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Thermal resonance in signal transmission
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We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses con-
nected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is
applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at
each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain,
resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
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I. INTRODUCTION

In the past few years it has become abundantly clear
the presence of noise in nonlinear systems may lead to
enhancement of a number of often desirable features suc
energy localization and mobility and the detection a
propagation of weak signals. The interplay of stochastic
and nonlinearity that amplifies the system response is a
operative phenomenon whose detailed nature depends o
particular structure of the system and the forces acting u
it @1,2#. One manifestation of the interplay is found in th
phenomenon called stochastic resonance, which has bee
voked in a wide range of physical@3–5#, chemical@6–9#,
geological@1,10#, and biological@8,11# systems. Recent lit-
erature, including our own work@12–14#, has focused on
spatially extended systems@15# including noise-enhance
propagation in coupled arrays of bistable units@3,16#, excit-
able media@7,8,17#, reaction-diffusion systems@18#, and dy-
namics and signal propagation in cardiac tissue@19,20#. It
has been repeatedly noted thatdiscrete extended system
pose particular mathematical challenges that have ba
been explored in spite of the fact that many physical syste
are intrinsically discrete@21–25#.

The ubiquitous picture of stochastic resonance involve
particle moving in a double-well potential subject to a we
external signal that periodically changes the potential by
ternately raising and lowering the wells@2#. The signal is
‘‘weak’’ if the periodic force is too small to cause the pa
ticle to scale the barrier between the wells. Nevertheless
appropriate random force is sufficient to cause the particl
cross over the barrier even in the absence of a determin
signal. In the simultaneous presence of a weak signal a
sufficiently weak noise, the transitions over the barrier oc
rarely and at a rate determined by the noise intensity. Th
transitions are slow compared to the frequency of the de
ministic signal; the transition rate then carries little inform
tion about the signal. At the other extreme, when the nois
strong it induces rapid transitions that are again essent
uninfluenced by the frequency of the signal. At an optim

*Permanent address: Departament de Quimica-Fisica, Univer
de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain.

†Permanent address: Instituto de Matematicas, UNAM, Aven
Universitaria s/n, Chamilpa, Morelos 62200, Mexico.
1063-651X/2001/63~6!/066113~12!/$20.00 63 0661
at
an
as

y
o-
the
n

in-

ly
s

a

l-

an
to
tic
a

r
se
r-

-
is
lly
l

noise intensity, however, the mean first passage time ass
ated with the noise and the frequency of the signal are
synchrony~stochastic resonance!, and the passage from on
well to the other carries maximal information about the s
nal frequency.

A less ubiquitous but nonetheless important occurrenc
stochastic resonance~that has been called ‘‘nonconven
tional’’ by its discoverers! arises for particles moving in non
linear monostablepotentials@26,27#. It is argued that sto-
chastic resonance can be expected to occur in any single-
underdamped system for which the spectral density of
fluctuations of the system in the absence of a periodic sig
exhibits a well-resolved narrow peak that grows faster th
quadratically with temperature. The effect is confirmed v
analog simulations of a single-well Duffing oscillator@26,27#
and of a superconducting quantum interference device l
@28#. More recently, stochastic resonance at higher harm
ics in monostable systems was ascertained for an o
damped system when the nonlinearity is not concentrate
the equilibrium position@29#.

Recent developments in the field have generalized th
ideas to linearly coupled arrays of bistable oscillato
@3,4,16#. A signal with the help of the noise in these arra
can cause a ‘‘phase jump.’’ If the noise is sufficiently wea
the phase jump travels in the form of a moving kink~strong
noise causes random phase jumps that make it difficul
separately identify a phase jump associated with the sign!.
The creation or destruction of a phase kink is an activa
process, i.e., the signal and/or noise must be sufficie
strong to cause a transition from one well of one of t
bistable potentials to the other. The presence of such kink
associated with an ‘‘energy gap:’’ it takes a finite amount
energy to destroy a kink. The language used in this desc
tion was originally borrowed from the kink soliton contex

Reported instances of stochastic enhancement and
chastic resonance inextendedarrays involve coupled~over-
damped! bistable units. Herein we show that enhance
propagation can be achieved through thermal tuning of e
simpler discrete arrays of masses connected bymonostable
anharmonic springs~with no local potentials!. The signal is
identified with an amplitude that exceeds~by a predeter-
mined amount! that due to the thermal background. He
there is no activation process and no energy gap, and
signal can simply disperse or dissipate. The langu

tat
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E63 066113
FIG. 1. Mean velocitŷ v& of the 12th site of a hard anharmonic chain withk853, g50.5, v050.5, andA50.5, for different values of
the temperature. Enhancement of signal propagation is observed with increasing temperature~1st and 2nd panels!, but the signal is destroyed
as the temperature further increases~3rd and 4th panels!. Note the different vertical scales.
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appropriate to this case is akin to that originally associa
with envelope solitons. We focus on the propagation dista
and amplitude along the chain of a signal continuously
plied at one site of a one-dimensional array, and comp
results for harmonic and hard anharmonic chains. In part
lar, we show that when the anharmonic chain is immerse
a thermal bath, it is possible to maximize the distance
propagation and the amplitude of the signal at a given site
tuning the temperature to particular optimal values. We c
this phenomenonthermal resonance. Our systems are in gen
eral not overdamped and thus include inertial contributio
to the motions of the masses. Noise and damping repres
realistic thermal environment with a tunable temperature
dissipation that obey an appropriate fluctuation-dissipa
relation. We have found and reported elsewhere@13# that the
propagation of an energy pulse in a hard anharmonic a
can be enhanced by immersion in a thermal bath, and
hard anharmonicity in the springs causes a tight and pe
tent packing of the energy. Those results suggest the po
bility of a thermal resonance in the transport of a sustai
external signal in these simple arrays.
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In Sec. II we present our model and some details of
numerical integration of the equations of motion. Our ch
acterization of a thermal resonance is presented in Sec
and our main results are shown in Sec. IV. In Sec. V
discuss the dependence of our results on different param
models. Section VI contains our summary and conclusio

II. THE MODEL AND NUMERICAL PROCEDURE

Our model consists of a one-dimensional chain ofN unit-
mass sites, each connected to its nearest neighbors by e
harmonic~quadratic! or hard anharmonic~quartic! springs.
Accordingly, the Hamiltonian of the array is

H5 (
n50

N21 Fpn
2

2
1

k

2
~xn2xn21!21

k8

4
~xn2xn21!4G , ~1!

wherek and k8 are the harmonic and anharmonic coupli
constants respectively. Thermalization of the chains
achieved through a Langevin prescription for coupling t
system to a heat bath. The stochastic equations of motion
3-2



THERMAL RESONANCE IN SIGNAL TRANSMISSION PHYSICAL REVIEW E63 066113
FIG. 2. Mean velocitŷ v& of the 12th site of the harmonic chain withk53, g50.5, v050.5, andA50.5, for different values of the
temperature. Signal degradation with increasing temperature is clearly observed. Note the different vertical scales.
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sites n51, . . . ,N21 are obtained from the Hamiltonia
augmented by the usual Langevin forces,

ẍn5k~xn212xn!2k~xn2xn11!1k8~xn212xn!3

2k8~xn2xn11!32g ẋn1 f n~ t !, ~2!

where a dot represents a derivative with respect to time.
f n(t) are zero-centered, Gaussian,d-correlated fluctuations
that satisfy the fluctuation-dissipation relation at temperat
T,

^ f n~ t ! f n8~ t8!&52gkBTdn,n8d~ t2t8! ~3!

(kB is Boltzmann’s constant!. We impose periodic boundar
conditions, so thatxN[x0. A sustained signal is applied t
the siten50 that determines its velocity at all times,

ẋ05A sin~v0t !. ~4!

The positions and momenta of all the other sites are ot
wise ‘‘free’’ and determined by the equations of motion. W
study the propagation of this signal along the chain a
06611
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a

function of the temperature. This particular way of applyi
a signal is of course not unique~e.g., one might apply an
oscillatory force instead!, but we have ascertained that th
results are insensitive to the detailed choice.

An analytic solution of this problem is not available for a
anharmonic chain, so we must rely on numerical integrati
which is performed using the second order Heun’s meth
~equivalent to a second order Runge-Kutta integrati!
@30,31#. The time step is determined by the period of osc
lation of the velocity of the first sitet52p/v0 through the
relation Dt5t/212. For each simulation, the system is in
tially allowed to relax to thermal equilibrium. For all th
simulations presented, this is achieved in less than 20 u
of the dimensionless time. Typically, after a transient tha
longer the farther the site is from site 0~and thus a measur
of the velocity of propagation!, each site settles into station
ary behavior that is a mixture of thermal motion and r
sponse to the signal. Sites that are far from the signal ne
exhibit this transient~thus indicating a finite distance o
propagation! and simply continue their thermal motion. A
any given site thatis reached by the signal, one can obser
the amplitude of the motion associated with the signal o
and above the thermal motion.
3-3
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E63 066113
Our interest here lies in demonstrating resonances in
dependence on temperature of the propagation distance
velocity and of the response amplitudes once stationarity
been achieved~in all our simulations, each site has settl
into its long-time behavior after 100 first-site oscillations!.
Possible energy return effects around the periodic chain
prevented by making the chain sufficiently long and/or s
ficiently increasing the dissipation parameter of distant si
Our chains typically consist of 70 sites with a large dissip
tion at sites 27–32~these numbers can easily be varied!. Our
‘‘measurements’’ are then taken over 80 oscillation perio
and nonzero-temperature results are averaged over 500
izations. All of these choices~equilibration time before ap
plying the signal, integration time step, transients, length
chain, and number of realizations! have been carefully tested

III. CHARACTERIZATION OF THERMAL RESONANCE

We must choose a sensible response variable to cha
terize the behavior of our array. When stochastic resona
is studied in arrays of bistable potentials, the system
sponse is usually analyzed in terms of a crossover time se
that characterizes the transitions of each bistable elem
from one well to the other. In excitable media a reasona
response variable involves firing times of the individual e
ments. In our system the most convenient choice is the
locity of each site because it corresponds directly to the
plied signal, and because the time average of the velocit
the stationary state vanishes at any temperature.

Figure 1 is a dramatic but typical demonstration of a
alization of thermal resonance. It shows the mean velo
^v& ~averaged over realizations! as a function of time for the
12th site of a hard anharmonic chain at different tempe
tures. The first panel shows the results for zero tempera
and for a very low temperature; the temperature increase
subsequent panels. At zero temperature the 12th site ha
moves because the signal has been dissipated to the
before reaching this site~in the corresponding harmoni
chain the signal reaches the 12th site quite vigorously at z
temperature, a confirmation of the fact that a given dissi
tion is much more effective in a hard anharmonic poten
than in a harmonic one@12,13,32#–see Fig. 2!. A very small
temperature increase~still first panel! causes a large enhanc
ment of the signal, which clearly now reaches the site. T
is apparent in the oscillatory behavior of the velocity ov
and above the noisy background. The temperature in the
ond panel is close to its optimal value, that is, the value t
most enhances the signal at this particular site relative to
thermal background. Hence the motion of the 12th site at
temperature is mostly driven by the periodic forcing of t
first site. A further increase in the temperature~third panel!
causes the average velocity to become increasingly noisy
cause ever larger fluctuations dominate the dynamics.
nally, at a sufficiently high temperature~fourth panel!, the
signal is essentially buried in the fluctuations, and the mot
is simply that imposed by the thermal bath. In contrast, i
harmonic array (k53) the signal at any site simply degrad
with increasing temperature. This is illustrated in Fig. 2.
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To provide a quantitative measure of the thermal re
nance, we define the power spectral densitySj (v) at each
site j as

Sj~v!5E
2`

1`

e2 ivt^v j~ t !v j~ t1t!&dt, ~5!

where the brackets denote an ensemble average over re
tions and an average over time. In addition to the therm
fluctuations, this function contains the spectral informati
about that part of the signal that has reached sitej. An ex-
ample of a portion of the spectrum for the case that we w
call our ‘‘standard case’’ (k855, g50.2, v051.0, A
50.5) is shown in Fig. 3. The signal extraction from bac
ground noise that characterizes stochastic resonance is t
tionally performed via a signal-to-noise ratio~SNR! @2#:

R~ j ![ log10H @signal power ~ j !#3Dv

@ thermal power~ j !# J , ~6!

where the signal power is the valueSj (v0)2Sj ,noise(v0),
the thermal powerSj ,noise(v0) is estimated by performing a
fourth-order polynomial fit to Sj (v) around—but not
including—the forcing frequencyv0, and Dv denotes the
frequency integration step and is equal to 0.0125~the inverse
of the 80 oscillation periods used as our measurement ti!
throughout this paper. This definition of the SNR is n
unique, but our results are robust with respect to variation
this definition.

IV. THERMAL RESONANCES

We first present SNR results for the harmonic chain, so
to clarify later the ways in which the anharmonic chain b
haves differently. The analytic calculations associated w

FIG. 3. Power spectral density at the 15th site of the hard
harmonic chain withk855, g50.2, v051.0 andA50.5 ~we call
this our ‘‘standard case’’ in the text! at temperaturekBT50.5. The
wide solid line shows the polynomial fitting aroundv0. The circle
indicates the value ofS15(v0) and the square that ofS15,noise(v0).
3-4
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THERMAL RESONANCE IN SIGNAL TRANSMISSION PHYSICAL REVIEW E63 066113
FIG. 4. First panel: Typical SNR curves as a function of temperature for different sites along a harmonic chain. The SNR for e
decreases monotonically with temperature. This particular example shows sites from the 5th to the 14th~top to bottom! with k53, g
50.5, v051.0, andA50.5. Second panel: SNR as a function of site for different temperatures.
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the harmonic chain are presented in the Appendix. Th
results serve as a test for our numerical simulations. The
panel in Fig. 4 shows SNR curves as a function of tempe
ture for different sites, and the second panel shows the s
results as a function of distance from the forced site for d
ferent temperatures. The results are exactly as shown in
Appendix and as one would expect: the SNR decrea
monotonically with increasing temperature and with incre
ing distance from the applied signal. Note thatR( j ) de-
creases with increasing temperature because the numera
Eq. ~6! is essentially independent of temperature while
denominator increases~see the Appendix!. A point to note is
that the decay ofR( j ) with j at a given temperature provide
a measure of the shape of the stationary front of the sign
that temperature.

We now turn to the anharmonic chain. The first panel
Fig. 5 shows SNR curves as a function of temperature
different sites. The thermal resonance is identified with
j-dependent maximum ofR( j ) as a function of temperature
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The signal at the first few sites is monotonically weakened
a function of the temperature~as it is atall sites in the har-
monic chain!, but the SNR is enhanced with increasing te
perature for sites farther away until it reaches a maxim
~thermal resonance!; beyond that it decreases. Note that t
optimal temperature increases with distance from the fi
site. For the particular parameters used in this simulation
thermal resonance occurs most clearly at temperatures in
rangekBT,4 for sites between the 8th and the 15th; the
details can of course be modified by changing the parame
~see Sec. V!.

Complementary results for SNR curves as a function
the site for different temperatures are shown in the sec
panel in Fig. 5. The resonance effects are evidenced by
crossings of the different curves. The crossings reflect
rise and subsequent drop in the SNR at a given site, and
fact that the curves cross at different sites confirms that
thermal resonance temperature varies from site to site.
he
cond
FIG. 5. First panel: SNR curves for different sites~from j 56 to 15, top to bottom! along the anharmonic chain as a function of t
temperature for the standard case:A50.5, k855, g50.2, v051. The optimal temperature increases with distance from the first site. Se
panel: SNR as a function of the site for different temperatures.
3-5
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E63 066113
The nonmonotonic behavior of the SNR with temperat
is due to the fact that while the thermal power increases w
T, the signal power at first also increases, and more rap
than the thermal power. This is exactly the condition for t
existence of stochastic resonance formulated by Dykm
et al. @26,27,33# for single potentials, but that theory has n
yet been generalized to extended systems. The fast incr
of the signal power is consistent with trends found earlier
transmission of pulses along discrete arrays@13#. We found
that a pulse in a hard anharmonic chain travels more rap
with increasing temperature~except for the lowest tempera
tures, see below!, while in a harmonic array a change
temperature has no effect on pulse speed. While a p
broadens with increasing temperature in both arrays,
pulse in the anharmonic array remains relatively more co
pact. At sufficiently high temperatures the signal power a
given site becomes independent ofT ~as in the harmonic
chain! because the signal response has reached its maxi
value; a further increase in temperature only affects the
nal further down the chain. The ‘‘crossover’’ temperature
the signal power from the increasing to the saturated beh
ior depends on the chain and signal parameters, a de
dence explored in the next section.

The fact that the SNR for the sites shown is very lo
~essentially zero! for the lowest temperatures at sites beyo
the first few shows that for a purely anharmonic chain
signal essentially stops beyond the first few sites, wherea
the harmonic example the signal reaches all the sites sh
even at the lowest temperatures shown. This is also con
tent with the behavior shown earlier for the transmission o
pulse@13#: the pulse velocity at sufficiently low temperatur
is actually lower in the hard chain than in the harmonic ca
Had we included a harmonic potential contribution equa
that of the harmonic chain, the SNR vskBT curves would
start at the same values as in Fig. 4, but for sufficien
distant sites from the first they would still be nonmonoton
We have omitted a harmonic contribution to present the th
mal resonance effect in its purest form.

The apparently monotonic behavior of the first few sites
due to the fact that for the temperatures shown the sig
reaches these sites in any case. A resonance at these
would be seen for different parameter values and/or at e
lower temperatures.

Our preceding descriptions point to another interest
measure of a thermal resonance, namely, the propaga
lengthL, defined as the number of sites~i.e., distance along
the chain! for which the SNR exceeds a certain thresho
value. Figure 6 presents the temperature dependence ofL for
harmonic and anharmonic arrays and an arbitrarily cho
R-threshold value of21.2. Since the harmonic array doe
not exhibit thermal resonance, a monotonic decay ofL with
increasing temperature is observed. On the other hand
hard chain shows a maximum for a moderate temperat
Again, the particular values of optimal temperature (kBT
'3) and optimal distance (L'17) can be modified by
choosing different parameters and/or different SNR thre
olds, but the qualitative behavior persists as seen in Fig.
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V. PARAMETER DEPENDENCES

The parameters that can be varied in our model are
amplitudeA and frequencyv0 of the velocity of the first site,
the coupling parameterk8, and the damping coefficientg.

The first panel of Fig. 7 shows the SNR curves as a fu
tion of temperature for a lower amplitude than in the sta
dard case. Comparison with the first panel of Fig. 5 sho
that the overall SNR is now~of course! lower and that the
resonance temperature at each site has increased. The
behavior indicates that for lower amplitudes the crosso
temperature from an increasing signal to a saturated si
increases as the signal weakens. The second panel s
results for weaker coupling. Again the overall SNR is low
and the resonance temperature higher at each site. A we
coupling thus has the effect of weakening the signal.

The first panel of Fig. 8 shows the SNR curves as a fu
tion of temperature for higher damping. Comparison with t
first panel of Fig. 5 shows that the overall SNR is aga
lower than in the standard case and the resonance tem
ture higher. The same trends are observed with a higher d
ing frequency as shown in the second panel of Fig. 8. Aga
each of these changes leads to an effectively weakened
nal.

Figures 7 and 8 illustrate clear trends. DecreasingA or k8,
or increasingg or v0, lead to the following consequence
~a! the SNR at any given site and temperature decreases~b!
the SNR resonance temperature increases at any given
and~c! at a given temperature the resonance occurs at a
closer to the first. These trends are consistent with th
found earlier for transmission of pulses along similar arra
@13#. We found that a pulse in a hard anharmonic chain tr
els more rapidly and relatively more compactly with increa
ing amplitude, decreasing damping, increasing coupling
increasing driving frequency. By contrast, in a harmonic
ray changes in temperature or in the signal and damp
parameters have no effect on pulse speed.

FIG. 6. Propagation lengthL as a function of the temperatur
for the anharmonic chain~standard case! and harmonic chain with
k51 ~other parameters as in the standard anharmonic case!. The
threshold value isR521.2.
3-6
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FIG. 7. First panel: SNR curves for different sites~from j 54 to 13, top to bottom! along the anharmonic chain as a function of t
temperature for the lower-amplitude case:A50.25, k855, g50.2, v051. Second panel: SNR curves for the weaker-coupling caseA
50.5, k853, g50.2, v051.
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VI. CONCLUSION

We have demonstrated thermal resonances in simple
dimensional arrays of masses connected by hard springs
chains are not overdamped and hence include inertial effe
We have shown that the distance and amplitude of propa
tion of a signal imposed at one end of the chain can each
optimized by tuning the temperature of the system. The re
nance behavior reflects the temperature dependence o
distance traveled by the front of a signal and the dispers
of this front once steady state has been reached. At a fi
temperature, any parameter change that leads to an inc
in velocity of propagation tends to increase the range of s
where the signal can be detected as well as the SNR
given site. Increased velocity of propagation is also ass
ated with a lowering of the resonance temperature for a gi
site.

A complete understanding of the behavior of these sim
anharmonic arrays in a thermal environment requires
relies on a number of other inquiries, some of which we ha
undertaken. One concerns the distribution of energy, and
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persistence and mobility of energy fluctuations, in therm
equilibrium @12,14#. We have found that soft anharmon
chains~that is, chains with soft interaction potentials! expe-
rience greater energy fluctuations than harmonic cha
which in turn experience greater fluctuations than h
chains. This is a direct consequence of the virial theore
We have also established that fluctuations are mobile in
monic and hard chains but not in the soft. Most interesting
thermal fluctuations travel most rapidly and remain localiz
over considerably greater distances in the hard chain. Th
results in turn can lead to very different transition rate sta
tics and effective damping coefficients for a bistable imp
rity embedded in each of these arrays at a given tempera
@14#.

Another interesting line of inquiry concerns the propag
tion of an energy pulse along such arrays. As mention
earlier, we have found that the propagation of an ene
pulse in a hard anharmonic array can be enhanced by
mersing the array in a thermal bath, and that hard anhar
nicity in the springs causes a tight and persistent packing
the energy@13#.
FIG. 8. SNR curves for sites 4 to 13~top to bottom! for the higher damping case:A50.5, k855, g50.5, v051. Second panel: SNR
curves for the higher frequency case:A50.5, k855, g50.2, v052.
3-7
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E63 066113
Almost all of our results are numerical. Analytic resu
for the harmonic array provide some insights and point
ward the possibility that an approach based on lineariza
methods@34# together with a linear response theory@33#
might lead to analytic insights for nonlinear arrays. We a
currently exploring these possibilities.

The thermal resonances and other interesting beha
that we have found for simple hard anharmonic chains
likely to be prototypical and therefore applicable to ma
other discrete systems with anharmonic interactions. W
many other systems have been investigated in which a c
ful balance of parameters at zero temperature or a manip
tion of external noise lead to interesting localization, re
nance, and synchronization phenomena, our systems
among the simplest generic systems in which the temp
ture can be used as the tuning parameter to achieve sim
effects.
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APPENDIX: HARMONIC CHAIN

In this appendix we consider a harmonic chain and ca
late analytically some of the numerical results presented
invoked in the body of the paper. Although the behavior
linear chains is in general well understood, it is useful
present results in the particular context of this work. The
are not readily available in the literature.

1. Zero temperature, with signal

Consider first an infinite linear chain (2`,n,`) at
zero temperature, that is, in the absence of fluctuations~but
with the dissipative contribution!. The equations of motion
then are

ẍn5k~xn111xn2122xn!2g ẋn , ~A1!

with the signalẋ05A sin(v0t) applied at siten50. We con-
jecture the quasistationary solution

xn
s~ t !52

A

v0
e2unum cos~v0t1unub!1cn , ~A2!

where the superscripts denotes the presence of the sign
The constantsm and b are to be determined. The additiv
constantcn must be independent ofn—it simply represents
an overall translation of the chain~because it is not an
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chored! but otherwise does not contribute to the veloc
analysis. The velocities associated with Eq.~A2! are

ẋn
s~ t !5Ae2unum sin~v0t1unub!. ~A3!

This result is clearly consistent with the imposed signal
n50. The solution~A3! can be used to calculate the zer
temperature signal according to Eq.~5!,

Sn
s~v0!5E

2`

1`

e2 iv0t^ẋn~ t !ẋn~ t1t!&dt. ~A4!

The average~which in this deterministic case is only ove
time! eliminates rapidly oscillating contributions, leavin
only a d-function type of contribution. The result is th
power spectral density

Sn
s~v0!5

A2

2
e22unum. ~A5!

To find the constantm we substitute Eq.~A2! into Eq.
~A1! and set the coefficients ofeiv0t and those ofe2 iv0t

equal to zero~one resulting equation is simply the comple
conjugate of the other!. This immediately leads to the rela
tion

2v0
25k~e2m1 ib1em2 ib22!2 igv0 . ~A6!

We make the substitutionu[e2m1 ib and note the symmetry
in u and 1/u,

kS u1
1

u
22D1v0

22 igv050. ~A7!

Next we multiply through byu and solve the resulting qua
dratic equation,

u65
2~v0

222k2 igv0!6A~v0
222k2 igv0!224k2

2k
.

~A8!

Note thatu1u251, so if one solution ise2m1 ib, then the
other isem2 ib. Which is which is not clear at this point.m
must be positive for a physically acceptable solution and
will be used below to sort out the choice.

To extractm we calculate the ratiou1 /u2* , which is ei-
ther e2m or e22m. If u15e2m1 ib thenu1 /u25e22m. If, on
the other hand,u15em2 ib then u1 /u25e2m. Which it is
will be seen at the end when we inspect the magnitude of
result.

In calculating the ratiou1 /u2* one must exercise cautio
in taking complex conjugates because of the square roo
Eq. ~A8!; it is not appropriate to simply change everyi to a
2 i in such an expression if one does not know the signs
the terms inside the square root. It is helpful to write ea
complex number in terms of an amplitude and a phase,

~v0
222k2 igv0![2kaeib, ~A9!

so that
3-8
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2ka5@~v0
222k!21g2v0

2#1/2,

b5tan21S 2gv0

v0
222k

D . ~A10!

Similarly, with

~v0
222k2 igv0!224k2[4k2n2e2i e, ~A11!

we find

4k2n25v0@v0
2~v0

224k2g2!214g2~v0
222k!2#1/2,

2e5tan21
22g~v0

222k!

v0~v0
224k2g2!

. ~A12!

Then

u152aeib1nei e, u252aeib2nei e, ~A13!

and the ratiou1 /u2* is thus real. Multiplying top and bottom
of this ratio byu2 gives

u1

u2*
5

u1u2

u2* u2

5
1

uu2u2
. ~A14!

Further and explicitly

uu2u25~2aeib2nei e!3~2ae2 ib2ne2 i e!

5a21n212an cos~b2e!. ~A15!

All that remains is the evaluation of the resulting expre
sions. In summary

a21n212an cos~b2e!5e22m, ~A16!

or

a21n212an cos~b2e!5e12m. ~A17!

The choice is determined by whether the result is,1 ~in
which case the first equality holds! or .1 ~in which case it is
the second!. The quantitiesa, n, b, and e are thus com-
pletely defined in terms of the system parameters.

We have tested our numerical simulations against the
diction ~A5! for large ranges of parameter values and ha
found agreement to five significant figures.

The solutions presented in this section do not ob
N-periodic boundary conditions. It is fairly straightforwar
using an imagelike method to construct explicitly period
solution by applying the signal at 0,6N,62N, . . . but the
changes would be exponentially small inN and unimportant
for sufficiently long chains. The quasistationary behavior
sumed above for sites not too distant fromn50 sets in long
before the signal atn50 reaches sites6N.
06611
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2. Finite temperature, no signal

Now we solve the equations of motion

ẍn5k~xn111xn2122xn!2g ẋn1 f n~ t ! ~A18!

without a signal. We are again interested in the station
behavior.

We define the Fourier transform and its inverse,

yq5 (
n50

N21

xne2p iqn, xn5
1

N (
q50

N21

yqe22p inq. ~A19!

Transforming Eq.~A18! immediately leads to

ÿq14k sin2S pq

N D yq1g ẏq5Fq~ t !, ~A20!

where the inhomogeneous term is the transform of the no

Fq~ t ![ (
n50

N21

f n~ t !e2p iqn. ~A21!

The solution of this second order inhomogeneous differen
equation is of standard form. The initial conditions~which
we will take to be zero! are unimportant since we seek th
long-time behavior,

yq
0~ t !5 lim

t→`

1

@r 2~q!2r 1~q!#
E

0

t

Fq~t!@er 2(q)(t2t)

2er 1(q)(t2t)#dt ~A22!

and consequently

ẏq
0~ t !5 lim

t→`

1

@r 2~q!2r 1~q!#
E

0

t

Fq~t!@r 2~q!er 2(q)(t2t)

2r 1~q!er 1(q)(t2t)#dt, ~A23!

where

r 1,2~q!52
g

2
6AS g

2D 2

24k sin2S pq

N D . ~A24!

The superscript 0 is used to stress the absence of a sign
With this result and the correlation function for the the

mal fluctuations that follow immediately from Eq.~3!,

^Fq~ t1!Fq8~ t2!&52g kBT d~ t12t2!N dq,2q8 , ~A25!

we obtain upon integration and Fourier inversion the veloc
correlation function

Cn
0~t![^ ẋn~ t !ẋn~ t1t!&

5
gkBT

N (
q50

N21
1

@r 2
2~q!2r 1

2~q!#
@r 1~q!er 1(q)t

2r 2~q!er 2(q)t#. ~A26!
3-9
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We note in passing that this reduces to the standard cor
tion function for a single harmonic oscillator in a heat ba
Cn

0(t)→kBTe2gt, when the coupling coefficientk→0. The
associated power spectral density is

Sn
0~v!52E

0

`

dt Cn
0~t!cos~vt!

5
2gkBTv2

N (
q50

N21
1

@r 1
2~q!1v2#@r 2

2~q!1v2#
.

~A27!

Figure 9 shows the predicted spectrum~smooth curves!

FIG. 9. SpectrumSn
0(v) for any site at two temperatures,kBT

50.05 ~lower curves! and kBT50.1 ~upper curves!. The smooth
curves are the predictions in Eq.~A27! and the jagged curves ar
the numerical simulation results averaged over 500 runs. The
regularities can be eliminated at great CPU time cost by refining
time and/or frequency meshes and/or increasing the number of
Other parameters:k53, g50.5.
06611
la-
,

and the corresponding simulation results for two differe
temperatures. The agreement is typical of broad param
ranges.

3. Finite temperature and signal: SNR

Finally, we deal with the full equation of motion

ẍn5k~xn111xn2122xn!2g ẋn1 f n~ t ! ~A28!

with the signalẋ05A sin(v0t) applied at siten50. The fluc-
tuation f 0 is set to zero since the velocity of that site is fixe
by the signal.

The Fourier transform is defined as before, but in tra
forming the equations of motion we must take into acco
that Eq.~A28! does not hold forn50. We thus multiply Eq.
~A28! by e2p iqn and sum overn but only from n51 to N
21,

(
n51

N21

xne2p iqn5yq2x0 . ~A29!

Proceeding in this manner we obtain in place of Eq.~A20!

ÿq14k sin2S pq

N D yq1g ẏq5Uq~ t !, ~A30!

where the inhomogeneous term now is

Uq~ t !5Fq~ t !1k~2x02x12xN21!1g ẋ01 ẍ0 .
~A31!

The terms containingx0 and its derivatives are known;x1
and xN21 ~they are equal by symmetry! would have to be
found ‘‘self-consistently’’ ex-post~see below!.

Equation~A30! is again a linear inhomogeneous differe
tial equation with constant coefficients. Its solution has t
additive contributions,

ir-
e

ns.
n with
FIG. 10. First panel: Typical SNR curves as a function of temperature for sites 7, 8, 10, 11, and 12 along a harmonic chaik
53, g50.5, v051.0, andA50.5. The numerical simulation results~thin lines! in each case lie above the analytic curves~thick lines!.
Second panel: SNR as a function of site for different temperatures.
3-10



s

n

h
d
s

oe
ta
he

t
to

the
tem

nal.

en

ach

ns

be-

d

THERMAL RESONANCE IN SIGNAL TRANSMISSION PHYSICAL REVIEW E63 066113
yq~ t !5yq
hom~ t !1yq

inh~ t !. ~A32!

The portion yq
hom(t) is the solution of the homogeneou

equation, that is, withUq(t)50, and the contributionyq
inh(t)

is due to the inhomogeneity.
Suppose thatFq(t) were equal to zero. The solution i

this case, which we denote byyq
s(t) is exactly the solution of

Sec. A1; that is, the inverse transform of

yq
s~ t !5yq

s,hom~ t !1yq
s,inh~ t ! ~A33!

at long times must be precisely Eq.~A2!. Now consider the
consequences of again includingFq(t). The homogeneous
part of the solution has to be exactly as before, i.e.,yq

hom

5yq
s,hom because the homogeneous part of the equation

not changed, the constraint atx0 also has not changed, an
initial conditions are in any case immaterial at long time
However, the inhomogeneous part of the solution d
change, and it does so in two ways. First and most impor
is the direct contribution of the thermal fluctuations to t
solution. Second, and less important, is the change inx1 and
x21 ~which is the same as that ofx1) caused by the addition
of the noise, and the change that this in turn imposes on
other displacements. This contribution is more difficult
calculate and affects only sites nearn50. Ignoring the latter
we thus assume the solution

yq~ t !5yq
s~ t !1yq

0~ t !, ~A34!
ew

.

a,

F.
ra
i,

-
.
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whereyq
s(t) is given in Eq.~A33! andyq

0(t) in Eq. ~A22!.
The correlation function and spectrum are then simply

sums of the correlation functions and spectra for the sys
with the signal but no fluctuations~zero temperature! and
those for the thermalized system in the absence of the sig
Thus, the spectrum is the sum of Eq.~A5! ~appropriately
weighted by a delta function that places it atv0) and Eq.
~A27!. In particular, the SNR for the harmonic system th
finally is

Rn~v0!

5 log10S A2

2
e22nm

2gkBTv2

N (
q50

N21
1

@r 1
2~q!1v2#@r 2

2~q!1v2#

D ,

~A35!

which decreases monotonically withT as well as withn. This
result is consistent with the linear response theory appro
introduced and widely applied by Dykmanet al. @33#. Com-
parisons of this analytic result with numerical simulatio
are shown in Fig. 10~cf. Fig. 4!. Equation ~A35! clearly
captures the correct behavior; the small discrepancies
tween analytic and numerical results~which always lie above
the analytic curves! reflect the omitted terms discusse
above.
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