after which we take our “measurements.” the figure, but is due to the decrease of the mean frequency
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with increasing temperature. Thus the soft chain at higheFor the harmonic case we take- 0.5 andk’ =0, and for the
temperatures is associated with a lower frequency and henderd anharmonic array we det 0 andk’=0.5. Our lattices
a slower pulse. are of size 5K51 and our integration time step At
(4) The hard chain not only transmits pulses more rapidly=0.0005. The boundary conditions are immate(&ihough
than the other chains, increasingly so with increasing temwe happen to use boundaries whose edge sites have only
perature, but it also transmits the most compact and persishree connections and its corners sites only)tiMecause the
tent pulses at any temperature. This is seen not only by thiattices are sufficiently large for the initial excitations not to
obviously smaller width of the pulses in the hard chain, butreach the boundaries within the time of our computations.
by the fact that the energy trace “left behind” as the first We consider two initial excitation geometries. In one a
pulse passes through is lower in the hard chain than in théfront” is created by exciting all sites along the line
other cases. (0j), —N=j=<N, with the same initial momentunp;
The pulses in all cases become more dispersive with in=p,. The front then moves symmetrically away from this
creasing temperature. This behavior is clearly evident in Figline and its motion is measured by the mean distance and
4 for the hard and harmonic chains, as is the fact that theispersion(in all double sums andj each range from-N
temperature dependence of the pulse width is weakest for thg N)
hard chain(and strongest for the soft chainThese depen-
dences complement those described earlier for the pulse
width as a function of friction: increasing friction in all cases nEI |n|En,J
narrows the pulsésubject to our caveat concerning the hard (X)= —-——, (20
chain mentioned earligrwhile increasing the temperature > E,.
broadens it, both of these dependences being weakest for the o
hard chain.

2 n?E, |

- n,j
IV. TWO-DIMENSIONAL ISOLATED ARRAYS 0'2£<X2>—<X>2= —<X)2. (22)

We showed in Sec. Il A that a pulse travels more rapidly E En,j
and less dispersively in an isolated hard chain than in a har- nl

monic or soft chain. In higher dimensions these two tenden- - N . .
9 In the other, an initial pulse of kinetic energy is deposited at

cies, that of moving faster and that of maintaining the energ tral site of th We th th dial
localized, leads to some interesting geometric effects and t 1€ central site ot the array. e then measure the mean radia
istance of the pulse from the origin,

very different pulse propagation properties depending on th
spatial configuration of the initial condition.

In one dimension one could visualize the displacements > n?+j%E,
and momenta,x as describing motion along the chain or (r)= ) (22)
perpendicular to the chain. In two dimensions these are dis- E E
tinct cases: a generalization of the first requires introduction oo

of two-dimensional coordinatescfy) and momentax.y). _ o . _ _
The second requires only a single perpendicular coordinate (the dispersion in this case is less informative but can also be

and associated momentunfor each site, and this is the case Monitored if desirefl The motion and dispersion in this ge-
we pursue. We thus consider a two-dimensional square arryMetry are expected to be roughly spherically symmetric
of dimension (N+1)x (2N+ 1) wherein motion occurs in SuPiect to the square connectivity of the lattice.

a direction perpendicular to the array. The Hamiltonian with  1YPical gray-scale snapshots of the energy distribution
5 =p,. is expressed as a sum of local energy Contribu_are shown in Figs. 5 and 6, an_d the differences, while easily
ti%s n.J understood, are clearly _dramatlc. In the case of the front, the
’ tendency of a hard lattice to propagate faster than the har-
monic lattice while maintaining the energy more localized is
clearly realized. The associated mean distance and dispersion
H :nEj Enj (18 that guantify the comparison are shown in Fig. 7. In the case
' of an initial point pulse, on the other hand, there is clearly a
conflict between rapid motion and smaller dispersion—one
where can be realized only at the expense of the other. The latter

“wins:” the pulse remains more localized in time in the hard

P, Kk lattice than in the harmonic. The associated mean radius is
En,jz% +Z[(Zn,j_Zn+1,j)2+(zn,j_zn—1,j)2 shown in Fig. 8. In the anharmonic Iatti_ce the pglse at _first
expands as fast as the harmonic but it essentially quickly
+(Zn,j_zn,j+1)2+(Zn,j_zn,jfl)z] saturates while the harmonic pulse continues to disperse.

!

V. CONCLUSIONS
+ §[(Zn,j ~Zn+ 1,j)4+ (Zn,j —Zn- l,j)4

In this paper we have considered pulse propagation in
+(znyl-—zn'j+1)4+(zn'j—zn,j,l)“]. (190  discrete arrays of masses connected by harmonic or anhar-
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15 T T T T v T

—— harmonic 4
hard //

<X>

FIG. 5. Snapshot at a subsequent time of the energy distribution t
for the propagation of an initial front. Upper panel: harmonic lat- 20 . . . . . ,
tice. Lower panel: hard lattice. r

—— harmonic
monic springs. We have focused on the pulse velocity and 15 L ——— had
width, and have found a pattern of behavior that can be I
strongly correlated with the energy dependence of the mean
array frequency.

First we investigated the propagation of pulses in isolated r et
(microcanonicdl arrays. We found that in a hard array an i e
amplitude increase causes a pulse to travel more rapidly and [ -~
less dispersively. In a harmonic array the pulse speed and r -
width are independent of pulse amplitude, while in a soft I -~
array a more intense pulse travels more slowly and spreads )
out more rapidly. These trends are a result of the fact that in 0 2 4 6 8
a hard array the mean frequency increases with energy, in a <x>

harmonic array it is independent of energy, and in @ soft £ 7. First panel: temporal evolution of the mean distaoe
array the mean frequency decreases with increasing energy; front propagation in harmonitsolid line) and hard anharmonic

In higher dimensions these trends lead to interesting initiajgashed ling lattices. Second panel: the associated dispersion as a
condition dependences that in turn may lead to apparentlynction of the mean distance traveled.

“opposite” behavior in different cases. Thus, for example, a

front in a two-dimensional isolated hard array propagatesilly speed it up in the soft array. This somewhat counterin-

more rapidly and more sharply than in harmonic or soft artuitive behavior is, however, fully consistent with the obser-

rays, and the effect is enhanced if the front is more intensesation that dissipation causes a decrease in energy and hence

On the other hand, a point pulse in a hard array spreads mogge decrease in mean frequency in the hard case and an in-

slowly than in the others: it is not possible in this geometrycrease in mean frequency in the soft ch@nd no change in

to both propagate quickly and yet retain a strong localizationhe mean frequency of the harmonic chalissipation in all

of energy, and the latter tendency dominates the dynamicscases causes a narrowing of the pulse, the effect being great-
We then investigated the effects on pulse propagation oést in the soft array.

connecting the nonlinear chains to a heat batk did this

only for the one-dimensional arrgydVe found that dissipa- 8 T - g -
tive forces tend to slow down the pulse in the hard array, harmonic
leave its speed unchanged in the harmonic chain, and actu- ———  hard
6 ]
A
VAT ]
2t e -]
,/—’/_—_ _‘\_/F"/
0 1 1 L 1
0 5 10 15 20
t

FIG. 6. Snapshot at a subsequent time of the energy distribution FIG. 8. Temporal evolution of the mean radi(is) of pulse
for the propagation of an initial pulse at the center of the array. Firspropagation in harmoni¢solid line) and hard anharmoni@ashed

panel: harmonic lattice. Second panel: hard lattice.

line) lattices.
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An increase in temperature has the oppo&ted again at dx:

. . . o . ] _
first sight perhaps somewhat counterintuitiveffect: it o =
speeds up the pulse in the hard array, leaves it unchanged in
the harmonic array, and slows it down in the soft chain.

Again this behavior is consistent with the frequency vs en-The period of oscillation for oscillatoj can be defined in
ergy trends and the fact that an increase in temperature &nalogy with Eq(10):

associated with an increase in the energy of the chain. A
temperature increase in all cases causes a broadening of the

1/2
t(2[E—§ V(xn—xnl)}—gj pﬁ) . (A1)

pulse, the effect again being greatest in the soft array. HE:x',p')= 27
ST e(EXLP)
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86ER13606. where x’ stands for the set of all the's except x, and

similarly for p’. The upper limit of integratiox,,, depends
not only onE but on all the other displacements and mo-
menta, and is the positive value »f at which the denomi-
nator of the integrand vanishes. The resultingvith all the
Consider a chain of oscillators, and let us focus on thecoordinate and momentum dependences is not very useful,
displacement variable of a particular mass in the chain, say but it would seem reasonable to simply average over all pos-
oscillatorj, whose displacement satisfies the equation of mosible values of these coordinates and momenta and thus ob-
tion tain an average period. We define the average period as

APPENDIX A: FREQUENCY VERSUS ENERGY
FOR OSCILLATOR CHAINS

[ forf oo g )

[ o[ [o

7(E)=(7(E;x',p"))=4

(A3)

The limits of integration not explicitly indicated are appro-  More complicated potentials require suitable generaliza-
priate nested relations among the variables and the energipn of this argument, but the result in any case is that the
such that the argument of the square root always remainsverage frequencies for the hard, harmonic, and soft chains
positive. The multiple integral in the denominator covers thefollow the same trends as those shown in Fig. 1.

same integration regime and insures proper normalization for

this average. Our interest lies in extracting the energyAPPENDIX B: ISOLATED LINEAR OSCILLATOR CHAIN

dependence—the remaining energy-independent coefficients
are complicated and not important for our arguments. If th§jesto0d; it is nevertheless useful to present aspects of their
pair potentials are powers as in the single oscillator examplg,anavior in the context of the present discussion.

the scaling argument can be generalized by introducing The Jinear equations of motiofi1) with the initial con-
scaled variableg,~ (x,—X,-1)EY* and u,~p,E"? with gitions (12) are easily solved:

appropriate constants of proportionality. The limits of inte-

gration then become independent of energy and the only en- J2e N sin(wgt) _, . n(2N+1)

ergy dependence arises from factoring BH? from the Xn(t)= ———e

square root in the denominator and&H* from the numera-

Although linear oscillator chains are of course fully un-

2N+1 g=—N (l)q

tor because it contains oreintegration more than the de- t
nominator. The result, as before, is that - ‘/ZLJZH(Z‘/ET)dT' (B1)
7(E)=B EYe~1/2 (A4)  where the frequencies, obey the dispersion relation
with a complicated buenergy-independergxpression for 5 2 2mq
the coefficient3,, and therefore wo=4ksin| S |, (B2)
o(E)= 2m El2-1la (A) and wherel,(z) denotes the Bessel function of the first kind
7(E) of integer orden. (The energy independence of the frequen-
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FIG. 9. Temporal evolution of the enerdy,(t) at several sites oI '// T
in a harmonic chain with force constant 1 and initial momentum /
Po=2. 25 f ----- k=05 / ]
[ —— k=10 ]
_ _ _ N [ ——— k=20 / ]
cies for the harmonic chain seen here in thindependence 20 | / ]
of the wq is prominent in our discussions throughout this = ]
paper) The momenta are then =15
Xq(1) = v2ed,n(2kt). (B3) 10¢ i ;
Using a number of relations obeyed by the Bessel func- 5 b ]
tions it is possible to combine these results and obtain for the ' ]
local energy the simple expression o L . . . . .

1 1
_ .12 32 —J?
En(t)=2 JZ”(Z\/EU+2J2”*1(2\/Et)+2‘]2”1(2\/&)}' FIG. 10. First panel: Mean distance traveled by the pulse

(B4) (dashed curyeand pulse maximungsolid curve as a function of

) ) ) o time for a harmonic chain of unit force constant. Second panel:
The energy profiles for various sites are shown in Fig. 9. Thepyise maximum as a function of time floe=2 (long-dashed curye

n=>5 profile [here obtained from the analytic expressionk=1 (solid curve, andk= 1/2 (short-dashed curyeThe slopes of
(B4)] also appears in Fig. 4there obtained by numerical these numerically generated curves are essentially as given in the
integration. Note that the energy is not transported in aanalytic expression E4B6).

single absorption-emission process but rather in a series of

oscillatory steps of decreasing amplitude. Our analysis in théhe solution of the relation

body of the paper focuses on the first energy pulse.

In Sec. lll A we rely on{x(t)), the mean distance trav- [2n—1
eled by the pulse as a function of time, as one measure to 1+ on+1 Jon(2+kt)
characterize the transport properties of our arrays. An alter- an = K ko’ (BS)
native measure that can be calculated analytically for the 2\KtJzn-1(2VKt)

harmonic chain(but turns out to be somewhat less conve- o ) o

nient for numerical computatioris the time-dependent site Excep_t for avery short initial trgin5|enfc the solution is essen-
n* (t) at which the energy is a maximum. Because the pasdially linear in time and exceedingly simple:

ing energy pulse in general leaves a track behind it, one

expectsn* (t)=xma{t) to grow more rapidly thar{x(t)). N* (1) =Xmax( 1) ~ Vkt. (B6)
That this is indeed the case is illustrated in the first panel of

Fig. 10, where both quantities are shown for a harmonicThis dependence is confirmed in the second panel of Fig. 10
chain with unit force constant. The steps in thg,, curve  for three values of the force constant. The curves shown are
are a consequence of the discreteness of the problem. Tlbdtained numerically, and differ from the analytic straight

analytic result fom* (t) is obtained by maximizing EdB4)  lines only at the very earliest times by an exceedingly small
with respect tar and is, after some manipulation, found to be barely visible amount.
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