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Vacuum stress-energy tensor of the electromagnetic field in rotating frames
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A formalism for calculating the vacuum stress-energy tensor of the electromagnetic field in an ar-
bitrarily moving frame is presented and applied to a system in uniform rotation. The spectra of the
energy density, Poynting flux, and stress of the zero-point field are calculated in such a frame. A
comparison is made with the case of linear acceleration and its associated thermal effects.

I. INTRODUCTION

It is now generally accepted that the zero-point fluc-
tuations of a quantum field produce thermal-like effects
in a gravitational field,! an accelerated system,2 and, in
general, a variety of other situations in which noninertial
frames are involved.> It has been stressed by several au-
thors* 6 that the underlying mechanism of these effects is
the fact that the energy spectrum of the zero-point field is
Lorentz invariant, and, thus, it cannot be observed in an
inertial frame, but manifests itself in noninertial frames.

While the theoretical aspects of the quantum fluctua-
tions in gravitational fields or in accelerated frames are
now well established, the experimental evidence for or
against these interesting phenomena still remains un-
known. The problem, of course, is that any vacuum-
polarization effect is extremely tiny to be easily observed
under usual laboratory conditions. For practical pur-
poses, a uniformly rotating system may be the most ap-
propriate frame for laboratory experiments: for instance,
it has been suggested by Bell and Leinaas’ that vacuum
effects could be detected through the polarization of elec-
trons circling in a storage ring at ultrarelativistic speeds
(Lorentz factor y ~10°).

The aim of the present paper is to calculate explicitly
the vacuum stress-energy tensor of the electromagnetic
field as detected in a uniformly rotating frame. It is
shown by numerical calculations that the energy density
and stress have a spectrum which does not correspond to
that of a system in thermal equilibrium, and that there is
also an additional flux of energy given by a nonzero
Poynting vector. These calculations generalize and com-
plete the work of several previous authors who calculated
the energy spectrum in a uniformly rotating system, both
for a scalar massless field®® and for the electromagnetic
field.!”

Section II of this paper deals with the derivation of the
stress-energy tensor from the vacuum-expectation values
of the electromagnetic field, generalizing a previously
presented formalism®!! (which is also applicable to sto-
chastic classical fields*). In Sec. III a brief review of a
uniformly accelerated frame is given for the purposes of
illustration and comparison. The stress-energy tensor in
a rotating frame is calculated in Sec. IV and the results
are discussed in Sec. V.
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II. GENERAL THEORY

The electromagnetic energy-momentum tensor is
defined by

1 a
T"v=m(4FuaF,, + 0, FagF*?) (2.1)

where 7, is the Minkowski tensor and F,, is the elec-
tromagnetic field tensor which satisfies the vacuum
Maxwell equations:

3,F**=0,
a[l‘FVA] =0

(2.2a)
(2.2b)

(hereafter the units employed are such that ¢ =1=#).
The form of the energy-momentum tensor suggests to
define the two-point tensors

D (x,x" )= t4F & (X)F ), (x") +1,, Fig()F¥(x")
(2.3a)

- n_n+ ’
D, (x,x") =D}, (x",x) (2.3b)

as generalizations of the Wightman functions used in the
scalar case.®
It is easy to see that

7Di,=0, (2.42)
+t —pt
Dyv—'Dvp, ’ (2.4b)
and
Ty
a,D,"=0, (2.4c)

these last formulas being a consequence of the Maxwell
equations.

Now, Eqgs. (2.4) imply that

va(x,x')=nawai(x,x’) , 2.5)

where D¥(x,x’) are the usual Wightman functions for a
massless scalar field, and n is some constant to be deter-
mined subsequently.

It is evident from the definitions (2.3) that the energy-
momentum tensor T,, can be obtained by taking the

pnv
coincidence limit of va(x,x') when x’'—»x. However,
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some considerations are necessary since this limit is
infinite.

Following the approach of our previous work,%!! we
refer all measurable quantities to a given observer with
world line x*=x%r) and four-velocity u°‘=4x°‘7d7', T
being his proper time. The energy-momentum tensor lo-
cally detected by this particular observer can be written
as

:rw[x“(r)]—— [ 8

X{4F¢ (t+0/2)F ), (1—0 /2)
+1,,Fglr+0/2)

XF¥(r—g/2))do , (2.6)
where it is understood that
Fo(tt0/2)=F,[x%rt0/2)] . (2.7
Using now the representation
— L ® oo
so)=-—[" edo (2.8)

for the & function, Eq. (2.6) can be written as
I

4 Hx,—x, Mx,—x,)—7,(x,—x
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I&

uv{xa<r>1=+,l
x[° f e’ [D} (r+0/2,7—0/2)
+D,(r+0/2,7—0/2)]

Xdwdo . (2.9)
Furthermore, using the Fourier transform
B E(r,0)= f_wm e’Di(r+o/2,7—0 /2o, (2.10)

the energy-momentum tensor takes the form

T, [x%(r)]=

—}ﬂa—fo ('r,a))-l-D wno)lde ,

(2.11)

which explicitly exhibits the energy spectrum in terms of
the frequency ® associated dn'ectly with the observer’s
proper time 7.

On the other hand, the Wightman functions D*(x,x’)
for flat spacetime without boundary conditions (the only
case considered in this paper) are proportional to

[(t—t'FieP—|x—x'|?]!

and, therefore, according to Eq. (2.5),

;)(xa_x: @)

DE(x,x")=
e [(t—t'Fiel—|x—x'|*P

where a factor of 16/ has been included in anticipation
of the following results.

It is worth noticing that the function D ., has in gen-
eral the form

A B
DE(r+o0/2,7—0/2)y=— X — BV
wlTto/2,7—0/2) o—ie)  (o—iep
+D,,(1,0), (2.13)

where A4, and B, depend only on 7, and D, (,0) is by
definition free of poles at o =*tie.

In order to obtain the total stress-energy tensor, one
has to integrate over the frequency w. This mtegratlon
can be done directly by using the formula for the inverse
Fourier transform. The final result is

co+2B L0 |[do

T, [u%(r) =—

1
+E”*‘”f”°) ’
where the divergent integral corresponds to the zero-
point energy, and the last term gives the physically ob-
servable stress-energy tensor.

(2.14)

II1. LINEAR ACCELERATION

As a simple application of the formalism presented
above, let us consider the well-known case of a uniformly

R e

|
accelerated observer whose world line and four-velocity

are given by the parametric equations
x%r)=a " ![sinh(ar),cosh(ar),0,0] ,
"('r)——[cosh ar),sinh(ar),0 0] ,

(3.1a)
(3.1b)
where ais the hnear acceleratlon Therefore,

a(¢+a/2>—x“(f o/2)=2a"'sinh(ac /2)u™(r) ,

(3.2)
and, according to Eq. (2.12),
4t .
fo,,(1'+o/2,'r—0'/2)= a“csch [a4(:¥ze)/2]
X[4u,(Tu,(1)—n,,] . (3.3)

Taking Fourier transforms,!' one obtains the final re-
sult

1
T;vaﬁ(q'upuv—n[w)
24 .2 L 1
xf olo’+a® |2 m}dm . (34
Clearly, T, is proportional to 4u,u,—n,,, the only

available tracelcss tensor. Furthermore, the integral ex-
hibits the well-known (strictly infinite) Zero-point energy
spectrum, and an additional Planckian distribution com-
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bined with a modified density of states'! (0> +a?)dw.
The energy-momentum four-vector is

(3.5)

where e is the energy density. It is evident that the
Poynting four-vector

(88 —utu Y

—_ v
J,=T, u"=eu,,

vanishes: a uniformly accelerated observer detects no
flux of electromagnetic energy. Notice also that the nor-
malization of the Wightman tensor in Eq. (2.12) has been
chosen in such a way that the energy per unit frequency
de /dw becomes equal to the usual value @*/277 in the
limit of zero acceleration.

The total energy density e can be evaluated by sub-
tracting the zero-point term before performing the in-
tegration in Eq. (3.4). The result is

e=—tl g4
24072

the main contribution comes from the term proportional
to az; the energy density for a scalar field is a factor of 11
smaller than the value given by Eq. (3.6).

(3.6)

IV. UNIFORM ROTATION

A uniformly rotating observer whose proper time is 7
and angular speed is {2 follows a world line given by

x%=(y1,Rycos(Q7), Rsin(Qr),const) , @.1)

where R, is the rotation radius in the inertial frame and
y=(1—v2)"12, The four-velocity dx*/d is then

u®=(y, —yv sin(Q7),yv cos(Q7),0) , 4.2)
where Yo =QR,. '
For this case, there are two Killing vectors:
k*=(1,0,0,0) (4.3a)
and |
m%*=(0, — R sin(Q7), R ycos(07),0) , (4.3b)
such that
k% ,=1, m®m,=—R3}, and m“k,=0. (4.4)
Using Egs. (4.3), u® can be rewritten as
u¥r)=yk*+Qm%r), (4.5)
whereby
u%,=vy and u®m,=—QR3=(1—y}/Q. 4.6)

In terms of the Killing vectors [Egs. (4.3)], we get

xHr+0/2)—x*H1—0/2)=y0ck*+2sin(Qo /2)m*(r)
' 4.7

and
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8
Dy lo)=—[44%k b, +4B*(k m, +m,k,)
+4A4*C*)m,m,/R§—C*q,,],  (4.8)
where
20.2
AT o)=L, (4.92)
zt
Bi(o)= 2zosingﬂo/2) ’ » . 49b)
Zy
Ci(a)=—12— , (4.9¢)
zx
and
z, =y o Fie)—4R 3sinX Qo /2 F ie) . (4.9d)

According to the formalism in Sec. II, the electromag-
netic energy-momentum tensor is given by

— 1 L= g £ e
Tw=25 J71B o) +D o) do (4.10)
where
b= [ Di(o)’do, (4.11)
and the energy-momentum four-vector by
Jy=u'T,,~eu,+pn, , (4.12)

where e =u,u,T,, is the energy density of the field, pn,
is the Poynting four-vector, and

ny=——+tvu, 4.13)

is a unit vector in the direction of the Killing vector m“
projected on the space of the rotating observer. Clearly
n%u,=0, m*=yRy(n*—vu%), and k*=y(u*—vn?).
4.14)
Using Egs. (4.8) and (4.14), we get from Eq. (4.10) that
T,w=eu#uv+p(u#nv+n#uv)+s(u"uy——"r)w) |
t(e—3s)n,n, , 4.15)

where s is the magnitude of the electromagnetic stress.
Inserting Eq. (4.15) in Eq. (4.12), we get

%=~§[4(1+v2)(3 +4+ A ~)—8uRo(B*+B )
—(1+32(C*+C ], (4.16a)
-5%=—f%°~[20(1 Y+ A ) —y(1+u2)BTE )
—UCT+C ], (4.16b)

and
Fdz;-=}l—3—(é++6’), (4.16¢)
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where a tilde denotes the Fourier transform [according to
Eq. (4.11)] of the corresponding function.

It is important to note that, since the energy flux
detected by the rotating observer is in the direction of the
tangential velocity, the observed radiation is not isotropic.

Equations (4.9) can be rewritten as (see the Appendix)

2
A% ()=y? (aqzlie)4 4&‘;“1,)6)2 +4(0), @.17a)
1 (y’ =)0
BEo)=yQ [(o:Fie)“ — Ao TFick +B(o), (4.17b)
and
2
C¥o)= (an;lie)“ - GEZ‘Q_Z)Z +C), @17

where A(o), B(o), and C(o) are defined by Eq. (4.17)
and are free of poles near the origin at o =x1ie.

The Fourier transforms of the functions 4%, B%, and
C* are now given by
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20% 8 R
j‘%= 4 ;‘T’Z Y20 120 (@) —y(1+0)B(w)
—08()], (4.19b)
and
ds _ o, 21, 20@)
e R R 4.19¢)

The zero-point field contributes to the energy density,
energy flux, and stress of the electromagnetic field, as
detected by a rotating observer, in different ways. It con-
tributes to the energy density [Eqgs. (4.19a)] with the term
[co2+(‘yv.())2]a>/217'§ due to a modification of the density
of states, just as in the case of a linear acceleration'® with
a=yv{}; its contribution to the energy flux [Eq. (4.19b)]
is Q%w/6r% and it contributes to the stress [Eq.
(4.19¢)] with one-third of the energy-density contribution.

The divergent stress-energy temsor due to the zero-
point field is then given by

e 2 [
- ) T}w)=—-—f [0+ (Qyv) o dolu,u,—1,,)
A N o)=mp?e |—+-—(y*—1) |+ 4(v),
6 4 + 2 £ g, g0, (4.20)
(4.18a) “wdoluyn,+n,u,) . .
A~ ()=o), 6r* o e
' Q, _ The first term could have been guessed by a simple
+(co)—1ryﬂw 4 =—(y*—%) |+B(a), comparison with the similar equation for linear accelera-
(4.18b) tion [Eq. (3.4)]; the second term, however, is entirely due
B (0)=B), ’ to the rotation and implies a Poynting flux of energy.
Subtracting the zero-point field contributions from
and Egs. (4.19) one obtains the physically observable terms
= T r 2L (3204, 7 3 2
6 (w)= 6 [a) +0O ('}’ 1)]+C(CO), £= Y 3 +(7’UQ) H (2 /Q,), (4.21a)
(4.18¢) do 2R}
. a ~(0))=Cr(w) ’ r’
3 o2
WhicI; inserted in Egs. (4.16) give gl’a;— 2:3’123 +va K,(20/9), (4.21b)
d:) - 2[co2+(’;’vﬂ)2] and
ds v? 2—Hyvn)
2y? 2 — —_—= J,(20/Q) , 4.21
+ 3 [4(1+v?) A(0)—8VvR B(w) do 2R} (20/Q) 4.21¢)
—(1+3v1)C(w)], (4.19a)  where
I
© | (34+vH)x2+(14+3v%)v%sin’x —8v2x sinx _ 3 | 2y%?
H = ——+ dx , (4.22
T(w) 2+(2'}/v)2 f [ }'z[xz—-vzsinzx]:‘ x4 xz cos(wx)dx a)
, o | x2+v%in?x —(1+v2)x sinx _ y?
K,,(w)E—‘i»v4 fo yz[xz—vzsinsz - cos(wx)dx , (4.22b)
J (w)= f +—212—lﬁ cos{wx)dx ; (4.22¢)
4 2+(2yv)2 v x2—v2%inx 2 Cxt | 3x?

the factor w?/[w?+(yvQ)?] has been included in Eqgs.
(4.21) in order to reproduce functions similar to Plancki-
an distributions and facilitate a comparison with the case
of linear acceleration.

I

In order to evaluate the integrals in Egs. (4.22) it is
most convenient to notice that, in the ultrarelativistic
limit ¥ >> 1, the terms within the square brackets in these
integrals are proportional to y* times a function of yx.
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Such a scaling property can be checked by a series expan-
sion or by numerical calculation, the error being of order
y~2. Thus, for large y we have Hy,(kw)=k>H,(w),
where k is an arbitrary constant, and similarly for K ,w)
and J, (w); notice that this is the same scaling property of
a Planckian distribution with a temperature proportional
to y. The graphs of these functions are shown in Fig. 1.
Equation (4.21) was previously found and numerically in-
tegrated in Ref. 10, both for nonrelativistic and relativis-
tic velocities with y < 10.

The total electromagnetic energy density, energy flux,
and stress can be obtained integrating Eqs. (4.19) (see the
Appendix):

4n4. .2
=YV 50-_33,2
¢ 3600 v,

44
= M( 50—47 —2)
720 L

404,,2
=XV 4y sy,
S e0m? | v

At this point it is tempting to compare the cases of uni-
form acceleration and circular motion, in order to fit the
spectra of Fig. 1 by Planckian functions. Since one may
identify the acceleration a with yv{}, one would intuitive-
ly believe that the two cases are quite similar. However,
it is enough to compare Eqgs. (3.6) and (4.23a) for the en-
ergy density of both cases to see that there are important
differences: to begin with, the formula for the linear ac-
celeration predicts an energy density which does not nu-
merically coincide with the equivalent formula for circu-

(4.23a)
p (4.23b)

(4.23¢)

lar motion; even worse is the fact that e is of order.

(yvQ)* in the first case, whereas it is of order (yQ)*? in
the second one [Egs. (3.6) and (4.23a)]. Two conclusions
follow: first, it is only in the ultrarelativistic case v ~c,
that it makes some sense to compare, at least roughly,
linear acceleration and circular motion; second, for non-
relativistic speeds and for a given value yvQ of the ac-

T T T T T T T
Hy
01003 .
Ky
0.050y3]~ .
/' = NS N dr
- S —
~.
~ -
- ——
0.000y3 ! S B & ! I 1
0.0y 1.0y 2.0y W 3.0y

FIG. 1. The spectral functions H,(w), J,(w), and K, (w).
For ultrarelativistic velocities these functions can be expressed
in terms of three universal functions due to their scaling proper-
ty. The Planckian function (dash-dotted line) with temperature
v /2 is plotted for comparison [see Bq. (4.24)].
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celeration (either centrifugal or linear), uniform accelera-
tion is less effective by a factor (v/c)* than circular
motion in revealing the zero-point energy.

Just for comparison, let us write the energy density in a

frame with linear acceleration yv{} in a way similar to
Eq. (4.21a):

a3 w?

4 elrw/yu___l

__ 7 &t (yv0)
2m°R} w*

; (4.24)

it is the term in large parentheses which must be directly
compared with H,(w). This Planckian function is plot-
ted in Fig. 1 for y >>1; clearly, it does not coincide with
the spectral function H yw).

V. DISCUSSION

From the results obtained in the previous section it is
clear that uniformly rotating frames exhibit some
features which are absent in the well-studied case of uni-
formly accelerated systems. It has been shown in the
preceding lines that the energy spectrum of the zero-
point field, as detected by a rotating observer, acquires
some additional terms which are not Planckian distribu-
tions, in contrast with the linearly accelerating case
where the observed spectrum is strictly thermal (though
with a modified density of states). Another interesting
feature is the existence of a net flux of energy in the direc-
tion of motion of the rotating observer which is of order
y“ﬂ“v. If this flux is real, it should imply some friction-
like effect on a rotating particle.

The formalism of this paper keeps track of the zero-
point energy and does not discard it as is usually done in
a similar analysis. This is why we obtain a full stress-
energy tensor containing terms proportional to »* and o,
which diverge upon integration over the frequency. Such
terms can be eliminated if advanced Green’s functions
with poles slightly below the real axis are used instead of
Wightman functions. We feel, however, that this is an
ad hoc procedure and have decided to keep the zero-
point energy as it follows directly from the formalism.
This is in agreement with the previously expressed
viewpoint that the thermal-like effects in noninertial
frames are due to the Doppler-type distortions of the
zero-point energy spectrum and are of the same nature as
this field.*$

Also, it is evident from the previous results that a sim-
ple subtraction of the zero-point field does not eliminate
the diverging terms in the stress-energy tensor. Indeed,
there are terms proportional to w dw which appear even
in a uniformly accelerated frame [Eq. (3.4)] and come
from the modified density-of-states factor w?+s%/a?,
where s is the spin of the field. The interesting fact is that
terms proportional to @ contribute also to a Poynting flux
in a rotating frame. It is not clear how to eliminate this
diverging contribution unless one arbitrarily cuts all the
infinite terms by appropriately moving the poles in the
propagator of the field, as mentioned above. This is a
point which should be clarified if one insists in assigning
a physical reality to the zero-point field; it is no longer
valid to claim that this field is not directly detectable be-
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cause of its Lorentz invariance, since we have shown that
it should produce some noticeable effects in a rotating
system.

APPENDIX

Using the approximations given by

x2

[x2—40°Q %in(0x /2)]

6 ‘ 2 2,204
=.5_ [I_UU‘?) 24X ;40 (p2—4)x*
+0(x9| , (Ala)
x sin(Qx /2)
[x2—4v2Q %inX(Qx /2)]?
_r°e

2x4

2
1—“7(%—%)::2

2

Q4 3172, 9 | 4 6
+24 [‘y 20 +l6 x*4+0(x°)

(A1b)

S. HACYAN AND A. SARMIENTO

1B

and

1 .
[x2—4020 " %in%(Qx /2)]?

4 2 2,204
=_;}:_4 1_(’}’1)60) x2+yvﬂ(

yr 72—%)x4+0(x6)
- T (Alc)
it is easy to arrive at Eq. (4.17).
From Eqgs. (A1) it is straightforward to obtain
6,204
40=T2E (1447, (A2a)
120
505
BO)=L L (1+3402+450%) (A2b)
1920
and
4 204
o)=Y 41 11p2), (A2¢)

720

which are used for the calculation of the total elec-
tromagnetic energy density, energy flux, and stress.®
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