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Boyer’s conjecture that the thermal effects of acceleration are manifestations of the zero-point
field is further investigated within the context of quantum field theory in curved spaces. The
energy-momentum current for a spinless field is defined rigorously and used as the basis for investi-
gating the energy density observed in a noninertial frame. The following examples are considered:
(i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein
universe. The energy spectra which have been previously calculated appear in the present formalism
as an additional contribution to the energy of the zero-point field, but particle creation does not
occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a man-
ifestation of the zero-point field and of the same nature (whether real or virtual).

I. INTRODUCTION

During the past decade there has been considerable in-
vestigation of quantum phenomena in curved space-times
or in accelerated frames.!~* All the new and puzzling ef-
fects which have been found are related in some way to
the very concept of a vacuum in quantum physics. In
quantum field theory, the vacuum involves only virtual
quanta and the total energy of the vacuum is infinite, but
is is assumed that this has no physical reality. Thus,
several complicated (and nonrigorous) techniques have
been developed in order to extract physically relevant in-
formation from infinite quantities.

In recent years, stochastic electrodynamics has eme ged
as an alternative mterpretatlon of quantum physws
According to this theory, the “vacuum” state is actually
formed by a universal random classical electromagnetic
field. This random field should exist even at absolute-
zero temperature; hence it is termed the zero-point field.
Unlike the commonly accepted interpretation of quantum
field theory, the zero-point field is assumed to be a physi-
cal real field interacting with the matter in the universe.

Boyer® noticed the interesting fact that the thermal ef-
fects produced by acceleration can be neatly explained
within the framework of stochastic electrodynamics. The
idea is that any energy spectrum observed in a moving
frame appears distorted by the Doppler effect. Now the
spectrum of the zero-point field is such that it is invariant
under Lorentz transformations from one inertial frame to
another; however, it need not be invariant when the
transformation is to a noninertial frame. Boyer proved
that the field correlation function in a uniformly ac-
celerated frame is exactly the same that would be found in
an inertial frame in a thermal bath. Thus the Planckian
spectrum observed by a uniformly accelerated detector is
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a distortion of the zero-point field and is not due to the
“creation of particles.”

Similar arguments have also been given by Sciama,
Candelas, and Deutsch,” who pointed out that the thermal
effects of acceleration have their origin in the zero-point
fluctuations of the quantum field, without implying that
particles are created. This pomt will be followed up in the
present article.

Since a gravitational field also produces a shift of ener-
gy, it must be expected that the zero-point field will also
be distorted by gravity and manifest itself in some pecu-
liar way. This is indeed the case as we shall prove in the
present article.

The aim of this work is to explore further Boyer’s con-
jecture by considering curved spaces. We will remain,
however, within the framework of quantum field theory
as this theory is more familiar, but it must be kept in
mind that a formal analogy exists between stochastic elec-
trodynamics and the quantum theory of bosonic fields:
the field correlation functions in one theory are related to
the Wightman functions in the other theory.® For the
sake of 51mp1101ty, we restrict our attention to spmless
fields only. Spin-1 and spin-1 fields will be considered in
future publications.

Section II of this article introduces the energy-
momentum current for a scalar field in curved space, and
a formalism is developed which permits one to calculate
in a relatively simple way the energy and particle number
densities of the field. Some specific applications of the
formalism are given in Sec. III: uniformly accelerated ob-
servers, two-dimensional Schwarzschild black holes, and
the Einstein universe are considered. In all these cases, no
particles are seen to be created; it is only the zero-point
field which appears with an additional energy spectrum
(correspondmg to previously obtained results). ThlS point
is further discussed in Sec. IIL
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II. FORMALISM

Consider a system of chargeless spin-zero particles with
mass m in an arbitrary background space-time defined by
a metric tensor g,g. The particles are described by a sca-
lar field ¢(x). In particular, the noninteracting field satis-
fies the Klein-Gordon equation (#%=1=c throughout):

(O4+m2+£ER)p=0, .

where R is the Ricci scalar and ¢ is a certain constant
(=0 corresponds to minimal conformal coupling, while

£=-+ makes the Klein-Gordon equation conformally in-

variant in the case m =0).
defined as

D¢

The D’Alembert operator O is

. 1

- (—g) 172

Let us define the Lagrangian density
L=—7(—g)$(0+m>+{R)$ .

It is easy to prove that the Klein-Gordon equation (1) can
be obtained from the Euler-Lagrange equations

3L 3L 8L _
3 Fog, " 36b,p1v

(where ¢ ,=0,9, etc.). :
Notice that the Lagrangian density .&, Eq. (3), differs
from the commonly used Lagrangian density

L'=5(—8)g"$ 4 ,—(m>+ER)$]
+ only by the term
%( _g)l/Zaﬂ(gy.v(ﬁqs’v) ’

which makes no contribution to the variation of the ac-
tion. In particular, the energy-momentum tensor T, can
be obtained by varying either .#° or .’ with respect to
the metric tensor g#” and its derivatives, the result being
the same. However, the Lagrangian density .# will prove
to be more convenient for the purposes of the following
analysis. ) T

Consider in general a Lagrangian density .Z(x) which
depends on the field ¢(x) and its first and second deriva-
tives. If the background metric is kept fixed, the varia-
tion of .¥ when ¢ varies is given by

3ul(—g)"%g"d.,4] . 2)

3,92 155 0 @

(5)

8.7 3.2 .. 0L -
0.9 0L <« 2
19, | [ 42 F Iss], )
A ] “’] |

where the double-headed arrow indicates differentiation to
the right minus differentiation to the left. o
Suppose now that the background metric admits a Kil-

ling vector £%. Then, under an infinitesimal transforma-

tion -
xF—sx'P=xHt 4 g 7

8.p remains invariant, while ¢ and .Z vary according to

So=E"6 , , (8)
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8L =27, . 9)
The Killing vector satisfies the equation

§a;B+§ﬁ;a=0 . (10)

Inserting Egs. (8) and (9) into (6) (and using the fact
that £% ,=0), we arrive to a conservation law for any field

- ¢ satisfying the Euler-Lagrange equations (4):

' 1
T= 7 dul(—g) T ]=0, (1
(—g)
where the conserved current is
3.7 .F <
JO=-2(—g)? | FEr— | =+ dg (€74 ,)
_ ga a¢ya a¢yayﬂ 8 g ¢,y
(12)

- and the semicolon denotes covariant derivative.
In particular, for the Lagrangian density (3), the current
turns out to be o

305 p) . (13)

- It is a straightforward exercise to check that the diver-
gence of this particular four-vector J, is indeed zero, pro-

" vided that ¢ and &, satisfy Eqs. (1) and (10), respectively.

[The following formulas must be used in the demonstra-
tion: .

' ¢,a;ﬁ;ﬁ_(m¢ ),a=Rﬁa¢,B 3

(14)

ga;B;B= —R Bagﬁ s

here R%, is the Ricci tensor.]

The Minkowski space-time admits four linearly in-
dependent constant Killing vectors associated to the
Poincaré group. As a consequence, a tensor 7% can be
defined through the equation

Ja=TaB§B ,

(15)

(16)

and the conservation of the current J% implies that
- T“ﬂ;a=0’ since the £,’s are linearly independent. From
Eqgs. (13) and (16) it explicitly follows that

Top=—+ 30,050 (17)

in Cartesian coordinates: This form of the energy-
momentum tensor has beefl occasionally used; it occurs,
for instance, in the covariant definition of the Wigner
function' (in fact, the formalism of the present article
was inspired from this last approach). However, Top as
defined by Eq. (17) has no obvious counterpart in curved
space. One can try to defire

Top=—36VoVpd (18)
(in obvious notation) but the divergence of this tensor is
TopP=Ro"p (19)

which does not vanish in general; moreover, the trace of
Ty is not zero for a massless field.
However, as long as 2 timelike Killing vector exists, I
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given by (13) provides a definition of the energy-
momentum four-vector which is sufficient for many prac-
tical purposes. The fact that J, has vanishing divergence
guarantees that the total energy

E= [J,do* (20)

is independent of the particular three-dimensional space
(whose normal vector is do*) over which the integration
is performed.

The orbit of a timelike Killing vector can be identified
with the world line x*=x%(r) of an observer whose four-
velocity is

%:U"‘:(é“ép‘mé‘“ : 1)

where 7 is his proper time. The energy density can be de-
fined unambiguously as

e=U%,, (22)

and from Eq. (13)

_ﬁ_ﬂj_

dT dr 23)

e=(£"€,)'* | —

where U3V5=d /dr.

The procedure for quantizing the field ¢ is straightfor-
ward. Starting from the Lagrangian density .Z of Eq. (3),
with ¢ interpreted as an operator, we arrive at the defini-
tion

Tu=—{$3(EPp 5)) (24)

for the vacuum expectation value of the energy-
momentum four-vector, and

e___%(gpgﬂ)lﬁ( ___qé_ __‘2¢+ l..‘é.) 25)

for the vacuum energy density.
It is also possible to define a current

ng=—i{$d.$) (26)

which is divergenceless, but has no counterpart in the
nonquantum theory. Loosely speaking, the scalar

j— a
n=U%,

—_ < g‘é g‘f—qs) @7

is the “particle number density” of the vacuum, but this
interpretation is not direct, as we shall see in the follow-
ing.

We are now in a position to develop a formalism which
permits direct evaluation of the energy density or the par-
ticle number density measured by a detector moving along
a Killing orbit. We first consider Eq. (27) and write the
average as

n=—i f_: d08(0)<¢('r+ %a)%g('r— 50)

d
— ?:_S-(T—i— %U)d)('r— —}a))

=2 [ do S (o) (plr+o)(r—10) . (28

A partial integration has been performed to obtain the last
member, and of course

dlrtro)=¢[xHrt10)] .

Hereafter, only massless fields will be considered for the
sake of simplicity, although the inclusion of a massive
field presents no formal difficulty.

We now use the definition of the Wightman functions
D¥(x#,x'#), evaluated at two points, x'“=x“(f+%0')
and x'#=x*(t—+0), along a given world line:

—30)=(d(r+

With the representation

D¥r s Lorr 1oL . 09

L r= oo
do)=5— [ doe , (30

for the delta function, and defining the Fourier

transforms of the Wightman functions
Dren= [~ doeDir+io,r—F0), 1)

we obtain the final form of Eq. (28):
n =L fwdw o[D Hw,7)—D ~(w,7)] . (32)
T YO0

Consider now the energy density, Eq. (25).
the same manipulation as above it follows that

Performing

e=i(§#§y>lﬂ " do B *@,1)+5 ~(w,0] .
(33)
Now, w is the frequency measured by a detector with
proper time 7 and four-velocity U¥. Accordingly, Eq.
(32) implies that the particle density f{(w,) is given by

flo,7)= D ~(w,7)] (34)

Y )2 [D Hw,r)—

and Eq. (33) implies that the energy density per mode is
de=(£"E,) pne [D o, +D ~(w,"Nldo . (35

Thus, the particle density must be evaluated with the
vacuum expectation value of the field commutator (i.e.,
the Pauli-Jordan-Schwinger function) while the energy
density involves the anticommutator (i.e., the Hadamard
function). Various examples will be considered in the fol-
lowing sections which will elucidate the above statements.

III. SOME EXAMPLES

A. Flat space

The simplest (almost trivial) example is that of an ob-
server at rest in flat space. The Wightman functions for



the Minkowski space are
1 1 = —
D(x,x")=——[(t—t'Fie— | x—x'|2]"1. (36)
4
The space-time admits a timelike Killing vector £=(1,0)
which is also the four-velocity of the observer at rest with

world line =7 and x=0. Thus for this particular ob-
server,

472

and the Fourier transforms are

D o, =i’ e
(@,7) 2T

. (38)
D ~(w,7)=0,
for w>0. Then, according to Egs. (34) and (35)
flo,n)=02m)=3 [=Qa#)], | (39)
o’ i
de= 21T2 do -—-de . (40)

The first equation merely expresses the fact that there is
one particle in each cell of phase space; this is a conse-
quence of the normalization used for the wave function
and has no physical meaning. The second equation is the
well-known formula for the zero-point energy.

Consider now a uniformly accelerated observer with
world line defined by

t=a"sinh(ar) ,
(41)
x=a " 'cosh(ar),

where 7 is its proper time and o its acceleration. The
four-velocity of this observer is

U%*=a(x,t,0,0), 42)

which is also a Killing vector: the one associated to a
Lorentz boost. Inserting (41) in (36) it follows that

a2 2r 1 —_
6.2 csch [—;a(a+i§)] .

D¥(r+ %0,1‘— %0)?— -
(43)

The Fourier transforms of these functions can be evaluat-
ed using the formula!!

cscX(mx) = —= i (x—k)2. (44)
772 k=—o .
The final result is
~ » e21ra)/a
D (w,¢)=§';m , = —
1 (45)
~ @
D (w’T)—_—EWj .
Then, according to Egs. (34) and (35), ,
flo,7)=02m)"3, (46)
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- 1

3
) .
de ——(é‘”é‘y)l/z--*ﬂz +——e2"“’/“ " do . 47)

1
2

Again, there is one particle in each phase-space cell, but
now the energy of the zero-point field has an additional
Planckian term. This suggests that an accelerated detec-
tor does not count newly created particles; what it actually
detects is the zero-point field which, by effect of the ac-
celeration, manifests itself as a Planck spectrum. The
above results and their interpretation are in agreement
with the conclusions reached by Boyer within the frame-
work of stochastic electrodynamics.?

B. Curved space

As the first example of the application of our formal-
ism to a curved space-time, we consider a two-
dimensional Schwarzschild black hole. The metric is

ds?= —%;M-e —r/2Myy gy | (48)

where M is the mass of the hole, r is the radial coordi-
nate, and # and v are Kruskal coordinates defined
through the equation

r

i er/ZM . (49)

uv=—(4M)? -1

The metric admits a timelike Killing vector £* with mag-
nitude (£#€,)'*=(1—2M/r)!/2. The world line of a
detector at rest at r=rq, say, is given by the parametric
equations o

a
u=e,

(50)
v=—be",

where 7 is the proper time, *
a=(1—2M/ry)~\2/4M ,

and _
b=16M%ro /2M —1)exp(ro /2M) .

Clearly, the four-velocity of such a detector is parallel to
th?ZKilling vector £*. The Wightman function is given
by

’ ’ 1 ! —_— —
D*(u,v,u',v )=——gln[(u —uTie)v'—v¥ie)]. (51)
Using Eqgs. (50) we find that |

Di(r+3o,7r—50)= —-‘—11; In[2b sinh(FaoFie)], (52)

from where it follows that!?

~ 1 eZma/a
D (CO,T):EZW ) (533)
Pen=t— Ll —  (53b)
,7T)= 20 p2me/a__1’

for w> 0. Thus, according to Eqs. (32) and (33),.
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1 -
n=2—w- fo do, (54)
1/2
2M 2 1 1
e=|1— ro T fo dow 2+921ra)/a_1

(55)
Just as in the case of uniform acceleration, we find one

particle per phase-space cell—which is a consequence of
the normalization used—and we obtain the energy of the
zero-point field with an additional Planckian term.

Thus an observer at rest detects a thermal bath with a
temperature ’

kpT=(87M)~(1—2M/ro)~'72,

which is in complete agreement with well-known results.
[The extra factor (1—2M /ry)? in Eq. (55) comes from
the term (£#£,)'/? and guarantees that de /dw is finite at
the horizon.] The analogy with the case of uniform ac-
celeration is ‘quite clear, and we can now advance the fol-
lowing interpretation: a gravitational field deforms the
energy spectrum of the zero-point field and makes it ap-
pear as a thermal spectrum.

The second example we consider is that of an Einstein
universe. The metric is

ds?=RYdn*—dX?— sin?X(d0+ sin’0d¢>)],  (56)

where R is the constant radius of the universe. There is a
timelike Killing vector £*=6% (x®=7) such that
£*€,=R”. The Wightman function is"*

1
872R?

D¥(xt,x'#)= [ cos(y—n'Fie) — cos(X —Xx")] !

(57)

[it reduces to the form given by Eq. (36) in the limit
R—>w] . .

A detector at rest follows the Killing orbit and its prop-
er time is 7=R7. Thus,

oYie
2R

1 2
~16mR2 ¢

Using formula (43) we obtain the Fourier transform of
Eq. (58) by standard methods,

D¥(r+30,7—50)=

(58)

D Hwmn==2-|1+2 3 cos2mkRo) | , (592)
2T =l
b ~(e,n=0, ‘ (59b)

for w>0. To proceed further, the following formulas are
useful:

fow do o*cos(wx)=—m8"(x) , (60a)

f ow dow o cos(wx )=6x 3 (60b)

[strictly speaking, the series in Eq. (59a) must be interpret-
ed as a distribution, and Eqs. (60) as the Fourier
transforms of distributions'®]. Inserting Egs. (59) in Egs.
(32) and (33), using Egs. (60) and the value of the
Riemann function {(4)=7*/90, we finally find that the
density of particles in phase space is again f=(2m)"3 as
in flat space, but the total energy density (integrated over
all frequencies) is
emenp— L

TR T S 40m?R Y
where eg,, is the (formally infinite) contribution (40) of
the zero-point field in flat space. Equation (61) is in
agreement with previously found results,'® except for a
factor 2. This discrepancy comes from the fact that we
are using the Wightman function which has poles all
along and above the whole real o axis, while the energy-
momentum tensor is usually evaluated in the current
literature with the Feynman Green’s function which has
poles along and above the positive real @ axis. Thus, with
our formalism we are picking up twice as much residues
at the poles when evaluating the Fourier transform, Eqgs.
(59). However, we do obtain the correct value for the
zero-point field, a fact that gives consistency to the final
result.

(61)

IV. DISCUSSION

The results obtained in Secs. II and III can be summa-
rized as follows. Starting from the Lagrangian of a scalar
field, we obtained the conserved energy-momentum four-
vector directly from the Noether theorem and the ex-
istence of a timelike Killing vector. This four-vector led
in a natural way to a formula for the energy density in
terms of the vacuum expectation value of the sym-
metrized product of the field operator. This point is im-
portant, since other authors have used the positive-
frequency Wightman function or the Feyman Green’s
function for the calculation of the energy density; the only
justification for the use of these functions is that the
negative-frequency contributions to the energy are elim-
inated; however, in light of our own analysis, this is
equivalent to arbitrarily cutting the zero-point energy.

The conclusion of the present article is that the radia-
tion produced by a black hole or an accelerated frame is
of the same nature as the zero-point field. Whether this
field is real or virtual remains an open question. We ex-
pect that the study of realistic fields with spin will help to
further clarify this problem.
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