
JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 4 22 JULY 1999
One-dimensional arrays of oscillators: Energy localization
in thermal equilibrium
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All systems in thermal equilibrium exhibit a spatially variable energy landscape due to thermal
fluctuations. Thus at any instant there is naturally a thermodynamically driven localization of energy
in parts of the system relative to other parts of the system. The specific characteristics of the spatial
landscape such as, for example, the energy variance, depend on the thermodynamic properties of the
system and vary from one system to another. The temporal persistence of a given energy landscape,
that is, the way in which energy fluctuations~high or low! decay toward the thermal mean, depends
on the dynamical features of the system. We discuss the spatial and temporal characteristics of
spontaneous energy localization in 1D anharmonic chains in thermal equilibrium. ©1999
American Institute of Physics.@S0021-9606~99!51628-0#
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I. INTRODUCTION

The pioneering work of Fermi, Pasta, and Ulam1 dem-
onstrated that a periodic lattice of coupled nonlinear osci
tors is not ergodic, and that energy in such a lattice m
never be distributed uniformly. A great deal of work h
followed that classic paper trying to understand how ene
is distributed in discrete nonlinear systems.2–7 Specifically,
the possibility of spontaneous energy localization in perf
anharmonic lattices has been a subject of intense interes8–13

The existence of solitons and more generally of breath
and other energy-focusing mechanisms, and the station
or periodic recurrence or even slow relaxation of such s
tially localized excitations, are viewed as nonlinear pheno
ena with important consequences in many phys
systems.10,14,15

The interest in the distribution and motion of energy
perfect arrays arises in part because localized energy in t
systems may bemobile, in contrast with systems where en
ergy localization occurs through disorder. The interest a
arises because such arrays may themselves serve as m
for a heat bath for other systems connected to them.16 Albeit
in different contexts, ‘‘perfect’’ arrays serving as ener
storage and transfer assemblies for chemical or photoch
cal processes are not uncommon.17,18

a!Permanent address: Departament de Quı´mica-Fı́sica, Universitat de Barce
lona, Avda. Diagonal 647, 08028 Barcelona, Spain.

b!Present address: Max-Planck Institut fu¨r Festkörperforschung, Heisenberg
str. 1, 70569 Stuttgart, Germany.

c!Permanent address: Instituto de Astronomı´a, Apdo. Postal 70-264, Ciuda
Universitaria, Me´xico D. F. 04510, Me´xico.
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The study of anharmonic chains and of highe
dimensional discrete arrays has been less than system
certainly an inevitable consequence of the breadth and m
ematical difficulty of the subject. Some studies~including the
work of Fermi, Pasta, and Ulam! deal with microcanonical
arrays. Here one observes the way in which a given cons
amount of energy distributes itself among the elements of
array. The notion of ‘‘temperature’’ usually does not enter
these discussions, although such an association could
made if the energy is randomly distributed. Other studies
anharmonic chains~far more limited in number! deal with
systems subject to external noise and other external for
The questions of interest here involve the ways in wh
noise can enhance~as in noise-enhanced signal prop
gation!15 or even totally modify~as in noise-induced phas
transitions!19 the properties of the nonlinear array. Eve
more limited has been the study of systems that are in t
mal contact with one or more external heat baths maintai
at a constant temperature.10,12 Here the questions usually re
volve around the robustness against thermal fluctuation
stationary or quasistationary solutions of the microcanon
problem. In both microcanonical and canonical system
some work concentrates on stationary states or long-time
havior or equilibrium properties of the array, while oth
work deals with transport properties or with the approach
equilibrium. Furthermore, there is variation in the portion
the potential where the nonlinearity resides. Thus, in so
cases the elements of the array are themselves nonli
while in others it is the coupling between elements that
nonlinear~and, on occasion, both are nonlinear!.
3 © 1999 American Institute of Physics
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Within this broad setting, our interest in this paper f
cuses on one-dimensional arrays of classical oscillator
thermal equilibrium.12 An understanding of thermal equilib
rium properties and the effects of nonlinearities on th
properties is a prerequisite to the perhaps more interes
analysis of the nonequilibrium behavior of anharmonic l
tices in the presence of thermal fluctuations and the appro
to equilibrium in such systems. In particular, here we d
with the case of ‘‘diagonal anharmonicity,’’ that is, the no
linearity in our model is inherent within each oscillator in th
array ~representing, for example, intramolecular intera
tions!, while the connections between oscillators~represent-
ing, for example, intermolecular interactions! are ordinary
linear springs. The anharmonicity may be soft or hard.
explore the conditions that lead to spontaneous energy lo
ization in one or a few of the oscillators in the array, and
time it takes for a given energy landscape to change t
different landscape. One could undertake a parallel stud
systems with anharmonic interactions between oscilla
~‘‘off-diagonal’’ anharmonicity!. We address such system
in subsequent work.20

The energy landscape is determined by the local po
tial of each oscillator, and by the channels of energy
change in and out of each of the oscillators. The coupli
between oscillators provide one such exchange channel,
the coupling of the array with the heat bath provides
other. We shall see that different arrays~soft, hard! behave
very differently in response to these channels. We broa
anticipate our conclusions by revealing that~i! persistent en-
ergy localization occurs in arrays of weakly coupled s
oscillators even when strongly coupled to a heat bath~while
such localization is absent in the hard chain!; ~ii ! persistent
localization occurs in strongly coupled hard arrays provid
they are weakly coupled to a heat bath~while such localiza-
tion is absent in the soft chain!; ~iii ! quasidispersionless mo
bility of localized energy requires off-diagonal anharmon
ity.

These remarks point to the fact that our analysis of
harmonic chains in thermal equilibrium could start from tw
‘‘opposite’’ viewpoints. On the one hand, we might start
analyzing uncoupled oscillators in thermal equilibrium a
then proceed to investigate what happens if we couple th
oscillators to one another. This approach focuses on the
tropic localization mechanism12 and the way in which the
coupling between the oscillators eventually degrades it.
the other hand, we might start with a coupled isolated ch
focus on energetic localization mechanisms in such a cha7

and then proceed to investigate the ways in which ther
fluctuations and dissipation affect such local structur
Since we are explicitly interested in localization in the pre
ence of thermal fluctuations, and since entropic effects h
received far less attention than energetic ones, we choo
follow the former approach.

No matter the sequence of our queries, since here
interest lies mainly in understanding energy localization i
nonlinear discrete array inthermal equilibriumand the way
in which thermal effects depend on system parameters,
pose our questions as follows:

~a! How is the energy distributed in an equilibrium no
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linear chain at any given instant of time, and how does t
distribution depend on the anharmonicity? In other wor
can one talk aboutspontaneous energy localizationin ther-
mal equilibrium, and, if so, what are the mechanisms t
lead to it?

~b! How do local energy fluctuations in such an equili
rium array relax in a given oscillator? Are there circum
stances in the equilibrium system wherein a given oscilla
remains at a high level of excitation for a long time?

~c! Can local high-energy fluctuations move in som
nondispersive fashion along the array? In other words, ca
array in thermal equilibrium transmit long-lived high-energ
fluctuations~if indeed they exist! from one region of the
array to another without too much energy loss to dispersi

The answers to these questions have not been found
lytically, and are for that reason most clearly presented
comparative fashion. Starting with an ensemble of uncoup
oscillators at thermal equilibrium, one knows exactly the b
havior of asingle harmonic oscillatorand can say a grea
deal about the behavior of asingle anharmonic oscillator
from general thermodynamic considerations. Thus, for
stance, the mean energy of a single harmonic oscillato
thermal equilibrium at temperatureT is E5kBT
(kB5Boltzmann’s constant!. This energy is on average d
vided equally between kinetic and potential~a partition that
enters importantly in questions concerning landscape pe
tence!. A simple virial analysis immediately shows that
soft anharmonic oscillator in thermal equilibrium has ener
greater thankBT while a hard anharmonic oscillator has e
ergy smaller than kBT. Both share the property of the ha
monic oscillator that the average kinetic energy iskBT/2, but
their average potential energies differ. One also knows
actly the energy fluctuations in a harmonic oscillator: t
energy variances2 is equal tokB

2T2, and the ratio ofs to E
is therefore independent of temperature. The energy fluc
tions are easily determined to be greater in a soft oscilla
and smaller in a hard oscillator. From these facts one
arrive at rather definitive qualitative conclusions regard
the distribution and persistence of energy in ensembles
single oscillators and the effects of the anharmonicities
these features.12

The situation becomes more complicated when such
cillators are connected to one another. Not only can the
cillators now exchange energy with the heat bath, but th
are also coupling channels whereby oscillators can excha
energy with one another. The interplay of these various
ergy exchange channels and the effects of anharmonicity
this interplay are some of the issues to be addressed in
work.

This paper is organized as follows. In Sec. II we intr
duce our model and notation. We fix some of the parame
values and briefly discuss the numerical methods used in
simulations. Here we introduce the hard, harmonic, and
local potentials to be compared. In Sec. III we review a
illustrate previous results for uncoupled oscillators in therm
equilibrium so as to establish the background for the coup
systems. The phenomenon of ‘‘entropic localization
whereby ensembles of single thermalized soft oscillators
calize and retain energy more effectively than harmonic



n
fl

ur

-
i-

a

l i
fo

m
n

The
ian
–

har-
he

ls
ws

u-
pa-
for
e-
–

100
. In
or
ch
n-

e se-
tua-

a
of
in

to
to

1375J. Chem. Phys., Vol. 111, No. 4, 22 July 1999 One-dimensional arrays of oscillators
hard oscillators, is recalled. In Sec. IV we explore the co
sequences of coupling our oscillators. In Sec. V we brie
address the mobility of energy fluctuations in our system
Finally, Sec. VI summarizes our findings and anticipates f
ther studies.

II. THE MODEL AND NUMERICAL METHODS

Our system is a one-dimensional chain ofN identical
unit-mass oscillators labeledi 51,2, . . . ,N with harmonic
nearest-neighbor interactions and on-site potentialsV(xi)
that may be hard, harmonic, or soft. Herexi is the displace-
ment of oscillatori from its equilibrium position, with asso
ciated momentumpi . We assume periodic boundary cond
tions. The Hamiltonian of the system is

H5(
i 51

N S pi
2

2m
1

1

2
k~xi2xi 11!21V~xi ! D , ~1!

wherek is the intermolecular force constant. Figure 1 is
schematic of the model.

To represent the thermalization of our chain the mode
further expanded to include the Langevin prescription
coupling a system to a heat bath at temperatureT via fluctu-
ating and dissipative terms. The stochastic equations of
tion for the chain are then given by the Langevin equatio

xï52k~2xi2xi 112xi 21!2gxi̇2
dV~xi !

dxi
1h i~ t !, ~2!

FIG. 1. Illustration of the 1D chain considered in this work. Each oscilla
in the chain experiences an on-site potential and is harmonically bound
nearest-neighbors.
-
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where a dot represents a derivative with respect to time.
h i(t) are mutually uncorrelated zero-centered Gauss
d-correlated fluctuations that satisfy the fluctuation
dissipation relation:

^h i~ t !&50, ^h i~ t !h j~ t8!&52gkBTd i j d~ t2t8!. ~3!

Since we are interested in assessing the effects of an
monicities on energy localization, we start by specifying t
on-site potentials to be used in our analysis:

V0~x!5 1
2 x2

Vs~x!5uxu2 ln~11uxu! ~4!

Vh~x!5 1
2 x21 1

2 x4.

The subscript 0 stands for the harmonic case,s for the soft
andh for the hard. At small amplitudes the three potentia
are harmonic with a unit natural frequency. Figure 2 sho
the potentials and associated forces.

We end this section with a brief description of the n
merical methods used in our simulations throughout this
per. The numerical integration of the stochastic equations
all our simulations is performed using the second-order H
un’s method~which is equivalent to a second-order Runge
Kutta integration!.21,22 We use a time stepDt50.005. The
number of oscillators in our simulations ranges between
and 1000 and is indicated in each figure as appropriate
each simulation the system is initially allowed to relax f
enough iterations to insure thermal equilibrium, after whi
we take our ‘‘measurements.’’ In all of our subsequent e
ergy landscape representations we have used the sam
quence of random numbers to generate the thermal fluc
tions.

III. PROPERTIES OF UNCOUPLED OSCILLATORS:
ENTROPIC LOCALIZATION

In order to understand the equilibrium properties of
chain of oscillators it is useful to first review the behavior
single ~uncoupled! oscillators described by the potentials
Eq. ~4!.

r
its
FIG. 2. Left panel: the on-site potentials defined in Eq.~4!. Right panel: the associated forces. Solid lines: harmonic potential,V0(x). Dotted lines: soft
anharmonic potential,Vs(x). Dashed lines: hard anharmonic potential,Vh(x).
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FIG. 3. Oscillation characteristics of single isolated oscillators. Left panel: frequency as a function of the oscillator energy for the potentials in Eq.~4!. Right
panel: oscillation periods for single oscillators. Solid lines: harmonic oscillator. Dotted lines: soft anharmonic oscillator. Dashed lines: hard an
oscillator.
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Suppose first that our oscillator isisolated. The salient
features of anharmonic oscillators are that~i! they oscillate
with different frequencies at different energies, and~ii ! the
density of states changes with changing energy. In particu
hard potentials are associated with increasing frequencie
oscillation and sparser densities of states with increasing
plitude ~energy!; on the other hand, in soft potentials th
oscillation frequency decreases and the density of state
creases with increasing amplitude.

To get a sense, useful for later analysis, of these
associated oscillator characteristics, we present severa
ures that show various distinct features of our three type
oscillators. Figure 3 shows the frequenciesv(E) of isolated
singleoscillators as a function of increasing energyE ~which
in turn corresponds to increasing amplitude!. This frequency
is evaluated directly by solving the equation of moti
dx/dt56A2@E2V(x)# over one period of oscillation at en
ergy E:

v~E!5pS E
2xmax

xmax dx

A2@E2V~x!#
D 21

. ~5!

The amplitude of oscillationxmax at a given energy can b
found by solving for the positive root ofV(x)5E. The har-
monic oscillator has a single frequency at unity. The soft a
hard oscillators oscillate at unit frequency at low amplitud
~energies! because we have chosen all the oscillators to
incide there, but with increasing amplitude the hard oscilla
frequencies increase and those of the soft oscillator decre
In Fig. 3 we also show the period of oscillationst(E)
52p/v(E). The period increases with increasing energy
the soft oscillator, remains constant for the harmonic os
lator, and decreases with energy for a hard oscillator. T
behavior will figure prominently in our subsequent analy
of energy localization.

Next we consider these same single oscillators, but n
each connected to a heat bath at temperatureT via Langevin
terms. The left panel of Fig. 4 shows the normalized ene
distribution P(E) vs E for the three cases. This distributio
is given by
r,
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P~E!5
e2E/kBTt~E!

*0
` dEe2E/kBTt~E!

~6!

~the density of states is proportional to the period of osci
tions!. The figure supports our introductory commen
firstly, that the average energy of the soft oscillators
greater than that of the harmonic oscillators, whose aver
energy is in turn greater than that of the hard oscillato
secondly, that the energy fluctuations are smallest in the h
oscillator and largest in the soft oscillator. Thus in equili
rium we find at any instant that there is a greater variabi
of energy in an ensemble of single soft oscillators than in o
of harmonic or hard oscillators. The right panel of Fig.
shows the average period of oscillationt(kBT) for a ther-
malized distribution:

t~kBT![E
0

`

dE t~E!P~E!. ~7!

Consonant with the energy dependence oft(E), the average
period of the soft oscillator increases with temperature, t
of the harmonic oscillator is independent of temperature,
that of the hard oscillator decreases with temperature.

The features just discussed are also visible in the ene
landscape rendition shown in Fig. 5. Along the horizon
direction in each panel lies an ensemble of 100 independ
thermalized oscillators and the vertical upward progress
shows how these oscillators evolve with time in the equil
rium system. Here and in all our energy landscape figures
y axis covers 120 time units, the same units shown on t
axes throughout the paper. Each oscillator is connected
heat bath. The gray scale represents the energy – an os
tor of higher energy is darker in this portrayal.

The first thing to note is that along any horizontal lin
~i.e., at any given time! the soft landscape is darker an
grainier than the harmonic, and the lightest and least gra
is the hard oscillator landscape. This reflects the fact that
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FIG. 4. Left panel: energy distribution in single thermalized oscillators for the three potentials atkBT50.5. Right panel: average oscillation period for th
three oscillators as a function of temperature. Solid lines: harmonic potential,V0(x). Dotted lines: soft anharmonic potential,Vs(x). Dashed lines: hard
anharmonic potential,Vh(x).
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soft oscillators have the highest energies and the grea
energy fluctuations. This observation provides a basis to
used in answer to the first question posed in the introduct
In an ensemble of independent oscillators in thermal equ
rium there is of course a greater energy in some oscilla
than in others simply because there are energy fluctuation
a system in thermal equilibrium. These fluctuations
greater in soft anharmonic oscillators than in harmonic
hard anharmonic oscillators.

The second noteworthy feature of the landscape ill
trates the answer to the second question posed in the i
duction, namely, how long it takes in an equilibrium e
semble for the fluctuations to relax and the energy landsc
to change. The trend for our independent oscillators is cl
the soft oscillators retain a given energy for a longer ti
than do the harmonic, which in turn hold on to a given e
ergy longer than do the hard oscillators. This is particula
evident for those oscillators that acquire a high ene
through a fluctuation: in the soft oscillator landscape the d
streaks are clearly visible. The reason for this behavior
comes clear if we write the equation of motion for the ene
of each oscillatorE5p2/21V(x). Setting p5 ẋ and using
Eq. ~2! one finds that for any type of oscillator

Ė52gp21ph~ t !. ~8!

Thus, the energy exchange with the surroundings invol
only the momentumvariable~i.e., the kinetic energy!. Con-
sider an oscillator that has acquired a given high-energy fl
tuation E, and consider how this energy is distributed b
tween the oscillator displacement and momentum. In
harmonic oscillator the energy during one cycle of oscil
tion is equally partitioned between kinetic and potential. In
soft oscillator, however, the energy spends relatively m
time in potential than in kinetic form~and the opposite is true
for the hard oscillator!. Thus, during the major portion of th
cycle the momentum of a soft oscillator is relatively lo
~while its displacement is large!; the energy in the soft oscil
lator can therefore not enter from and leave to the ther
est
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FIG. 5. Energy~in gray scales! for ensembles of 100 thermalized indepe
dent oscillators as a function of time. The oscillators are lined up~but not
connected! along thex-axis and time advances along they-axis. The tem-
perature iskBT50.5 and the dissipation parameter isg51. Top panel: soft
oscillators; middle panel: harmonic oscillators; lower panel: hard oscillat
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surroundings as easily as in the other oscillators. The en
relaxation process is therefore slower, and a soft anharm
oscillator retains a high energy it might have gained via
fluctuation for a longer time.12

The energy relaxation process visible in Fig. 5 is sho
more quantitatively in Fig. 6. Here we have plotted the n
malized energy correlation function

C~t!5K ^E~ t !E~ t1t!&2^E~ t !&^E~ t1t!&

^E2~ t !&2^E~ t !&2 L . ~9!

The inner brackets indicate an average over timet ~200 000
iterations! and the outer brackets an average over an
semble of 1000 oscillators. The correlation function is n
malized so that all energies, high and low, contribu
‘‘equally.’’ It is thus a measure of the full exchange of e
ergy with the heat bath, both through the dissipative term
also via the fluctuations. We note that the trend in Fig
~slower decay as the oscillators soften! is consistent with the
corresponding slowing trend for each temperature in
right panel of Fig. 4. Also note that on average the energy
an oscillator changes on the time scale of half a period
oscillation, i.e., on the time scale it takes the oscillator
move from one side of the potential well to the other.

We have thus summarized and illustrated our ear
findings,12 namely, that in an array of independent oscillato
in thermal equilibrium at a given temperature there are lar
energy fluctuations and longer retention of energy the so
the oscillators. This is an entropy-driven localization, aris
from the fact that the density of states in soft oscillato
increases with increasing energy. It minimizes the free
ergy because it is entropically favorable for oscillators
populate phase space regions where the density of stat
higher, which in an ensemble of soft oscillators leads t
greater spatial variability than in harmonic or hard oscil
tors. The temporal persistence of this greater variability i
consequence of the fact that coupling to a heat bath oc
only via the kinetic energy. In the soft ensemble the ene

FIG. 6. Energy correlation function vs time for independent oscillators w
kBT50.5 andg51. Note that the energy changes most slowly in the s
potential ensemble. Solid line: harmonic potential. Dotted line: soft an
monic potential. Dashed line: hard anharmonic potential.
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is in potential form a greater fraction of time than in kinet
form, which is not the case for the other two ensembles.

We gave this scenario the name stochastic localizatio
our earlier work,12 but will refer to it asentropic localization,
a term that more accurately reflects its physical causes.
important to stress that entropic localization in soft oscil
tors is robust in the sense that it becomesmorepronounced
as temperature increases provided the potential continue
soften, and that it is achieved regardless of the initial con
tion of the system.

The remaining parameters that can be varied at this p
are thedissipation parameterand thetemperature. A change
in the dissipation parameter does not affect Fig. 4 since
is an equilibrium distribution. In Fig. 5 a higher dissipation
parameter would cause a more rapid decay of energy fl
tuations~and, correspondingly, a lower dissipation parame
allows an energy fluctuation to survive for a longer time!.
Thus, although high dissipation does not interfere with
appearance of greater energy fluctuations in the soft osc
tors, it works against the temporal retention of excess ene
by any one oscillator. The energy correlation function dec
more slowly for the soft oscillator for any dissipation, an
this decay is more rapid~for all the oscillators! as the dissi-
pation increases. In any case, for a given dissipation par
eter the softer potential retains energy for a longer time.

The temperature affects the quantitative outcome
Figs. 4 and 5. In Fig. 4 the distributions broaden with i
creasing temperature, but the differences between the di
ent oscillators remain and, in particular, the fact that the d
tribution for the soft oscillator is the broadest continues to
true. In Fig. 5 higher temperatures produce relatively grea
graininess in the soft oscillator figure than in the other tw
This is clearly observed in the sequence of Fig. 7, wh
shows the evolution of ensembles of soft oscillators for d
ferent temperatures. A temperature increase leads to stro
entropic localization and this effect also appears in the
ergy correlation functions, as shown in Fig. 8. This behav
is contrasted with that of harmonic and hard anharmo
oscillators, whose energy landscapes and energy correla
functions show essentially no temperature dependence in
range. The energy fluctuations in these latter cases diss
very quickly. Note that the temperature dependence of
correlation times implicit in Fig. 8 is consistent with th
temperature dependence of an average period of oscilla
of a soft oscillator as shown in the right panel in Fig. 4: wi
increasing temperature the correlation time continues to
approximately half a period.

With this background, we are now ready to consider
behavior ofchainsof oscillators, where everything that w
have found so far has to be reconsidered in the face of
additional forces now present through the oscillato
oscillator coupling.

IV. COUPLED OSCILLATORS

In this section we explore the consequences of coup
the oscillators discussed in the previous section with h
monic springs. In this exploration we attempt to bring som
order to seemingly contradictory reports that the coupled
cillators must be hard in order for such an array to local

t
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energy effectively, or that the coupled oscillators must
soft in order to accomplish such localization. To anticipa
our results, we will show that both claims are correct, b
each in a different parameter regime and for different phy
cal reasons. The variable parameters in this discussion
the temperaturekBT, the dissipation parameterg, and the
coupling strengthk.

In order to determine the conditions that may lead
energy localization in a thermalized chain of oscillators it
useful to investigate the ways in which energy may esc
from a given oscillator. It is apparent from the Langevin E
~2! that there are now two channels of escape. As in the

FIG. 7. Energy landscapes for thermalized independent soft oscillators
function of time for different temperatures. The dissipation paramete
g51. Temperatures from top to bottom:kBT50.1, 0.5, 1.0, and 2.0.
e
e
t
i-
re

e
.
st

section, one is the friction term that dissipates the energ
the bath. The other is the coupling term that transfers ene
to the nearest-neighbors. The difference between these
mechanisms is that the dissipation is determined entirely
the kinetic energy of the oscillator. Energy transfer along
chain, on the other hand, while still dependent on the kine
energy, is primarily determined by the extension or contr
tion of the springs connecting neighboring oscillators, that
by the potential energy through the relative oscillator d
placements. To make these statements more quantitative
useful to generalize the concept of a local energy by defin
a local function whose sum over sites is the total energy
the chain. To include the contribution from the neare
neighbor restoring forces one writes

Ei[
pi

2

2
1V~xi !1

k

4
@~xi2xi 11!21~xi2xi 21!2#, ~10!

and the total energy of the system is thenE5( iEi . The rate
of change of the local energy is easily found to be

Ei̇52gpi
21pih i~ t !2

k

2
~xi2xi 11!~pi1pi 11!

2
k

2
~xi2xi 21!~pi1pi 21!. ~11!

Note that although this expression does not explicitly invo
the potential, the rate of local energy loss of course d
depend on the potential through the displacements and
menta.

The dynamics of the local energy will thus depend
the interplay of the thermal~fluctuations!, dissipative, and
intrachain forces. In order to highlight the main compariso
and contrasts, we frequently will juxtapose the behavior
chains for which one or the other of the energy exchan
channels is clearly the dominant one, and in each case as
the effects of temperature changes.

The effect of interoscillator coupling on entropic loca
ization is illustrated in Fig. 9. In this figure we show th
system of soft oscillators that were uncoupled in Fig. 7~spe-
cifically, the case withkBT50.5 andg51!, but now provid-

s a
is

FIG. 8. Energy correlation function vs time for independent soft oscillat
with g51 and different temperatures~the same as in Fig. 7!.
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ing successively larger values for the coupling constank.
Entropic localization is still apparent for small values ofk,
but as coupling increases there is clear degradation of
tropic localization. This is to be expected since energy
change is sensitive to large oscillator amplitude differen
in soft oscillators.

The associated energy correlation functions

C~t!5K ^Ei~ t !Ei~ t1t!&2^Ei~ t !&^Ei~ t1t!&

^Ei
2~ t !&2^Ei~ t !&2 L

i

, ~12!

for the cases in Fig. 9 are shown in Fig. 10. These cur
confirm the degradation of entropic localization with increa
ing k.

FIG. 9. Energy landscapes for thermalized soft oscillators as a functio
time. The dissipation parameter isg51 and the temperaturekBT50.5. From
top to bottom the coupling constants arek50, 0.05, 0.5, and 1.0.
n-
-
s

s
-

We thus turn to chains of coupled oscillators with lo
dissipation ~g50.05! and focus, in particular, on strongl
coupled chains~if both k and g are small we know pretty
much what happens from the analysis in the previous s
tion!. In Fig. 11 we have drawn the energy landscape for
soft ~top panel!, harmonic~middle panel!, and hard oscilla-
tors ~lower panel! providing kBT50.5, g50.05, andk51.0.
From this figure it is clearly evident that now the localizatio
of energy at a given site is greater in the hard case than in
harmonic case, and this in turn, is greater than in the
case. The confirming local energy correlation functions
these cases are plotted in Fig. 12. Clearly, for a given te
perature the hard array retains energy at a given location
a longer time than do the other two arrays.

In the low-g, large-k regime the effective energy ex
change channel is sensitive to the oscillator amplitude ra
than to its kinetic energy, so we expect entropic localizat
in the soft array to be degraded since soft oscillators h
large amplitudes. Furthermore, as the harmonic coupling
creases it eventually overwhelms the local soft potential
the soft chain becomes an essentially harmonic chain at
ficiently largek. On the other hand, hard oscillators exchan
little energy via the coupling channel since they do not rea
large amplitudes. This, and the fact that dissipation to
bath via kinetic energy~the other energy exchange chann!
has been minimized~low g!, leads to persistent energy loca
ization in the hard array. This is an energetic localizati
mechanism. The frequency mismatch between an energ
hard oscillator and its less energetic neighbors, and
dearth of density of states at high energies, further contrib
to this persistence.

The energetic localization mechanism in strong
coupled hard oscillators is robust against temperature
creases. Indeed, according to our explanation, the loca
tion should become more pronounced and persistent as
perature increases provided the dissipation is sufficie
weak. In Fig. 13 we have drawn the energy landscapes f
strongly coupled (k51.0) array of hard oscillators, weakl
coupled to the bath~g50.05! at different temperatures. Th

of

FIG. 10. Local energy correlation function vs time for chains of soft osc
lators with g51, kBT50.5 and different values for the coupling consta
~same as in Fig. 9!.
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figure qualitatively confirms these expectations. The co
sponding energy correlation functions are plotted in Fig.
C(t) for the hard chain does decay more slowly with i
creasing temperature. Thus, localization in this stron
coupled system of hard oscillators becomes more effec
with increasing temperature and is not entirely fragile aga
dissipative forces. On the other hand, the soft and harm
correlation functions~not shown here! are essentially inde
pendent of temperature. Note that the trend in Figs. 12
14 is ‘‘opposite’’ to that of the uncoupled oscillators in th
right hand panel of Fig. 4. In the strongly coupled cha
harmonic and soft oscillators in fact lose their energy rat
quickly on the time scale of one oscillation period of
isolated oscillator, but the hard oscillators retain energy c
relations for longer than a period, indeed for many period
the highest temperatures shown. With increasing tempera
the hard oscillators retain energy more effectively even wh
the average oscillation period decreases. In fact, the deca
the correlation functions appears to involve two time sca
one of the order of an oscillation period and another mu
longer one that grows with temperature.

The temporal irregularities~oscillations! visible in Figs.

FIG. 11. Energy landscapes for thermalized strongly coupled oscillators
function of time. The dissipation parameter isg50.05, the temperature
kBT50.5, and the coupling constantk51.0. Top panel: soft oscillators
middle panel: harmonic oscillators; lower panel: hard oscillators.
-
:

y
e

st
ic

d

r

r-
at
re
e
of

s,
h

12 and 14 are reproducibly there at all temperatures; we
not know their source.

V. MOBILITY OF LOCALIZED ENERGY
FLUCTUATIONS

The upper two energy landscapes in Fig. 11 show w
might appear as fairly dispersionless energy transport. N
row high-energy pulses move visibly along the chain bef
disappearing, while others appear~via thermal fluctuations!
to repeat the process elsewhere along the chain. Howe
this cannot be claimed to represent nonlinear behavior s
the middle panel in Fig. 11 in fact represents a complet
harmonic system! This serves as a cautionary note abou
overinterpretation of such results.

We noted earlier that with increasingk the soft chain
eventually becomes essentially harmonic because the in
molecular harmonic interactions overwhelm the local s
potential~the only way to prevent this is by considering so
interoscillator interactions, which we defer to anoth
paper!.20 The upper panel in Fig. 11 exhibits mostly th
essentially harmonic behavior—it is quite similar to th
middle panel—but not entirely so. The soft oscillator cha
clearly shows higher-energy regions than the harmo
~darker patches, a not fully degraded remnant of entro
localization! that move more rapidly~steeper streaks! over
longer distances~longer streaks! than in the harmonic chain
Therefore, the soft anharmonicity is clearly still playin
some role, albeit a diminishing one with increasing couplin
To provide some quantification, we introduce the dynami
energy correlation function

C~ j ,t!5K ^Ei~ t !Ei 1 j~ t1t!&2^Ei~ t !&^Ei 1 j~ t1t!&

^Ei
2~ t !&2^Ei~ t !&2 L

i

.

~13!

This correlation function plotted as a function ofj for various
time differencest is shown in Fig. 15 for a soft chain and i
Fig. 16 for a harmonic chain. For a given coupling const
k and delay timet, the correlation function peaks at the si

FIG. 12. Energy correlation function vs time for coupled oscillators w
g50.05,kBT50.5, andk51.0. Solid line: harmonic potential. Dotted line
soft anharmonic potential. Dashed line: hard anharmonic potential.
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i 1 j to which most of the energy originally ati has migrated.
The change of the peak position withk indicates the velocity
of the migration, and the height and width of the pulse refl
the dispersive dynamics.

The following results are evident:
~a! Increasingk in either soft or harmonic chains in

creases the velocity at which a fluctuation propagates.
~b! The velocity for a given set of parameters is grea

in the soft chain.
~c! Dispersion is slower in the soft chain.
However, as noted before, the differences between

FIG. 13. Energy landscapes for thermalized coupled hard oscillators
function of time. We takeg50.05 andk51.0. Temperatures from top to
bottom:kBT50.1, 0.5, 1.0, and 2.0.
t

r

ft

and harmonic chains at largek are fairly marginal. More
dramatic differences in mobility features occur with anh
monic intermolecular potentials, a situation that will be pr
sented elsewhere.20

VI. CONCLUSIONS

We have presented a fairly complete characterization
the thermal equilibrium behavior of oscillator chains wi
‘‘diagonal anharmonicity,’’ that is, chains with nonlinear on
site potentials and harmonic intersite potentials. Our parti
lar interest lies in the characterization of possible spatial
ergy localization in such systems, and of the tempo
persistence of such localization.

The instantaneous localization of energy of a system
thermal equilibrium is a manifestation of the thermal fluctu
tions: it is an equilibrium property unrelated to system d
namics. We argued that not only do soft anharmonic cha
have a higher total energy at a given temperature than

a

FIG. 14. Energy correlation function vs time for strongly coupled ha
oscillators withg50.05, k51 and different temperatures~same as in Fig.
13!.

FIG. 15. Dynamical energy correlation functionC( j ,t) for soft chains with
g50.05 andkBT51.0.
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harmonic or hard chains, but also that thermal fluctuati
are more pronounced in the soft anharmonic chains. This
consequence of the fact that free energy maximization fav
the occupation of phase space regions with a high densit
states. The density of states increases with energy in a
ening potential, so it is entropically favorable for a few so
oscillators to have rather high energies. This in turn lead
greater spatial energy variability than in harmonic or ha
chains, that is, soft chains have ‘‘hotter spots.’’ The effe
becomes more pronounced with increasing temperature.
entropic energy localization mechanism in soft chains is
graded as the harmonic intersite potential increases bec
the harmonic contributions become dominant over the lo
soft anharmonicity effects.

In addition to the capacity for instantaneous localizat
of energy~which is greatest in soft chains!, one is interested
in the temporal degradation of a high energy fluctuati
That is, given a ‘‘local hot spot’’~which is easier to find in
soft chains, but nevertheless does occur in harmonic
hard chains due to thermal fluctuations!, how does such a
fluctuation evolve in time? Such a fluctuation never gro
spontaneously, nor does it persist indefinitely. Rather
eventually degrades, either through dissipation into the b
or through dispersion along the chain.

The rate of dissipation into the bath depends on the va
of the dissipation parameter and also on the kinetic energ
the oscillators. If the dissipation parameter is small, t
channel is of course slow for any chain. However, even if
dissipation parameter is large, dissipation can still be slow
the energy is not primarily in kinetic form. This is the ca
for soft chains provided the interatomic potential is we
~since otherwise the chain is essentially harmonic!. In soft
chains the energy is in potential form for a longer fraction
the time than in the other chains. As temperature is
creased, this effect becomes more pronounced because
softer portions of the potential become accessible, and
energy is stored as potential energy a greater fraction of
time.Thus an increase in temperature in weakly coupled s

FIG. 16. Dynamical energy correlation functionC( j ,t) for harmonic chains
with g50.05 andkBT51.0.
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chains leads not only to greater energy fluctuations but a
to a slower decay of these fluctuations.

Energy dispersion along the chain depends on the m
nitude of the coupling constant and also on the relative
cillator displacements. If the coupling constant is small, t
channel is slow for any chain. If it is large, then this chann
can still be slow if relative displacements of neighbori
oscillators are small. This is the case for the hard cha
where displacements are relatively small and don’t cha
much with increasing energy. Furthermore, because in a h
oscillator the frequency increases with increasing ener
there is a frequency mismatch between a ‘‘hot’’ oscillat
and its ‘‘colder’’ neighbors that further impedes ener
transfer. This leads to greater persistence of local hi
energy fluctuations with increasing temperature.Thus an in-
crease in temperature in weakly dissipative hard cha
leads not only to greater energy fluctuations but also to
slower decay of these fluctuations.

The soft chain, on the other hand, increasingly loses
soft character as the interoscillator energy transfer chan
strengthens, and therefore both the landscape and the
namical effects of anharmonicity quickly disappear as t
coupling constant is increased.

Finally, we showed that in harmonically coupled nonli
ear chains~that is, in chains with diagonal anharmonicity! in
thermal equilibrium, high-energy fluctuation mobility doe
not occur beyond that which is observed in a harmonic ch
The situation might be quite different if there is nondiagon
anharmonicity, that is, if the interoscillator interactions a
anharmonic. Our results on these systems will be prese
elsewhere.20

Further presentations will also deal with bistable ‘‘imp
rities’’ connected to chains of the types that we have cons
ered here.23
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