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Deterministic transport in ratchets
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We present the deterministic transport properties of driven overdamped patrticles in a simple piecewise-linear
ratchet potential. We consider the effects on the stationary current due to local spatial asymmetry, time
asymmetry in the driving force, and we include the possibility of a global spatial asymmetry. We present an
extremely simple scheme for evaluating the current that is established on the ratchet within an “adiabatic”
approximation, and compare the results with exact numerical integration of the process.
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I. INTRODUCTION transport properties of these systems.
Specifically, we study the deterministic transport proper-

Many interesting aspects of transport properties of parties of a general sawtooth ratchet under an asymmetric driv-
ticles in “thermal ratchets” have been recently reporteding force that oscillates with a very low frequency. We pro-
[1-10. In their simplest versions, these models consist ofP0se a very simple scheme for calculating the current, and
independent overdamped particles in a piecewise-lineafompare our results to the direct numerical integrqtion of the
“sawtooth” potentia' and Subject to an Osci”ating driving motion. As eXpeCted, most Of the features fOUnd n thel‘mal
force and thermal noiséhoth with zero mean these models ratchets are already present in the deterministic case. As our
have received the name of “periodically rocked ratchet” in treatment is so straightforward, we can easily generalize it to
the literature[3,7]. The crucial point in these models is that include (i) random duration asymmetric driving forcés.,
they are not symmetric under the exchamge —x. The su-  Not necessarily periodic in timeand (i) the case in which
perimposition of the broken symmetry and the driving forcethe spatial symmetry is broken also at a global scate,
gives rise to a stationary flux even in situations where purdhere is a global drijt We find that it is possible to have
thermal noise would not produce one. As the symmetry caffansport against the drift, and up to two reversals of the
be broken in the potential, in the driving force, or in both, it current.
is possible to obtain a nonmonotonic dependence of the flux
on the driving strength and even one or more flux reversals.  ||. THERMAL VS DETERMINISTIC BEHAVIOR

A usual approach to the periodically rocked ratchet prob-
lem is to write the Fokker-Planck equation for the process BY transport in a thermal ratchet, the overdamped motion
[14], and to try to determine from it the flux properties Of @ test particle in a periodic potentig(x) with broken
within certain approximations. This approach is quite suc-Spatial symmetry and subject to a driving for€t) in the
cessful in describing the system consisting of a piecewisepresence of a Gaussian noig€t) obeying (&(t)&(s))
linear potential and a piecewise constant driving fdridein ~ =2kTd(t—s) is understood. The corresponding Langevin
the approximation of very low driving frequency. As it turns €quation is then
out, most of the interesting behavior of these thermal ratchets
is due to the deterministic mechanical transport properties of . IV(X)
the ratchet, the effects of the thermal bath being important x=—— —FTFO+EO. 23
only when the deterministic current is extremely small or
zero. This is in contrast with other ratchet models, for ex- o . , . . _
ample one where the asymmetric periodic potential is turneé\ deterministic ratchet is defined identically but in the ab-
on and off periodically, the so-called “flashing ratchet” sence of the thermal noise.

model[7,11-13, where the overdamped deterministic mo- na;;—cecg[li]s ;sogxfgnncfgjetrot?r?cér;egTa&::ara(tacr?oedtic:n gr(ij\(/ailnbyfo,\f:egs_
tion never induces transport. P P 9

The main point of this work is to study the deterministic which POSSESS temporal_ asymmetry _by Chialvo ar_1d Millonas
behavior of overdamped transport in periodically rocked[z]' For the plec_eW|se-I|near potential they considered, the
ratchets. A comparison of our results with results for “ther- average current is
mal” ratchets may serve as an aid to establish to what extent
the “thermal bath” affects and/or determines the interesting
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F(t) = o 1 FIG. 2. Limit values of the average curref®), when the tem-
i i perature vanishes as a function of the amplitAds the temporally
asymmetric driving force for a fixed value of its degree of asym-
_aee) p | L] metry e::ITIZ. The values oB=\;—1\, are —7/10 (solid ling), 0
(1-g) ) . \ L (dashed ling and 7/10 (dot-dashed line Note the symmetry
(b) t (J(=A,—€)o=—(I(A)€)),.

FIG. 1. (a) Piecewise-linear potentidl(x) as a function of the  Now, it turns out that
position x; its period isSA=\;+X,#1. The two possible spatial
asymmetries are sketched in terms of the parametdos the local
asymmetry and3 for the global asymmetryboth defined in the lim J(F)
texy). (b) Periodic external driving forcE(t) with a temporal asym- |, ;o
metry but zero mean value.

0 if Fi<F=<F,
for a zero mean driving forc t))=0, given b _!l1 2
g forcgF(t)) =0, given by =Ml i E<F, o F>Fy,
N SQ+ NN\ F
(2.9
L e i O=t<sr1-e)
— i st<-7(l—¢e),
1-e 2 where
F(t)= 1 (2.3
A if Er(l—e)<tST,
_ — (<2 1/2_

where —1<e<1, ande=0 implies a symmetrical driving
force [Fig. 4(b)]. . o .
Let us recall that for the approximations in this approachS© that{J)o has the behavior shown in Fig. 2 for different
to be valid, the driving forc& (t) has to be applied during a Values ofé ande=1/2. _ .
long lapse in either direction, i.e., the driving frequency has From this graph it is immediately seen that the main fea-

to be very low; for the case described by EB), this means tures of t_he average current, its nonmonotonic behavior, its
e ST asymptotics, and the possibility of its reversal, are present in

that 7 must be larger than any diffusive relaxation time in the ; .
the dynamics of the ratchet when the temperature is null.

mod_el. As we s_hal! see, t_his approximation entails af“’”‘? hese observations give two suggestidisThe behavior of
crumal_assgmptlon. the distances travelgd by a partl_cle % deterministic ratchdtefined identically but in the absence
each dlrec_t|on are much larger than the size of the period of¢ tharmal noisg could well explain most of the transport
the potential. properties when it is immersed in a thermal bath, ndhe
In order to analyze the role of the thermal bath, we tak&nermal bath will play a definitive role only when the deter-
the limit of the average current as the temperature goes t@yinistic average current is vanishing.
zero, i.e., The features of the average current when the temperature
vanishes can be easily derived in terms of a very simple
scheme that we present in the following. Our results show
(3)o= lim (3) that the qualitative behavior of a thermal ratchet is inc.ie.ed_
0 KT0 dictated by the dynamics of the corresponding deterministic
ratchet, from which we conclude that the thermal bath modi-
fies the rachet’'s behavior when the average current is,zero
i.e., for the case of the previous model ratchet, when the
force amplitude is in the interv@F1,F2], whereF1 andF2
(2.9 are the roots defined by E¢R.6).

1 . ) 1+e
==[(1+¢€) lim J(A)+(1—¢) lim J(— A) .
2 KT—0 KT—0 1-e
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IIl. TRANSPORT IN A DETERMINISTIC RATCHET For this simple ratchet, motion of a test particle will take
place when the amplitude (1€)A/(1— €) of the piecewise-

we have developed a very simple approach and a simplIinear driving force applied to the right, say, during a lapse
computer program for the calculation of the net current. To_’ is enough to overcome th? tooth _he|ght. If such is the

L case, the speed of the test particle during the upward part of
begin with, let us take a system composed of a very larg

number of teeth, all identical in shape and orientatiBiy. E\hbesgllupteWI\l/la?lfev gf: E&; g)r?([;(slc_erft)j;l; él ovgger:rr&j Is_t(hf
. . . . K ’ 2=
1). There are two kinds of spatial asymmetry in this ratchet.Jr €)A/(1— €)+m, during the downward trip, wheren, is

(i) a local asymmetry that we shall specify by a paramete .
denoted asyp, and (ii) a global asymmetry that induces an ngalagfr?(l,mr?eqvlﬁlrgz ct)(f) t?erZTcg\'/ﬁngg:gdtlggtzlOize'th-:;ge
overall slope to the potential. The parameter that descnbe:)\llvlﬂ\zlvz_ After the time @, has elapsed, a force in

the local spatial asymmetry is defined by the opposite direction is applied during a tinfe . If the
_ My—my (3.2) amplitude A is not large enough to overcome the second
= ' slope of the tooth(i.e., A<m,), then the particle will not
move until _ has elapsed and the force to the right is ap-
while the parameter that characterizes the global asymmetnyied again. IfA is larger thanm,, then motion to the left
is occurs and the time needed to traverse a tooth in the leftward
direction will bet_=N\,/v3+\q/v4, Wherevz=A—m, and
, (3.2 va=A+m;.
mA Thus, if the force applied to the right is large enough to
induce motion, the number of teeth the particle can traverse
during the timed, for which it is applied ilN,. =46, /t, and
otherwiseN, =0. Similarly, if the force to the left induces
motion, then it traversel _= #_ /t_ teeth during the time it
is applied. The distances traveled in each direction will then
Se given by §,;+X,)N, and (\;+A,)N_, respectively.
Clearly these are approximate values, as the turning points of
"the motion when the force changes sign, do not coincide with
the bottom of a tooth. Nevertheless, the error in the total
length traveled will be, at most, of the order of the size of a
tooth. Thus the results obtained will be increasingly accurate
s the interval®).. go to infinity, i.e., the driving frequency
aoes to zero. It thus becomes apparent that neglecting the

For our analysis of the deterministic transport in ratchets

MyAp—MyA g

wherem=m;+m, and\ =X+ \,. Note that(i) the spatial
periodicity of the potential), is no longer taken to be equal
to unity, and(ii) the parameter previously used for the de-
scription of the local spatial asymmetry, is related to the
new oney through the value of the parameter that specifie
the global spatial asymmetrys.

We also consider the effect of a temporal asymmetry i
the driving forceF(t), which modifies the behavior of the
ratchet. Equatioi2.3) and Fig. 1 correspond to the case of a
periodic driving force, for which the asymmetry is specified
by the parametet, which determines the fraction of the time
the force acts in each direction, the so-called periodic, rocke
ratchet[3,7]._A d!fferent scenario _for Wh'Ch. th|s approach is contributions of incompletely traversed teeth is an important
also appropiate is the case in which the driving forces are no&omponent of the “adiabatic” approximation.
periodic but rather are applied in alternating directions for The net current to the righteft), S_ (S, ), is the sum of

intervals of time with random duration. To “build in™ asym- o raveled distances divided by the sum of the correspond-

metry in this case, we choose the intervals in which the force, ; ojansed times, and the total average current can then be
is applied to the right from a distributioR . (7) (with mean obtained from

(7)), and those in which it is applied to the left frofn_(7)

(with mean{7)_). To insure that the time average of the

force is zero, the amplitude of the forces applied to the right (1-e)S_—(1+¢)S,

is ((7)_/(7),)A, whereA is the amplitude of the forces (§)= 5 : 3.3
applied to the left. The asymmetry parameter in this case is

given by e=((7)_— (7)) /({(7)_+{7),). Both cases, pe-

riodic and random duration driving force, are indistinguish-The explicit expression for the current in this general model

able in the following discussion. is
7 . 1—emy
0 if a<1+6-’7 and a<—,
4a’*—p(da—-7n)—1 omy 1—em
" —(1+e) at+pB-n if 7$a<1+67’
<S>:§'< 4(1+€)%a’+ pla(1— ®a+(1—€)2ny]—(1—¢)? ¢ 1—€ my _ <m2 3.4
(1+e)a—(1—€)B—7n) Y e m T
8(1+€)Ba>—2(n’~ [2ea—(1-&)(B—7m)] . l-em, m
) if —=<gqg and —=aq,
( (+ea +(B-n2ea—(1-€)(B—7)] I+em
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F.IG' 3 An e_xample of the differences be_twee_n the actual nu- FIG. 4. Effect of the local spatial asymmetry on the motion in
merical integration and the smooth dashed line given by formula?he

(3.4). The dotted and the uneven solid lines correspond to two nu- ratghet. The average Curre{.@ Is shown asa function of the
! . i . . normalized amplitude of the driving foraefor different values of
merical calculations carried out with a certain value foand half

this value. correspondinal 7; both 8 ande are kept equal to zero. The corresponding values of
’ P gy 7 are 1/2 for the long-dashed line, 1/11 for the dot-dashed line,
—1/2 for the dashed line, and5/7 for the solid line. Only positive

in terms of the normalized amplitude of the driving force, values ofa are ploted sincéS(—a))=(S(a)) in this case.

a=A/m.
From this expression, and under the appropriate choice of

parameters, one can reproduce the limiting behavior of théffect of varyingh, andm, (while keeping\; andm; con-

average current when the temperature vanishes in the modsfan}, and the lower half shows the effect of varying and

ratchet described in Sec.[{J),, Egs.(2.4), (2.5, and Fig. m; (for fixed values ofx, andm,).

2]. The appropriate parameters arg=1/\,, m,=1/\,, The maxima of the current occur at a particular value of

A=1, andB=0. the normalized amplitudea; this value is given by
The dimensionless parameters mentioned abayeB8, m,/m (m,;/m) for positive (negative values of 5. Inter-

and e, have been chosen because of their clear physical irchanging the role of tha’s and of them’s, which amounts

terpretation, and because the vanishing of their values allowg reversing the orientation of the ratchet, produces a current

a full recovery of the symmetrical ratchet. Each one of thewnich is exactly the same but with the opposite sigs if
three symmetry-breaking possibilitig¢svo spatial and one reflected by the horizontal ayis

tempora) will be explored in the following.

Since the above expressions are approximate, a simple
exact numerical simulation of the process was performed in
which we confirmed that indeed the exact current approaches First, let us note that wheg is positive, there is a ten-
the predictions above asincreasegsee Fig. 3. dency to “drift” to the right caused by the “global slope™:

Previous work that explicitly studied some aspects of thgm,\,—m;\,)/\, and wheng is negative, the “drift” is to
deterministic behavior of periodically rocked ratchets hashe left. This underlies the fact that the current does not
been reported if3,10,13, although without considering the vanish when the amplitude of the driving force increases
global spatial asymmetry. In both the first and the last ofunboundedly, but tends to a finite value given by the “global
these studies, the driving force was a sinusoidal function o§jope.” This effect has two consequencé®: it makes it
time, and although this implies that their results cannot bgyossible to eventually reverse a current that runs in a certain
directly Compared with the outcome of this Work, the limit at direction for a wide range fo: 1 Va|ues; anc{”) it also allows
very low driving frequencies of their results agrees qualita-
tively with the behavior described in what followisf. Figs.

3 of [3], and Figs. 3 and 6 of12]). The other study10]
analyzes a driving force similar to the one considered in this
work [Eg. (2.3)], and the main conclusion reached is that the
presence of a thermal bath plays an important role when
there is no current or it is very small, since then the thermal
fluctuations may benefit from thigemporal or spatialasym-
metries to produce a current or to modify its sense.

B. The global spatial asymmetry

<S> 0.2

A. The local spatial asymmetry -0.2 0 1' ’ é ' é —

Keeping B8 and e equal to zero, we have that a positive a

value of » means a too_th oriented to the rig_ht, i.e, onethat o 5 The effect of a global spatial asymmet§+0); note
favors motion to the right, and that negative values»of hat 4 necessary condition for a current reversal to appear is an
mean a curyent to the Igft. _The effect of the local spatial,gue 0. The corresponding values for(8) are (1/2,3/20) for
asymmetry is presented in Fig. 4, where the average curregfe solid line, (0,1/10) for the dot-dashed line, (5/432/1079) for

(S) is plotted as a function of the normalized amplitude ofthe dashed line, and (8,1/10) for the long-dashed line; the tem-
the driving forcea for different values ofy and keeping both  poral symmetry remains unbroken. As in the case shown in Fig. 4,
B ande equal to zero. The upper half of the graph shows th&S(—a))=(S(a)).
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<S>

FIG. 6. Effect of the local temporal asymmetry on the average FIG. 8. Combined effect of the temporal asymmetry and the
current(S) as a function of the normalized amplitude of the driving 9lobal spatial asymmetry on the average curt&tas a function of
force a for different values ofe; both 8 and 5 are kept equal to  the normalized amplitude of the driving foree the value ofy is
zero. Only positive values ofa are plotted since(S(—a))  keptequal to zeros is kept equal to 1/2, and the values/diare 0
=—(S(a)) [recall that whenB=0, but »#0, (S(—a,—e¢)) (solid ling), —1/10 (o_lashed ling and 7_1/10 (dot-dashed ||np_
=—(S(a,€))]. Lines shown correspond te values of 1/2(solid Note that a8 value different from zero is necessary and sufficient
line), 1/8 (dot-dashed ling —1/8 (dashed ling and —1/2 (long- for a current reversal to occur, and the presence of the symmetry
dashed ling (S(—a,—B))=—(S(a,B)) in this case.

for a second inversion of the current when both the locahsymmetriegFig. 7), and by the temporal and global spatial
spatial and the temporal symmetries have been brekee  asymmetriegFig. 8). From Fig. 8 one can confirm that when

Fig. 9. 7=0, the maximum value of(S), and the value of

Examples of the behavior of the current for some valueg;y, (S) are monotonic functions of the global slope, the

of » and B are presented in Fig. 5, where it is clear that for Iaﬂi‘; h h | q h _
a flux reversal to occur, it is necesary to have valuegjof Value ofawhere the current reversal occurs does not change;

different from zero. this last value is determined ky Finally, Fig. 9 shows some

examples of the behavior shown by the current when the

three symmetries have been broken. As already mentioned, it

is interesting to note that there may be a second flux reversal
The role of a zero mean, temporally asymmetric drivingin this case.

force in various guises has been previously studied and ana-

lyzed; it may increase the current due to a local spatial asym- IV. DISCUSSION

metry, it may counterbalance it, or it may reverse its flow,

depending on the value efand, of course, on the degree of A nonexhaustive analysis of overdamped transport, within

spatial asymmetry. Figure 6 shows the average cu¢@nas  an “adiabatic” approximation in a simple ratchet, has been

a function of the normalized amplitudefor different values ~ Presented together with a discussion of the different effects

of €; neither of the spatial symmetries is broken. caused by the lack of either spatial or temporal symmetries
The average currerS) attains a maximum value when and the character of the driving for(}menqdl(_: or s_tochast)c

a=m,/m and it must be noted that it does vanish when theThe features of the flux that we obtain in this woithe

amplitude of the driving force tends to infinity, although it Nonmonotonicity as a function of the parameters, the sign

does so much more slowly than in the case of a local spatid€versals, and the asymptotic behayionderly most of the

asymmetry alone. properties of thermal ratchets. Thus, the role of the thermal
The following figures show the combined effect on thePath will be important mostly in those regions where the

average current caused by the temporal and local spatifleterministic current is close to or vanishing, otherwise it

C. The temporal asymmetry

1 v 1 v 1 4 1

<S> <S>

FIG. 7. Combined effect of the temporal asymmetry and the FIG. 9. A double flux reversal may occur in the average current
local spatial asymmetry on the average curkSjtas a function of ~ when the three symmetries are broken, and their corresponding pa-
the normalized amplitude of the driving foree the value ofg is rameters have adequate values;1/2 and the values ofqf, 8) are
kept equal to zero, and they(e) values are {7/10,1/2) for the (—3/5,—4/105) for the solid line, and-{ 2/3,— 19/246) for the dot-
solid line and ¢ 3/5,1/2) for the dashed line. ted line.
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represents a small perturbation to the deterministic behaviogn the nature of the disorder. If, for example, disorder is
its effect will be to smooth the sharp edges and to flatten thintroduced by taking the heights of the ratchet teeth from a
shape of the curve for the curref@f. Figs. 2 and 3 of Chi- bounded distribution, then sufficiently strong driving will in-
alvo and Millonas[2]). A possible exception is the case in deed give rise to deterministic transport. On the other hand,
which the deterministic transport generates a flux against thg disorder is introduced by placing teeth with one orienta-
global bias while a thermal noise, if present, would induce &jon and 1- p with the opposite orientation, thus statistically
flux in the direction of the gIo.baI pias;_ a npise induced ﬂUXbreaking thex to —x symmetry, then no periodic driving can
reversal could be expected in this situation. Further workyenerate a flux. The reason for this is that for any periodic
cqnglderlng 0!“‘"”9 forces ,W'th, flnlte'frequency, €., 'not driving there will exist, with probability greater than zero,
within the adiabatic approximation, will be presented in aconfigurations of teeth within which a deterministic periodic

Se%?gtewscm?glnsgisordered ratchets is currently under Way“orbit” occurs. These orbits work as barriers to determinis-
In these systems, the role of noise could be essential becaul® Motion, and as they occur with finite density, a flux can-
deterministic transport may not give rise to a stationary flux /10t Pe sustal'ned in these.sySteme Thermal noise 'W||| play a
even if the disordered ratchet is statistically asymmetric. Thérucial role in this situation, as it will allow particles to

possibility of deterministic transport will obviously depend “overcome” the barriers and reestablish a flux.
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