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All systems in thermal equilibrium exhibit a spatially variable energy landscape due to thermal
fluctuations. Thus at any instant there is naturally a thermodynamically driven localization of energy

in parts of the system relative to other parts of the system. The specific characteristics of the spatial
landscape such as, for example, the energy variance, depend on the thermodynamic properties of the
system and vary from one system to another. The temporal persistence of a given energy landscape,
that is, the way in which energy fluctuatiottégh or low) decay toward the thermal mean, depends

on the dynamical features of the system. We discuss the spatial and temporal characteristics of
spontaneous energy localization in 1D anharmonic chains in thermal equilibriut99®
American Institute of Physic§S0021-96009)51628-(

I. INTRODUCTION The study of anharmonic chains and of higher-
The pioneering work of Fermi, Pasta, and Ufadem- dimensional discrete arrays has been less than systematic,
onstrated that a periodic lattice of coupled nonlinear oscillacertainly an inevitable consequence of the breadth and math-
tors is not ergodic, and that energy in such a lattice mayamatical difficulty of the subject. Some studi@xluding the
never be distributed uniformly. A great deal of work hasWork of Fermi, Pasta, and Ulandeal with microcanonical
followed that classic paper trying to understand how energy@frays. Here one observes the way in which a given constant
is distributed in discrete nonlinear systefné.Specifically, —amount of energy distributes itself among the elements of the
the possibility of spontaneous energy localization in perfecgrray. The notion of “temperature” usually does not enter in
anharmonic lattices has been a subject of intense inférést. these discussions, although such an association could be
The existence of solitons and more generally of breathergade if the energy is randomly distributed. Other studies of
and other energy-focusing mechanisms, and the stationarignharmonic chaingfar more limited in numbgrdeal with
or periodic recurrence or even slow relaxation of such spasystems subject to external noise and other external forces.
tially localized excitations, are viewed as nonlinear phenomThe questions of interest here involve the ways in which
ena with important consequences in many physicahoise can enhancéas in noise-enhanced signal propa-
systemg 01415 gation® or even totally modify(as in noise-induced phase
The interest in the distribution and motion of energy intransitiong*® the properties of the nonlinear array. Even
perfect arrays arises in part because localized energy in thessore limited has been the study of systems that are in ther-
systems may benobilg in contrast with systems where en- mal contact with one or more external heat baths maintained
ergy localization occurs through disorder. The interest alsat a constant temperatut®!? Here the questions usually re-
arises because such arrays may themselves serve as modgif/e around the robustness against thermal fluctuations of
for a heat bath for other systems connected to theAlbeit  stationary or quasistationary solutions of the microcanonical
in different contexts, “perfect” arrays serving as energy problem. In both microcanonical and canonical systems,
storage and transfer assemblies for chemical or photocheméome work concentrates on stationary states or long-time be-
cal processes are not uncomnén® havior or equilibrium properties of the array, while other
work deals with transport properties or with the approach to
dpermanent address: Departament dénQea-Fsica, Universitat de Barce-  €quilibrium. Furthermore, there is variation in the portion of
b)Iona, Avda. Diagonal 647, 08028 Barcelona, Spain. _ the potential where the nonlinearity resides. Thus, in some
Present address: Max-Planck Institut Restkaoperforschung, Heisenberg- cases the elements of the array are themselves nonlinear
str. 1, 70569 Stuttgart, Germany. L L . .
9Permanent address: Instituto de Astronamipdo. Postal 70-264, Ciudad while in others it is the coupling between elements that is
Universitaria, Maico D. F. 04510, Mgico. nonlinear(and, on occasion, both are nonlinear
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Within this broad setting, our interest in this paper fo-linear chain at any given instant of time, and how does this
cuses on one-dimensional arrays of classical oscillators idistribution depend on the anharmonicity? In other words,
thermal equilibrium™® An understanding of thermal equilib- can one talk abouspontaneous energy localizatiém ther-
rium properties and the effects of nonlinearities on thesenal equilibrium, and, if so, what are the mechanisms that
properties is a prerequisite to the perhaps more interestingad to it?
analysis of the nonequilibrium behavior of anharmonic lat-  (b) How do local energy fluctuations in such an equilib-
tices in the presence of thermal fluctuations and the approaafum array relax in a given oscillator? Are there circum-
to equilibrium in such systems. In particular, here we deaktances in the equilibrium system wherein a given oscillator
with the case of “diagonal anharmonicity,” that is, the non- remains at a high level of excitation for a long time?
linearity in our model is inherent within each oscillator in the (c) Can local high-energy fluctuations move in some
array (representing, for example, intramolecular interac-nondispersive fashion along the array? In other words, can an
tions), while the connections between oscillatérepresent- array in thermal equilibrium transmit long-lived high-energy
ing, for example, intermolecular interactionare ordinary fluctuations(if indeed they exisgt from one region of the
linear springs. The anharmonicity may be soft or hard. Wearray to another without too much energy loss to dispersion?
explore the conditions that lead to spontaneous energy local- The answers to these questions have not been found ana-
ization in one or a few of the oscillators in the array, and theytically, and are for that reason most clearly presented in
time it takes for a given energy landscape to change to aomparative fashion. Starting with an ensemble of uncoupled
different landscape. One could undertake a parallel study inscillators at thermal equilibrium, one knows exactly the be-
systems with anharmonic interactions between oscillatorbavior of asingle harmonic oscillatoand can say a great
(“off-diagonal” anharmonicity. We address such systems deal about the behavior of single anharmonic oscillator
in subsequent work from general thermodynamic considerations. Thus, for in-

The energy landscape is determined by the local potenstance, the mean energy of a single harmonic oscillator in
tial of each oscillator, and by the channels of energy exthermal equilibrium at temperatureT is E=KkgT
change in and out of each of the oscillators. The couplinggkg=Boltzmann’s constant This energy is on average di-
between oscillators provide one such exchange channel, amitled equally between kinetic and potentfal partition that
the coupling of the array with the heat bath provides theenters importantly in questions concerning landscape persis-
other. We shall see that different arraig®eft, hard behave tencg. A simple virial analysis immediately shows that a
very differently in response to these channels. We broadlgoft anharmonic oscillator in thermal equilibrium has energy
anticipate our conclusions by revealing tliatpersistent en- greaterthankgT while a hard anharmonic oscillator has en-
ergy localization occurs in arrays of weakly coupled softergy smallerthankgT. Both share the property of the har-
oscillators even when strongly coupled to a heat atfile ~ monic oscillator that the average kinetic energkd3/2, but
such localization is absent in the hard chaifii) persistent their average potential energies differ. One also knows ex-
localization occurs in strongly coupled hard arrays providedactly the energy fluctuations in a harmonic oscillator: the
they are weakly coupled to a heat baithile such localiza- energy variance? is equal tokéTZ, and the ratio obr to E
tion is absent in the soft chain(iii) quasidispersionless mo- is therefore independent of temperature. The energy fluctua-
bility of localized energy requires off-diagonal anharmonic-tions are easily determined to be greater in a soft oscillator
ity. and smaller in a hard oscillator. From these facts one can

These remarks point to the fact that our analysis of anarrive at rather definitive qualitative conclusions regarding
harmonic chains in thermal equilibrium could start from two the distribution and persistence of energy in ensembles of
“opposite” viewpoints. On the one hand, we might start by single oscillators and the effects of the anharmonicities on
analyzing uncoupled oscillators in thermal equilibrium andthese feature¥
then proceed to investigate what happens if we couple these The situation becomes more complicated when such os-
oscillators to one another. This approach focuses on the emwillators are connected to one another. Not only can the os-
tropic localization mechanisth and the way in which the cillators now exchange energy with the heat bath, but there
coupling between the oscillators eventually degrades it. Omre also coupling channels whereby oscillators can exchange
the other hand, we might start with a coupled isolated chainenergy with one another. The interplay of these various en-
focus on energetic localization mechanisms in such a chainergy exchange channels and the effects of anharmonicity on
and then proceed to investigate the ways in which thermathis interplay are some of the issues to be addressed in this
fluctuations and dissipation affect such local structureswork.

Since we are explicitly interested in localization in the pres-  This paper is organized as follows. In Sec. Il we intro-

ence of thermal fluctuations, and since entropic effects havduce our model and notation. We fix some of the parameter
received far less attention than energetic ones, we choose walues and briefly discuss the numerical methods used in our
follow the former approach. simulations. Here we introduce the hard, harmonic, and soft

No matter the sequence of our queries, since here ouocal potentials to be compared. In Sec. Il we review and
interest lies mainly in understanding energy localization in allustrate previous results for uncoupled oscillators in thermal
nonlinear discrete array ithermal equilibriumand the way equilibrium so as to establish the background for the coupled
in which thermal effects depend on system parameters, wgystems. The phenomenon of “entropic localization,”
pose our gquestions as follows: whereby ensembles of single thermalized soft oscillators lo-

(a) How is the energy distributed in an equilibrium non- calize and retain energy more effectively than harmonic or
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where a dot represents a derivative with respect to time. The
7;(t) are mutually uncorrelated zero-centered Gaussian
o-correlated fluctuations that satisfy the fluctuation—

dissipation relation:
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FIG. 1. lllustration of the 1D chain considered in this work. Each oscillator <77'(t)> 0, <_77|(t) 77](t )> 27kBT_5|J o(t—t’). 3
in the chain experiences an on-site potential and is harmonically bound toits ~ Since we are interested in assessing the effects of anhar-

nearest-neighbors. monicities on energy localization, we start by specifying the
on-site potentials to be used in our analysis:

Vo(x)= 3%
Vs(X)=[x|=In(1+|x]) (4)

Vi(X)= 3x2+ x4

hard oscillators, is recalled. In Sec. IV we explore the con-
sequences of coupling our oscillators. In Sec. V we briefly
address the mobility of energy fluctuations in our systems.

Finall VI i findi ici fur- . .
tf:(r;?s)tlijc?iz(s: summarizes our findings and anticipates urThe subscript 0 stands for the harmonic casfyr the soft

andh for the hard. At small amplitudes the three potentials
are harmonic with a unit natural frequency. Figure 2 shows
the potentials and associated forces.

We end this section with a brief description of the nu-
merical methods used in our simulations throughout this pa-
per. The numerical integration of the stochastic equations for

nearest-neighbor interactions and on-site potenti&(s;) all our simulations is performed using the second-order He-
that may be hard, harmonic, or soft. Hegeis the displace- UN'S m_ethod(V\_/hiczq g equivalent to a second-order Runge—
ment of oscillator from its equilibrium position, with asso- Kutta integration.”**We use a time step\t=0.005. The

ciated momentunp; . We assume periodic boundary condi- number of oscillators in our simulations ranges between 100
tions. The Hamiltolnian of the system is and 1000 and is indicated in each figure as appropriate. In

each simulation the system is initially allowed to relax for
enough iterations to insure thermal equilibrium, after which
we take our “measurements.” In all of our subsequent en-
ergy landscape representations we have used the same se-

wherek is the intermolecular force constant. Figure 1 is aquence of random numbers to generate the thermal fluctua-
schematic of the model. tions.

To represent the thermalization of our chain the model is
furthgr expanded to include the Langevin pre'scription for“l_ PROPERTIES OF UNCOUPLED OSCILLATORS:
coupling a system to a heat bath at temperafuvéa fluctu- ENTROPIC LOCALIZATION
ating and dissipative terms. The stochastic equations of mo-
tion for the chain are then given by the Langevin equations  In order to understand the equilibrium properties of a
chain of oscillators it is useful to first review the behavior of

Il. THE MODEL AND NUMERICAL METHODS

Our system is a one-dimensional chain Mfidentical
unit-mass oscillators labeled=1,2, ... N with harmonic

2

N
H:Zl %+%k(xi_xi+1)2+v(xi) , 1)

Xi= —K(2Xi— Xi 11— Xi_1) — YXi— +at), (2 single (uncoupled oscillators described by the potentials in
Eq. (4).
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FIG. 2. Left panel: the on-site potentials defined in ). Right panel: the associated forces. Solid lines: harmonic potelj@x). Dotted lines: soft

anharmonic potential4(x). Dashed lines: hard anharmonic potentig|(x).
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FIG. 3. Oscillation characteristics of single isolated oscillators. Left panel: frequency as a function of the oscillator energy for the potenti@ds Rigtf.
panel: oscillation periods for single oscillators. Solid lines: harmonic oscillator. Dotted lines: soft anharmonic oscillator. Dashed lines: hard anharmonic
oscillator.

Suppose first that our oscillator isolated The salient e EkeT+(E)
features of anharmonic oscillators are tfiatthey oscillate P(E)=— e (6)
with different frequencies at different energies, giidl the JodEe =8 7(E)

density of states changes with changing energy. In particular,

hard potentials are associated with increasing frequencies the density of states is proportional to the period of oscilla-
oscillation and sparser densities of states with increasing aMiong. The figure supports our introductory comments:
plitude (energy; on the other hand, in soft potentials the firstly, that the average energy of the soft oscillators is
oscillation frequency decreases and the density of states i@‘reater than that of the harmonic oscillators, whose average
creases with increasing amplitude. energy is in turn greater than that of the hard oscillators;
To get a sense, useful for later analysis, of these andecondly, that the energy fluctuations are smallest in the hard
associated oscillator characteristics, we present several figxcillator and largest in the soft oscillator. Thus in equilib-
ures that show various distinct features of our three types ofium we find at any instant that there is a greater variability
oscillators. Figure 3 shows the frequencieE) of isolated  of energy in an ensemble of single soft oscillators than in one
singleoscillators as a function of increasing ene&gywhich  of harmonic or hard oscillators. The right panel of Fig. 4
in turn corresponds to increasing amplitudehis frequency  shows the average period of oscillatiatksT) for a ther-
is evaluated directly by solving the equation of motion malized distribution:
dx/dt= £ J2[ E—V(X)] over one period of oscillation at en-

ergy E:

o dx | r(kaT) = | “dEAEIP(E). @
w(BE)=7w —_— (5) 0

“xmaxy2[E=V(X)]

The amplitude of oscillatiorx,,,, at a given energy can be Consonant with the energy dependence(®), the average
found by solving for the positive root of (x) =E. The har-  period of the soft oscillator increases with temperature, that
monic oscillator has a single frequency at unity. The soft anaf the harmonic oscillator is independent of temperature, and
hard oscillators oscillate at unit frequency at low amplitudeshat of the hard oscillator decreases with temperature.
(energiey because we have chosen all the oscillators to co- The features just discussed are also visible in the energy
incide there, but with increasing amplitude the hard oscillatolandscape rendition shown in Fig. 5. Along the horizontal
frequencies increase and those of the soft oscillator decreasdirection in each panel lies an ensemble of 100 independent
In Fig. 3 we also show the period of oscillationgE) thermalized oscillators and the vertical upward progression
=27/ w(E). The period increases with increasing energy forshows how these oscillators evolve with time in the equilib-
the soft oscillator, remains constant for the harmonic osciltium system. Here and in all our energy landscape figures the
lator, and decreases with energy for a hard oscillator. Thig axis covers 120 time units, the same units shown on time
behavior will figure prominently in our subsequent analysisaxes throughout the paper. Each oscillator is connected to a

of energy localization. heat bath. The gray scale represents the energy — an oscilla-
Next we consider these same single oscillators, but novtor of higher energy is darker in this portrayal.
each connected to a heat bath at temperafuria Langevin The first thing to note is that along any horizontal line

terms. The left panel of Fig. 4 shows the normalized energyi.e., at any given timethe soft landscape is darker and
distribution P(E) vs E for the three cases. This distribution grainier than the harmonic, and the lightest and least grainy
is given by is the hard oscillator landscape. This reflects the fact that the
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FIG. 4. Left panel: energy distribution in single thermalized oscillators for the three potentiaid at0.5. Right panel: average oscillation period for the
three oscillators as a function of temperature. Solid lines: harmonic potevigigl). Dotted lines: soft anharmonic potentidg(x). Dashed lines: hard
anharmonic potential,,(x).

soft oscillators have the highest energies and the greatest
energy fluctuations. This observation provides a basis to be = = = = - ", 5 » = L=
used in answer to the first question posed in the introduction , — .* = —all,
In an ensemble of independent oscillators in thermal equilib-= « ~ > = = =~ - = o
rium there is of course a greater energy in some oscillators = ®* ;= - =" = EEmiL gk 5 b
than in others simply because there are energy fluctuations il =~ S 2 il e
a system in thermal equilibrium. These fluctuations are " « g iy et "‘-.:__- . e
greater in soft anharmonic oscillators than in harmonic OF = pa Bt o) =, g fe
hard anharmonic oscillators. P . e e g S e R
The second noteworthy feature of the landscape illus-— = = 70 S ey B R i 2
trates the answer to the second question posed in the intrc. ¥ e A i SR
duction, namely, how long it takes in an equilibrium en-
semble for the fluctuations to relax and the energy landscapi =~ - = = w= <= - - Ao E Tmo N ates 20
to change. The trend for our independent oscillators is clear . == _ O e et ity B .
the soft oscillators retain a given energy for a longer time= g o«
than do the harmonic, which in turn hold on to a given en- " “= gl Sl S S oty -y
ergy longer than do the hard oscillators. This is particularly = i e :
evident for those oscillators that acquire a high energy = - .. T e e e = .
through a fluctuation: in the soft oscillator landscape the dark - - - 2! > = - -
streaks are clearly visible. The reason for this behavior be-. o e T LR

comes clear if we write the equation ofmononfortheenergy-* B L e T e : = =

of each oscillatorE=p?/2+V(x). Settingp=x and using = = S a -
Eq. (2) one finds that for any type of oscillator - : i

1
L
1
"
[
o
om

E=—yp>+pn(b). @ SEEI e E Ao e
Thus, the energy exchange with the surroundings involves, ~=. A e : e ai e
only the momentunvariable(i.e., the kinetic energy Con- e el e s e 2 = - o
sider an oscillator that has acquired a given high-energy fluc- - - "= - T ol om e B .S
tuation E, and consider how this energy is distributed be- .- -~ == el e AT d
tween the oscillator displacement and momentum. In a =
harmonic oscillator the energy during one cycle of oscilla-=- .« =& iyt e e T
tion is equally partitioned between kinetic and potential. Ina-- -~ =i .- T oo To o - S "
soft oscillator, however, the energy spends relatively more
time in potential than in kinetic forrtand the opposite is true
for the hard oscillatgr Thus, during the major portion of the FIG. 5. Energy(in gray scalesfor ensembles of 100 thermalized indepen-

cycle the momentum of a soft oscillator is relatlvely low dent oscillators as a function of time. The oscillators are linedhyp not
connectefl along thex-axis and time advances along thexis. The tem-

(while its displacement is largethe energy in the soft oscil- perature iskgT=0.5 and the dissipation parameterjis 1. Top panel: soft
lator can therefore not enter from and leave to the thermadscillators; middle panel: harmonic oscillators; lower panel: hard oscillators.
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1.0 F ‘ ; ‘ 7 is in potential form a greater fraction of time than in kinetic
form, which is not the case for the other two ensembles.
We gave this scenario the name stochastic localization in
our earlier work!? but will refer to it asentropic localization
a term that more accurately reflects its physical causes. It is
] important to stress that entropic localization in soft oscilla-
tors is robust in the sense that it becomeasre pronounced
as temperature increases provided the potential continues to
soften, and that it is achieved regardless of the initial condi-
tion of the system.
The remaining parameters that can be varied at this point
are thedissipation parameteand thetemperature A change
in the dissipation parameter does not affect Fig. 4 since this
‘ is an equilibrium distribution. In Fig5 a higher dissipation
15.0 20.0 parameter would cause a more rapid decay of energy fluc-
T tuations(and, correspondingly, a lower dissipation parameter
FIG. 6. Energy correlation function vs time for independent oscil_lators with 511ows an energy fluctuation to survive for a longer time
keT—0.5 andy=1. Note that the energy changes most slowly in the Soft o\« o gh high dissipation does not interfere with the
potential ensemble. Solid line: harmonic potential. Dotted line: soft anhar- ’
monic potential. Dashed line: hard anharmonic potential. appearance of greater energy fluctuations in the soft oscilla-
tors, it works against the temporal retention of excess energy
by any one oscillator. The energy correlation function decays

. . . _ more slowly for the soft oscillator for any dissipation, and
surroundings as easily as in the other oscillators. The energy:. decay is more rapitfor all the oscillators as the dissi-

relaxation process is therefore slower, and a soft anharmon'kgation increases. In any case, for a given dissipation param-

oscillator retains a high energy it might have gained via %ter the softer potential retains energy for a longer time.

fluctuation for a Ionger.uméz. N ) The temperature affects the quantitative outcome of
The energy relaxation process visible in Fig. 5 is ShoWngjgq 4 and 5. In Fig. 4 the distributions broaden with in-
more quantitatively in Fig. 6. Here we have plotted the nor- e aqing temperature, but the differences between the differ-
malized energy correlation function ent oscillators remain and, in particular, the fact that the dis-
<(E(t)E(t+ Y —(E()WE(t+ 7-)>> tribution for the soft oscillator is the broadest continues to be
C(r)= (9)  true. In Fig. 5 higher temperatures produce relatively greater
(E2(1)—(E(1)?

graininess in the soft oscillator figure than in the other two.
The inner brackets indicate an average over tir200 000 This is clearly observed in the sequence of Fig. 7, which
iterations and the outer brackets an average over an enshows the evolution of ensembles of soft oscillators for dif-
semble of 1000 oscillators. The correlation function is nor-ferent temperatures. A temperature increase leads 1o stronger
malized so that all energies, high and low contributeentmpic localization and this effect also appears in the en-
“equally.” It is thus a measure, of the full excha,mge of en- €79y correlation _functions, as shown in Fig. 8. This behaviqr
ergy with the heat bath, both through the dissipative term antf cpntrasted with that of harmonic and hard anharmon_lc
also via the fluctuations. We note that the trend in Fig. 605cnlgtors, whose energy landscapes and energy corrglathn
(slower decay as the oscillators softén consistent with the functions show essentially no temperature dependence. n this
corresponding slowing trend for each temperature in thdange. The energy fluctuations in these latter cases dissipate

right panel of Fig. 4. Also note that on average the energy ot &Y quickly. Note that the temperature dependence of the

an oscillator changes on the time scale of half a period 0Forrela‘tion times implicit in Fig. 8 is consistent with the
temperature dependence of an average period of oscillation

oscillation, i.e., on the time scale it takes the oscillator to . . i e :
move from one side of the potential well to the other. of a soft oscillator as shown in the right panel in Fig. 4: with

We have thus summarized and illustrated our earlierincreas_ing temperature 'ghe correlation time continues to be
findings!? namely, that in an array of independent oscillators2PProximately half a period. .
in thermal equilibrium at a given temperature there are large W'.th this ba}ckground_, we are now ready to.conS|der the
energy fluctuations and longer retention of energy the softeE)EhaVIor ofchains of oscillators, whgre evefythlng that we
the oscillators. This is an entropy-driven localization, arisinghaV?_ found so far has to be reconsidered in the fac_e of the
from the fact that the density of states in soft osciIIators"’ldd,Itlonal forc.es now present through the oscillator—
increases with increasing energy. It minimizes the free enQSCIIIator coupling.
ergy because it is entropically favorable for oscillators to
populate phase space regions where the density of statesl}/s' COUPLED OSCILLATORS
higher, which in an ensemble of soft oscillators leads to a In this section we explore the consequences of coupling
greater spatial variability than in harmonic or hard oscilla-the oscillators discussed in the previous section with har-
tors. The temporal persistence of this greater variability is anonic springs. In this exploration we attempt to bring some
consequence of the fact that coupling to a heat bath occurksrder to seemingly contradictory reports that the coupled os-
only via the kinetic energy. In the soft ensemble the energyillators must be hard in order for such an array to localize
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'.-,_ 5 s =0 _55 g ': B FIG. 8. Energy correlation function vs time for independent soft oscillators
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- section, one is the friction term that dissipates the energy to
) the bath. The other is the coupling term that transfers energy
: g =] = % T : to the nearest-neighbors. The difference between these two
Lo r mechanisms is that the dissipation is determined entirely by
: = Sl i the kinetic energy of the oscillator. Energy transfer along the
= - % 5 i chain, on the other hand, while still dependent on the kinetic
=w : < el - 1= g ) energy, is primarily determined by the extension or contrac-
' e e - b T T tion of the springs connecting neighboring oscillators, that is,
SRR L 1 Ly L= by the potential energy through the relative oscillator dis-
-, ' Lt placements. To make these statements more quantitative, it is
= -zza = B s W | R useful to generalize the concept of a local energy by defining
ETrs a (e - B R Sl L= R a local function whose sum over sites is the total energy of
- the chain. To include the contribution from the nearest-
. i | S e i i neighbor restoring forces one writes
LS R R LS T B o e e p? ‘
Cop T . L ST | o Ei57+V(Xi)+ Z[(Xi_Xi+1)2+(xi_xi71)2]v (10)

= = =" ) =5 .= - l and the total energy of the system is tHer = ,E;. The rate
LI b o-sn === 4' B g of change of the local energy is easily found to be

: - : : : _ .
i AR " | PR Ei:_Ypi2+pi77i(t)_E(Xi_xi+1)(pi+Pi+1)

= % - = e 3 l—'_ it

B " = L | i

k
FIG. 7. Energy landscapes for thermalized independent soft oscillators as a B E(Xi ~Xi-)(Pi+Pi-1). (12)
?:it"}lrﬁ;:g;rg f?g;?rgg :;Z‘ggg?;;ej'().Tlr"eol(é"ssl'.poa}t::d p;(rfmeter "Note that glthough this expression does not explicitly involve
the potential, the rate of local energy loss of course does
depend on the potential through the displacements and mo-
energy effectively, or that the coupled oscillators must bementa.
soft in order to accomplish such localization. To anticipate  The dynamics of the local energy will thus depend on
our results, we will show that both claims are correct, butthe interplay of the thermalfluctuations, dissipative, and
each in a different parameter regime and for different physiintrachain forces. In order to highlight the main comparisons
cal reasons. The variable parameters in this discussion aend contrasts, we frequently will juxtapose the behavior of
the temperaturdgT, the dissipation parametey, and the chains for which one or the other of the energy exchange
coupling strengttk. channels is clearly the dominant one, and in each case assess
In order to determine the conditions that may lead tothe effects of temperature changes.
energy localization in a thermalized chain of oscillators itis ~ The effect of interoscillator coupling on entropic local-
useful to investigate the ways in which energy may escapé&ation is illustrated in Fig. 9. In this figure we show the
from a given oscillator. It is apparent from the Langevin Eq.system of soft oscillators that were uncoupled in Figsge-
(2) that there are now two channels of escape. As in the lagtifically, the case wittkgT=0.5 andy=1), but now provid-
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. . : o s 10 F - w - 7

---- k=0.05 g

sy

B e 0.0 5.0 10.0 15.0 20.0

i e el A = e = : FIG. 10. Local energy correlation function vs time for chains of soft oscil-
- = g B g et e lators with y=1, kgT=0.5 and different values for the coupling constant
- = gl il e g » (same as in Fig. @

= S - o= S = o oy We thus turn to chains of coupled oscillators with low
2 o= = S T - dissipation (y=0.05 and focus, in particular, on strongly
- e T e coupled chaingif both k and y are small we know pretty
- 2 e e ; = s much what happens from the analysis in the previous sec-
- . e s o tion). In Fig. 11 we have drawn the energy landscape for the
o oA el ey soft (top pane), harmonic(middle pane), and hard oscilla-
o e ot S o tors (lower panel providing kgT=0.5, y=0.05, andk=1.0.
. - - - - From this figure it is clearly evident that now the localization
- o TR e e, S = of energy at a given site is greater in the hard case than in the

’ o I 21 O e e harmonic case, and this in turn, is greater than in the soft
- . - - L = case. The confirming local energy correlation functions for

== e e S T these cases are plotted in Fig. 12. Clearly, for a given tem-
: Pt e - ot perature the hard array retains energy at a given location for
g s e N - a longer time than do the other two arrays.

e " - i T e s In the low-y, largek regime the effective energy ex-
s L e SR change channel is sensitive to the oscillator amplitude rather
e T e e e = " than to its kinetic energy, so we expect entropic localization

= - R _yeta—hy in the soft array to be degraded since soft oscillators have
L i el Tl e large amplitudes. Furthermore, as the harmonic coupling in-
R TR ST R T =T creases it eventually overwhelms the local soft potential and

] ) _ the soft chain becomes an essentially harmonic chain at suf-
f'G' 9 Energy landscapes for thermalized soft oscillators as a function ofji;e 1y |argek. On the other hand, hard oscillators exchange
ime. The dissipation parameterjs=1 and the temperatuigT=0.5. From . . . .
top to bottom the coupling constants e 0, 0.05, 0.5, and 1.0. little energy via the coupling channel since they do not reach
large amplitudes. This, and the fact that dissipation to the
bath via kinetic energythe other energy exchange channel
ing successively larger values for the coupling constant Nas been minimizedow ), leads to persistent energy local-
Entropic localization is still apparent for small valueslof ~ization in the hard array. This is an energetic localization
but as coupling increases there is clear degradation of effechanism. The frequency mismatch between an energetic
tropic localization. This is to be expected since energy exhard oscillator and its less energetic neighbors, and the
change is sensitive to large oscillator amplitude differenceélearth of density of states at high energies, further contribute
in soft oscillators. to this persistence.

The associated energy correlation functions The energetic localization mechanism in strongly
coupled hard oscillators is robust against temperature in-

(Ei()Ei(t+ 7)) —(Ei(t) )(Ei(t+ 7)) creases. Indeed, according to our explanation, the localiza-
- (Ef(t)}—(Ei(t)>2 N (12) tion should become more pronounced and persistent as tem-
: perature increases provided the dissipation is sufficiently
for the cases in Fig. 9 are shown in Fig. 10. These curveweak. In Fig. 13 we have drawn the energy landscapes for a
confirm the degradation of entropic localization with increas-strongly coupled K=1.0) array of hard oscillators, weakly
ing k. coupled to the batliy=0.05 at different temperatures. The

C(7)
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~ == - : = - g 04 |

T eaie - . 0.2

EaEL = o I 0.0

0.0 5.0 10.0 15.0 20.0
) = 5 FIG. 12. Energy correlation function vs time for coupled oscillators with
- = - = y=0.05,kgT=0.5, andk=1.0. Solid line: harmonic potential. Dotted line:
e T o ey e o soft anharmonic potential. Dashed line: hard anharmonic potential.

= R o, -y y R 12 and 14 are reproducibly there at all temperatures; we do
1 ’ " o e T S I | not know their source.

:? i . f, e V. MOBILITY OF LOCALIZED ENERGY
L e o L FLUCTUATIONS

% ey - T R | The upper two energy landscapes in Fig. 11 show what
= E- . Py o might appear as fairly dispersionless energy transport. Nar-

R R - row high-energy pulses move visibly along the chain before
S AP e BT disappearing, while others appeaia thermal fluctuations
) " to repeat the process elsewhere along the chain. However,

FIG. 11. Energy landscapes for thermalized strongly coupled oscillators as¢hijs cannot be claimed to represent nonlinear behavior since
function of time. The dissipation parameter j5=0.05, the temperature

kgT=0.5, and the coupling constakt=1.0. Top panel: soft oscillators; the mld_dle panel n Flg. 11 in fact reprgsents a completely
middle panel: harmonic oscillators; lower panel: hard oscillators. harmonic system! This serves as a cautionary note about the
overinterpretation of such results.
We noted earlier that with increasingthe soft chain
eventually becomes essentially harmonic because the inter-

) I ) . molecular harmonic interactions overwhelm the local soft
figure _quahtatlvely CO”f”T“S these_ expectations, The_correbotential(the only way to prevent this is by considering soft
sponding energy corre!atlon functions are plotted in F_|g. _14interoscillator interactions, which we defer to another
C(7) for the hard chain does decay more slowly with in- apej.?® The upper panel in Fig. 11 exhibits mostly this
creasing temperature. Thus, localization in this strongl

. ’Jessentially harmonic behavior—it is quite similar to the
coupled system of hard oscillators becomes more effectiv

o . X . . Viddle panel—but not entirely so. The soft oscillator chain
with increasing temperature and is not entirely fragile agains

dissipative forces. On the other hand, the soft and harmoni(t'(l;;arllr(lgr Zg?g}/fe Shlghﬁ;te?ue”rgy derggggz :ngaﬂeofhzl:ggg:z
correlation functiongnot shown hereare essgntia!ly inde- localization that,move more rapidlysteeper streaksover
pen'de“nt of te:\m,p’)erature. Note that the trend In Flgs..12 anﬁo)nger distanceflonger streaKsthan in the harmonic chain.
1.4 IS “opposite” to thqt of the uncoupled oscillators in th_e Therefore, the soft anharmonicity is clearly still playing
right ha_nd panel of F_|g. 4. 'F‘ the strongly _coupled Chamsome role, albeit a diminishing one with increasing coupling.
harmonic and soft oscillators in fact lose their energy rathe

. : S : o provide some quantification, we introduce the dynamical
quickly on the time scale of one oscillation period of an

) : : ! energy correlation function
isolated oscillator, but the hard oscillators retain energy cor- %y

N
» Tl
o’
0
'’

relations for longer than a period, indeed for many periods at (Ei(DEj+j(t+ 7)) —(Ei(1)Ei+j(t+ 7))

the highest temperatures shown. With increasing temperatufe(j.7) = (E2(1))—(E,(1))?

the hard oscillators retain energy more effectively even while ! ! [

the average oscillation period decreases. In fact, the decay of (13)

the correlation functions appears to involve two time scalesThis correlation function plotted as a functionjdbr various

one of the order of an oscillation period and another muchime differencesris shown in Fig. 15 for a soft chain and in

longer one that grows with temperature. Fig. 16 for a harmonic chain. For a given coupling constant
The temporal irregularitiegoscillationg visible in Figs.  k and delay timer, the correlation function peaks at the site
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FIG. 13. Energy landscapes for thermalized coupled hard oscillators as ¢

function of time. We takey=0.05 andk=1.0. Temperatures from top to
bottom:kgT=0.1, 0.5, 1.0, and 2.0.

i +j to which most of the energy originally ahas migrated.
The change of the peak position withindicates the velocity

of the migration, and the height and width of the pulse reflect

the dispersive dynamics.

The following results are evident:

(a) Increasingk in either soft or harmonic chains in-
creases the velocity at which a fluctuation propagates.

(b) The velocity for a given set of parameters is greater

in the soft chain.
(c) Dispersion is slower in the soft chain.

Reigada et al.

10.0 15.0
T

FIG. 14. Energy correlation function vs time for strongly coupled hard

oscillators withy=0.05,k=1 and different temperaturdsame as in Fig.

13).

0.0 5.0 20.0

and harmonic chains at large are fairly marginal. More
dramatic differences in mobility features occur with anhar-
monic intermolecular potentials, a situation that will be pre-
sented elsewher@.

VI. CONCLUSIONS

We have presented a fairly complete characterization of
the thermal equilibrium behavior of oscillator chains with
“diagonal anharmonicity,” that is, chains with nonlinear on-
site potentials and harmonic intersite potentials. Our particu-
lar interest lies in the characterization of possible spatial en-
ergy localization in such systems, and of the temporal
persistence of such localization.

The instantaneous localization of energy of a system in
thermal equilibrium is a manifestation of the thermal fluctua-
tions: it is an equilibrium property unrelated to system dy-
namics. We argued that not only do soft anharmonic chains
have a higher total energy at a given temperature than do

02 |} k=0.02 = i

[
—— =12
—--1=16

01|

3

0.0
02|

0.1 |

C(.7)

0.0
02|

0.0
0.2}

0.0
0.0

FIG. 15. Dynamical energy correlation functi@{j, ) for soft chains with

However, as noted before, the differences between soft=0.05 andkgT=1.0.
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chains leads not only to greater energy fluctuations but also

0.2 | k=0.02 =4 ]
e to a slower decay of these fluctuations.
01 | —— 16 Energy dispersion along the chain depends on the mag-
00 ] nitude of the coupling constant and also on the relative os-
oz | k=0.25 i cillator displacements. If the coupling constant is small, this
= channel is slow for any chain. If it is large, then this channel
S oty 7 can still be slow if relative displacements of neighboring
0.0 oscillators are small. This is the case for the hard chain,
02 k=0.5 . where displacements are relatively small and don’t change
ot | | much with increasing energy. Furthermore, because in a hard
) oscillator the frequency increases with increasing energy,
0.0 there is a frequency mismatch between a “hot” oscillator
02| ] and its “colder” neighbors that further impedes energy
o1l 1 transfer. This leads to greater persistence of local high-
energy fluctuations with increasing temperatureus an in-
00,5 5.0 crease in temperature in weakly dissipative hard chains

j leads not only to greater energy fluctuations but also to a
FIG. 16. Dynamical energy correlation functi@j, r) for harmonic chains ~ Slower decay of these fluctuations.
with y=0.05 andkgT=1.0. The soft chain, on the other hand, increasingly loses its
soft character as the interoscillator energy transfer channel
strengthens, and therefore both the landscape and the dy-

harmonic or hard chains, but also that thermal ﬂuctuationg"’lml(?al effects of.ar.1harmon|0|ty quickly disappear as this
oupling constant is increased.

are more pronounced in the soft anharmonic chains. This is goupl . : :
Finally, we showed that in harmonically coupled nonlin-

consequence of the fact that free energy maximization favors . o ) Lo o
q & ar chaingthat is, in chains with diagonal anharmonigity

the occupation of phase space regions with a high density o . ) -
states. The density of states increases with energy in a so nermal equilibrium, high-energy fluctuation mobility does

ening potential, so it is entropically favorable for a few soft n?]t oc_gurtpeyondr:?:;t Wh'.(;h S_f?bsertviilr:n a harmog!c cha|r|1.
oscillators to have rather high energies. This in turn leads td Ne situation might be quite different if there is nondiagona

greater spatial energy variability than in harmonic or hardanharmonicity, that is, if the interoscillator interactions are
chains, that is, soft chains have “hotter spots.” The eﬁcectanharmonic:. Our results on these systems will be presented

0
becomes more pronounced with increasing temperature. Th@sel‘évhfr:é' tati il also deal with bistable “i
entropic energy localization mechanism in soft chains is de- urtner presentations will also deal with bistable “impu-

graded as the harmonic intersite potential increases becaullies connected to chains of the types that we have consid-

3
the harmonic contributions become dominant over the Ioca‘?red heré

soft anharmonicity effects.

In addition to the capacity for instantaneous localization
of energy(which is greatest in soft chaipjsone is interested
in the temporal degradation of a high energy fluctuation.  The authors acknowledge helpful discussions with Dr. J.
That is, given a “local hot spot'{which is easier to find in M. Sancho. R. R. gratefully acknowledges the support of
soft chains, but nevertheless does occur in harmonic anghis research by the Ministerio de Educatiy Cultura
hard chains due to thermal fluctuationeow does such a through Postdoctoral Grant No. PF-98-46573147. A. S. ac-
fluctuation evolve in time? Such a fluctuation never growsknowledges sabbatical support from DGAPA-UNAM. This
spontaneously, nor does it persist indefinitely. Rather, itvork was supported in part by the U. S. Department of En-
eventually degrades, either through dissipation into the batBrgy under Grant No. DE-FG03-86ER13606.
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