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THE ENERGY-DENSITY SPECTRUM OF VACUUM IN PRISMATIC CAVITIES
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We calculate the explicit form of the energy-density spectrum of scalar vacuum as seen by an observer either at rest or uniformly
accelerating, inside a prismatic cavity.

The energy spectrum of the Casimir effect between two parallel planes has been calculated recently by several
authors [ 1], both for inertial and accelerated frames [2]. It is the aim of this work to further explore the energy
spectrum of vacuum produced by boundary conditions. In particular, we investigate the case of a prismatic
cavity using a previously designed formalism [3] which, besides simplifying both the calculations and the phys-
ical interpretation of the results, does not arbitrarily cut off the zero-point energy. This article is restricted to
scalar fields only, the analysis of the electromagnetic field will be carried out separately [4].

We consider an observer either at rest or uniformly accelerating inside a prismatic cavity. The system of units
used in this work is such that c=#%=1.

A. Observer at rest. The Wightman functions for a scalar field inside a prismatic cavity with boundaries at
X,=0, band x3=0, a are found using the method of images in a straightforward generalization of the case with
two parallel plates [5]. Thus
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For an observer at rest one can choose x and x' as (xo=7t—0/2, X;, Xo=), Xx3=2z) and (xp=1+0/2, x|,
x5 =y, x5=z), respectively. The Wightman functions then take the form
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The corresponding Fourier transform is
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and Bt =4a’n’+4b’m?, B3=4a’n>+4(y—bm)>2 B}=4b>m>+4(z—an)? Bi=4(y—bm)*+4(z—an)?. As
shown in the appendix, the functions /,, /5 and I, integrated over y and z do not contribute to the energy-density
per unit length inside the cavity. As for /, it is given by, for w>0,
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Thus one gets for the energy density per unit length
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Since (see ref. [6], formula 1.441.1)
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we can write (4) as

dE o’ ® sin[2w(a’n +b2m2)”2])
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The first term in expression (5) represents the zero-point field energy. The second term corresponds to the
case of an observer at rest between two parallel plates separated a distance a apart [1]; indeed, dividing (5)
by b (in order to have the energy per unit area) and taking the limit 5—co but keeping a finite, we obtain the
known spectrum of the usual Casimir energy [1]. Similarly, the third term corresponds to the case of an ob-
server at rest between two parallel plates a distance b apart. Finally the last term is an interference term due
to the presence of plates in both directions.

In order to see the form of the spectrum, both as a function of the cavity size and of , we rewrite (5) using
the dimensionless quantities @ =aw, E=a?E and B=>b/a. We also subtract the zero point term to get
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The square bracket of expression (6) is plotted in fig. 1 as a function of @ for f=10%, 10, and 1. As expected,
the first graph shows the sawtooth spectrum of two parallel plates. The case =10 (second graph in fig. 1)
shows a superposition of the spectrum of each of the plates: for @ small we get simply the addition of spectra
with a ratio of periods approximately equal to f, while for large @ we observe a mixing between the spectra
of the plates generating a complicated behaviour. For $=1 (third graph in fig. 1) the behaviour is even more
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Fig. 1. Spectrum of the energy density of vacuum per unit length inside a prismatic cavity of rectangular section aX b, as seen by an
observer at rest. (a) f=10000; (b) f=10and (c) f=1.
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Fig. 1. (continued).

complicated, showing some kind of vacuum turbulence; a characterization of this semi-random behaviour is
currently in progress.

The total energy per unit length inside the cavity has been calculated previously [7]. In our case, we subtract
from (4) the zero point energy density and integrate over w to obtain (see ref. [6], formulae 3.411.1 and
3.951.12)
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Again we recover the correct expression for the Casimir energy in the limit of only two parallel plates (b>>a
or b<<a). The dimensionless total energy per unit length £'=a2E goes as —n?/7204° when 8~ 0 and as -2/
720 when S~ co.

B. Accelerated observer. The world-line of an accelerated observer is given by t=a~'sh[a(t*¢/2)] and
x=a""'ch[a(t+a/2)] where « is the acceleration. The Wightman functions, egs. (1), then reduce to
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The last three terms do not contribute to the energy density per unit length inside the cavity (see appendix);
thus, the Fourier transforms of (8) contain only integrals of the form
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where p= (a?n?+b?m?)'/2. The poles of the function are located at P, ,=2a~'[+ (—1)*arcsh(ap) +ink],
where k is an integer. The non-vanishing contributions are
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which lead to an energy density per unit length inside the cavity given by
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The Planckian spectrum in the first bracket can be identified with the thermal spectrum due to the acceleration
a. The interpretation of the terms in the second bracket is parallel to that for the observer at rest: the first term
corresponds to the vacuum, each one of the following two terms corresponds to a single pair of plates alone
[2] and the last term is an interference term. Fig. 2 shows the dimensionless form of (10) (the dimensionless
acceleration is & =aa) as function of @. The behavior is even more complicated than in the case of an observer
at rest, suggesting again some sort of vacuum turbulence.
Expression (10) gives the correct limiting cases: first, if «—0, we obtain the result (4); second, if f—oco
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Fig. 2. Spectrum of the energy density of vacuum per unit length inside a prismatic cavity of rectangular section ax b, as seen by a
uniformly accelerating observer.
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keeping a finite, we get the expression of ref. [2] for an accelerated observer between two infinite parallel plates
separated a distance a.

In order to obtain the total energy, one has to integrate over frequency w. This integration can be done di-
rectly by using the formula for the inverse Fourier transform. The final result is

n?(a*+b*) ab = = 1 aba*

E=— 0 "l k@i ) T 2a0m (1)

This total energy contains a thermal term proportional to «*, which is also present outside both plates, giving
a total null pressure. As a function of f=5/a, the dimensionless total energy per unit length £=a2E goes as
—n?/7204% when f~0 and as —n?f/720+ @& /240n when S~ co.

The authors are gratefully indebted to Paul Davies for stimulating discussions and invaluable help; they also
acknowledge fruitful discussions with Ana Maria Cetto and Rocio Jduregui.

Appendix

The integrals [§ X% __ f(x—an) dx do not contribute to the energy per unit area between the plates since
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due to the properties of linearity, translational invariance and rescaling invariance of the integral.
The other integrals are particular cases of

T el dx
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where the roots A, are given by
20 ,=tala*n?=p*m?*sh?(at) ]/ *+impPa ch(ar) ,

for n=0, I, 2,.., and m=0, £1, £2,..; the poles are given by P, ,=(—1)*arcsh(4,,) +ink, for k=0, =1,
+2..... The different particular cases correspond to n=0, m=0, or both. The integration procedure followed
for each case depends on the location of the poles which depends on the values of the roots; these roots depend
in turn on the values for n and m. The general integral is thus dependent on the value of an with respect to
Blsh(at)|m, and it does not seem possible to express it in a simple and compact form.
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