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Thermal resonance in signal transmission
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We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses con-
nected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is
applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at
each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain,
resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
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[. INTRODUCTION noise intensity, however, the mean first passage time associ-
ated with the noise and the frequency of the signal are in
In the past few years it has become abundantly clear thatynchrony(stochastic resonangeand the passage from one
the presence of noise in nonlinear systems may lead to amell to the other carries maximal information about the sig-
enhancement of a number of often desirable features such aal frequency.
energy localization and mobility and the detection and A less ubiquitous but nonetheless important occurrence of
propagation of weak signals. The interplay of stochasticitystochastic resonancé&hat has been called “nonconven-
and nonlinearity that amplifies the system response is a cajonal” by its discoverersarises for particles moving in non-
operative phenomenon whose detailed nature depends on thgear monostablepotentials[26,27). It is argued that sto-
particular structure of the system and the forces acting upoghastic resonance can be expected to occur in any single-well
it [1,2]. One manifestation o_f the interplay is_found in the underdamped system for which the spectral density of the
phenomenon called stochastic resonance, which has been if\;ctyations of the system in the absence of a periodic signal
voked in a wide range of physicg8—5], chemical[6-9],  oyhibits a well-resolved narrow peak that grows faster than
geological[1,10], and biological8,11] systems. Recent lit- quadratically with temperature. The effect is confirmed via

erattgrtlal, InC|tUdI(;lngUI’ ?Wnr{liv;]or_l_il?—dlﬂ, has_ focus;]ed ond analog simulations of a single-well Duffing oscilla{@6,27]
spatially extended syste INCUCING “noIse-enhanced 5.4 of a superconducting quantum interference device loop

propagation in coupled arrays of bistable ufslé], excit- . ; i
able medid7,8,17, reaction-diffusion systenf4.8], and dy- .[28].. More recently, stochastic resonance fat higher harmon
ics in monostable systems was ascertained for an over-

namics and signal propagation in cardiac tisf1®,20. It q d hen th i o q
has been repeatedly noted thdiscrete extended systems damped system when the nonlinearity Is not concentrated at
Ehe equilibrium positiof 29].

pose particular mathematical challenges that have barel - ) ,
been explored in spite of the fact that many physical systems Recent developments in the field have generalized these
are intrinsically discretg21—25. ideas to linearly coupled arrays of bistable oscillators
The ubiquitous picture of stochastic resonance involves &3.4,18. A signal with the help of the noise in these arrays
particle moving in a double-well potential subject to a weakcan cause a “phase jump.” If the noise is sufficiently weak,
external signal that periodically changes the potential by althe phase jump travels in the form of a moving kigstrong
ternately raising and lowering the wellg]. The signal is noise causes random phase jumps that make it difficult to
“weak” if the periodic force is too small to cause the par- separately identify a phase jump associated with the signal
ticle to scale the barrier between the wells. Nevertheless, afhe creation or destruction of a phase kink is an activated
appropriate random force is sufficient to cause the particle tprocess, i.e., the signal and/or noise must be sufficiently
cross over the barrier even in the absence of a deterministstrong to cause a transition from one well of one of the
signal. In the simultaneous presence of a weak signal and lsistable potentials to the other. The presence of such kinks is
sufficiently weak noise, the transitions over the barrier occuassociated with an “energy gap:” it takes a finite amount of
rarely and at a rate determined by the noise intensity. Thesenergy to destroy a kink. The language used in this descrip-
transitions are slow compared to the frequency of the detertion was originally borrowed from the kink soliton context.
ministic signal; the transition rate then carries little informa-  Reported instances of stochastic enhancement and sto-
tion about the signal. At the other extreme, when the noise igshastic resonance iextendedarrays involve coupledover-
strong it induces rapid transitions that are again essentiallgamped bistable units. Herein we show that enhanced
uninfluenced by the frequency of the signal. At an optimalpropagation can be achieved through thermal tuning of even
simpler discrete arrays of masses connectednioyostable
anharmonic springéwith no local potentials The signal is
*Permanent address: Departament de Quimica-Fisica, Universitédentified with an amplitude that exceedsy a predeter-

de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain. mined amount that due to the thermal background. Here
"Permanent address: Instituto de Matematicas, UNAM, Aveniddhere is no activation process and no energy gap, and the
Universitaria s/n, Chamilpa, Morelos 62200, Mexico. signal can simply disperse or dissipate. The language
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FIG. 1. Mean velocityv) of the 12th site of a hard anharmonic chain with=3, y=0.5, wy=0.5, andA=0.5, for different values of
the temperature. Enhancement of signal propagation is observed with increasing tempesaandg 2nd panelsbut the signal is destroyed
as the temperature further increa$8sd and 4th panelsNote the different vertical scales.

appropriate to this case is akin to that originally associated In Sec. Il we present our model and some details of the
with envelope solitons. We focus on the propagation distanceaumerical integration of the equations of motion. Our char-
and amplitude along the chain of a signal continuously apacterization of a thermal resonance is presented in Sec. I,
plied at one site of a one-dimensional array, and compargnd our main results are shown in Sec. IV. In Sec. V we
results for harmonic and hard anharmonic chains. In particudiscuss the dependence of our results on different parameter
lar, we show that when the anharmonic chain is immersed imodels. Section VI contains our summary and conclusions.
a thermal bath, it is possible to maximize the distance of
propagation and the amplitude of the signal at a given site by  |I. THE MODEL AND NUMERICAL PROCEDURE
tuning the temperature to particular optimal values. We call ) ) ) ) ]
this phenomenothermal resonanceOur systems are in gen- ~ Our model consists of a one-dimensional chaimNainit-
eral not overdamped and thus include inertial contributiondaSs sSites, each connected to its nearest neighbors by either
to the motions of the masses. Noise and damping represenf’&'menic(quadrati¢ or hard anharmoni¢quartio springs.
realistic thermal environment with a tunable temperature ané\ccordingly, the Hamiltonian of the array is
dissipation that obey an appropriate fluctuation-dissipation N-1r 2 ,
relation. We have found and reported elsewhég] that the _ Pn 5 _ 2 E _ 4

. : : H=2 |5+ 50X+ 7 (= X-0)*|, ()
propagation of an energy pulse in a hard anharmonic array n=o| 2 2 4
can be enhanced by immersion in a thermal bath, and that
hard anharmonicity in the springs causes a tight and persisvherek andk’ are the harmonic and anharmonic coupling
tent packing of the energy. Those results suggest the possionstants respectively. Thermalization of the chains is
bility of a thermal resonance in the transport of a sustaineéchieved through a Langevin prescription for coupling the
external signal in these simple arrays. system to a heat bath. The stochastic equations of motion for
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FIG. 2. Mean velocityv) of the 12th site of the harmonic chain wik+3, y=0.5, w,=0.5, andA=0.5, for different values of the
temperature. Signal degradation with increasing temperature is clearly observed. Note the different vertical scales.

sitesn=1,... N—1 are obtained from the Hamiltonian function of the temperature. This particular way of applying
augmented by the usual Langevin forces, a signal is of course not unique.g., one might apply an
oscillatory force instead, but we have ascertained that the
Xn=K(Xn_1—Xn) —K(Xn—Xp+1) T K" (Xp_1—%5)° results are insensitive to the detailed choice.
An analytic solution of this problem is not available for an
— K (Xp—Xn11) 3= yXn+ Fo(1), (20 anharmonic chain, so we must rely on numerical integration,

which is performed using the second order Heun’s method
where a dot represents a derivative with respect to time. Theequivalent to a second order Runge-Kutta integration
f.(t) are zero-centered, Gaussiahcorrelated fluctuations [30,31. The time step is determined by the period of oscil-

that satisfy the fluctuation-dissipation relation at temperaturdation of the velocity of the first site= 2/ w, through the
T, relation At=7/2'2. For each simulation, the system is ini-

tially allowed to relax to thermal equilibrium. For all the
(Fa(OF 0 (t'))y=2ykgT 5, nr S(t—t) (3)  simulations presented, this is achieved in less than 20 units
of the dimensionless time. Typically, after a transient that is
(kg is Boltzmann’s constanptWe impose periodic boundary longer the farther the site is from site(@nd thus a measure
conditions, so thaky=Xy. A sustained signal is applied to of the velocity of propagation each site settles into station-

the siten=0 that determines its velocity at all times, ary behavior that is a mixture of thermal motion and re-
_ sponse to the signal. Sites that are far from the signal never
Xo=Asin(wgt). (4)  exhibit this transient(thus indicating a finite distance of

propagation and simply continue their thermal motion. At
The positions and momenta of all the other sites are otherany given site thais reached by the signal, one can observe
wise “free” and determined by the equations of motion. We the amplitude of the motion associated with the signal over
study the propagation of this signal along the chain as @and above the thermal motion.
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Our interest here lies in demonstrating resonances in the 2 . . . .
dependence on temperature of the propagation distance ar
velocity and of the response amplitudes once stationarity ha ° k,T=0.5, SNR(15)=-1.26
been achievedin all our simulations, each site has settled
into its long-time behavior after 100 first-site oscillatipns
Possible energy return effects around the periodic chain art
prevented by making the chain sufficiently long and/or suf-
ficiently increasing the dissipation parameter of distant sites 2 1 | i
Our chains typically consist of 70 sites with a large dissipa- &
tion at sites 27—32these numbers can easily be vajiedur
“measurements” are then taken over 80 oscillation periods
and nonzero-temperature results are averaged over 500 rec
izations. All of these choiceg&quilibration time before ap-
plying the signal, integration time step, transients, length of
chain, and number of realizatigrisave been carefully tested.

lll. CHARACTERIZATION OF THERMAL RESONANCE FIG. 3. Power spectral density at the 15th site of the hard an-

We must choose a sensible response variable to charaarmonic chain wittk’=5, y=0.2, wo=1.0 andA=0.5 (we call
terize the behavior of our array. When stochastic resonandis our “standard case” in the texat temperaturégT=0.5. The
is studied in arrays of bistable potentials, the system reW'qe solid line shows the polynomial fitting arourg). The circle
sponse is usually analyzed in terms of a crossover time serid2dicates the value os(wo) and the square that &soisd wo)-
that characterizes the transitions of each bistable element ) L
from one well to the other. In excitable media a reasonable 1© Provide a quantitative measure of the thermal reso-
response variable involves firing times of the individual ele-N@nce, we define the power spectral densiffw) at each
ments. In our system the most convenient choice is the vex'€) as
locity of each site because it corresponds directly to the ap- i
plied signal, and because the time average of the velocity in S_(w):f e (v (t)vi(t+7))dr, (5)
the stationary state vanishes at any temperature. ! —o . .

Figure 1 is a dramatic but typical demonstration of a re-
alization of thermal resonance. It shows the mean velocityvhere the brackets denote an ensemble average over realiza-
(v) (averaged over realizationas a function of time for the tions and an average over time. In addition to the thermal
12th site of a hard anharmonic chain at different temperafluctuations, this function contains the spectral information
tures. The first panel shows the results for zero temperatur@bout that part of the signal that has reached jsifen ex-
and for a very low temperature; the temperature increases idmple of a portion of the spectrum for the case that we will
subsequent panels. At zero temperature the 12th site hardgall our “standard case” K'=5, y=0.2, wy=1.0, A
moves because the signal has been dissipated to the batt0.5) is shown in Fig. 3. The signal extraction from back-
before reaching this sitéin the corresponding harmonic ground noise that characterizes stochastic resonance is tradi-
chain the signal reaches the 12th site quite vigorously at zertonally performed via a signal-to-noise ratiSNR) [2]:
temperature, a confirmation of the fact that a given dissipa- _ _
tion is much more effective in a hard anharmonic potential (1= [signal power (j)]XAw
than in a harmonic ongl2,13,33—see Fig. 2 A very small (1)=l0gs0 [thermal power(j)] |’
temperature increagstill first pane) causes a large enhance-
ment of the signal, which clearly now reaches the site. Thisvhere the signal power is the val@(wo) — S noisd @0),
is apparent in the oscillatory behavior of the velocity overthe thermal poweB; ,isd @) is estimated by performing a
and above the noisy background. The temperature in the sefourth-order polynomial fit to S;(w) around—but not
ond panel is close to its optimal value, that is, the value thaincluding—the forcing frequencw,, and Aw denotes the
most enhances the signal at this particular site relative to thigequency integration step and is equal to 0.0({tR& inverse
thermal background. Hence the motion of the 12th site at thigf the 80 oscillation periods used as our measurement time
temperature is mostly driven by the periodic forcing of thethroughout this paper. This definition of the SNR is not
first site. A further increase in the temperat(tieird pane) unigque, but our results are robust with respect to variations in
causes the average velocity to become increasingly noisy beais definition.
cause ever larger fluctuations dominate the dynamics. Fi-
nally, at a sufficiently high temperaturgourth panel, the
signal is essentially buried in the fluctuations, and the motion
is simply that imposed by the thermal bath. In contrast, in a We first present SNR results for the harmonic chain, so as
harmonic array K= 3) the signal at any site simply degradesto clarify later the ways in which the anharmonic chain be-
with increasing temperature. This is illustrated in Fig. 2.  haves differently. The analytic calculations associated with

(6)

IV. THERMAL RESONANCES
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FIG. 4. First panel: Typical SNR curves as a function of temperature for different sites along a harmonic chain. The SNR for each site
decreases monotonically with temperature. This particular example shows sites from the 5th to tftepldshbottom with k=3, y
=0.5, wp=1.0, andA=0.5. Second panel: SNR as a function of site for different temperatures.

the harmonic chain are presented in the Appendix. Thes&he signal at the first few sites is monotonically weakened as
results serve as a test for our numerical simulations. The firsi function of the temperatur@s it is atall sites in the har-
panel in Fig. 4 shows SNR curves as a function of temperamonic chain, but the SNR is enhanced with increasing tem-
ture for different sites, and the second panel shows the sangerature for sites farther away until it reaches a maximum
results as a function of distance from the forced site for dif'(thermal resonangebeyond that it decreases. Note that the
ferent temperatures. The results are exactly as shown in thestimal temperature increases with distance from the first
Appendix and as one would expect: the SNR decreasegie. For the particular parameters used in this simulation the
monotonically with increasing temperature and with increasyhermal resonance occurs most clearly at temperatures in the
ing distance from the applied signal. Note t(j) de-  angek.T<4 for sites between the 8th and the 15th; these

creases with increasing temperature because the numeratorjRyqiis can of course be modified by changing the parameters
Eq. (6) is essentially independent of temperature while the(See Sec. Y/

denominator increasésee the Appendix A point to note is Complementary results for SNR curves as a function of

that the decay oR(j) with j at a given temperature provides . . .
a measure of the shape of the stationary front of the signal épe S't? for different temperatures are ShOWI’].In the second
that temperature. panel in Fig. 5. The resonance effects are evidenced by the

We now turn to the anharmonic chain. The first panel incfossings of the different curves. The crossings reflect the
Fig. 5 shows SNR curves as a function of temperature fofise and subsequent drop in the SNR at a given site, and the
different sites. The thermal resonance is identified with thdact that the curves cross at different sites confirms that the
j-dependent maximum d®(j) as a function of temperature. thermal resonance temperature varies from site to site.

-0.25

SNR

5 6 7 8 9 10 11 12 15 14 15
i
FIG. 5. First panel: SNR curves for different sitdeom j=6 to 15, top to bottoralong the anharmonic chain as a function of the

temperature for the standard ca8e: 0.5,k’ =5, y=0.2, wy=1. The optimal temperature increases with distance from the first site. Second
panel: SNR as a function of the site for different temperatures.
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The nonmonotonic behavior of the SNR with temperature 20
is due to the fact that while the thermal power increases with
T, the signal power at first also increases, and more rapidly
than the thermal power. This is exactly the condition for the
existence of stochastic resonance formulated by Dykman
et al.[26,27,33 for single potentials, but that theory has not
yet been generalized to extended systems. The fast increase
of the signal power is consistent with trends found earlier for
transmission of pulses along discrete arrgy3]. We found
that a pulse in a hard anharmonic chain travels more rapidly
with increasing temperatur@xcept for the lowest tempera-
tures, see below while in a harmonic array a change in
temperature has no effect on pulse speed. While a pulse
broadens with increasing temperature in both arrays, the
pulse in the anharmonic array remains relatively more com-
pact. At sufficiently high temperatures the signal power at a
given site becomes independent Bf(as in the harmonic FIG. 6. Propagation length as a function of the temperature
chain because the signal response has reached its maximuier the anharmonic chaitstandard cageand harmonic chain with
value; a further increase in temperature only affects the sigk=1 (other parameters as in the standard anharmonic).cike
nal further down the chain. The “crossover” temperature ofthreshold value ist=—1.2.
the signal power from the increasing to the saturated behav-
ior depends on the chain and signal parameters, a depen- V. PARAMETER DEPENDENCES
dence explored in the next section. L

The fact that the SNR for the sites shown is very low The parameters that can be varied in-our mop|e| are the
(essentially zerpfor the lowest temperatures at sites beyondampl'tUde_A and frequen,cyuo of the veloc.|ty of the-f|.r stsite,
the first few shows that for a purely anharmonic chain thethe COUP"”g paramete}« .and the damping coefficient
signal essentially stops beyond the first few sites, whereas in The first panel of Fig. 7 shows the_SNR curves as a func-
the harmonic example the signal reaches all the sites showliP" of temperature.for a Ipwer amphtude than n the stan-
even at the lowest temperatures shown. This is also consig—ard case. Compansqn with the first panel of Fig. 5 shows
tent with the behavior shown earlier for the transmission of éhat the overall SNR is nowof coqrse} Iow'er and that the
pulse[13]: the pulse velocity at sufficiently low temperatures resonance temperature at each site has increased. The latter

is actually lower in the hard chain than in the harmonic casePehavior indicates that for lower amplitudes the crossover

Had we included a harmonic potential contribution equal tgtemperature from an increasing signal to a saturated signal

that of the harmonic chain, the SNR &sT curves would increases as the signal weakens. The second panel shows
start at the same values as in Fig. 4, but for sufficientl;fesuns for weaker coupling. Again the overall SNR is lower

distant sites from the first they would still be nonmonotonic.and the resonance temperature higher at each site. A weaker

We have omitted a harmonic contribution to present the ther(—:OUp“ng. thus has the.effect of weakening the signal.
The first panel of Fig. 8 shows the SNR curves as a func-

mal resonance effect in its purest form. i ft ture for hiaher d ing. C . ith th
The apparently monotonic behavior of the first few sites is lon of temperature Tor higher damping. --omparison wi N

due to the fact that for the temperatures shown the signztlrSt panel of Fig. 5 shows that the overall SNR is again
i

reaches these sites in any case. A resonance at these s %\g/er_than in the standard case and the resonance tempera
. ture higher. The same trends are observed with a higher driv-
would be seen for different parameter values and/or at even ; . .
ing frequency as shown in the second panel of Fig. 8. Again,
lower temperatures.

. - . . ._each of these changes leads to an effectively weakened sig-
Our preceding descriptions point to another interestin

measure of .a thermal resonance, pa'mely,. the propagation Figures 7 and 8 illustrate clear trends. Decreaging k',
length A, defined as the number of sités., distance along o increasingy or wy, lead to the following consequences:
the chain for which the SNR exceeds a certain threshold(a) the SNR at any given site and temperature decredses;
value. Figure 6 presents the temperature dependentd@f  the SNR resonance temperature increases at any given site;
harmonic and anharmonic arrays and an arbitrarily chosegnd (c) at a given temperature the resonance occurs at a site
R-threshold value of-1.2. Since the harmonic array does closer to the first. These trends are consistent with those
not exhibit thermal resonance, a monotonic decajafith  found earlier for transmission of pulses along similar arrays
increasing temperature is observed. On the other hand, tf&3]. We found that a pulse in a hard anharmonic chain trav-
hard chain shows a maximum for a moderate temperaturels more rapidly and relatively more compactly with increas-
Again, the particular values of optimal temperatule;| ing amplitude, decreasing damping, increasing coupling, or
~3) and optimal distance A\=17) can be modified by increasing driving frequency. By contrast, in a harmonic ar-
choosing different parameters and/or different SNR threshray changes in temperature or in the signal and damping
olds, but the qualitative behavior persists as seen in Fig. 6. parameters have no effect on pulse speed.
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FIG. 7. First panel: SNR curves for different sitdeom j=4 to 13, top to bottomalong the anharmonic chain as a function of the
temperature for the lower-amplitude cage=0.25, k' =5, y=0.2, wg=1. Second panel: SNR curves for the weaker-coupling cAse:
=0.5,k'=3, y=0.2, wo=1.

VI. CONCLUSION persistence and mobility of energy fluctuations, in thermal
o equilibrium [12,14. We have found that soft anharmonic
_ We have demonstrated thermal resonances in simple oNngp, g that is, chains with soft interaction potentia&xpe-

dimensional arrays of masses connected by hard springs. Ojgpce greater energy fluctuations than harmonic chains,
chains are not overdamped and hence include inertial effect§,hich in turn experience greater fluctuations than hard
We have shown that the distance and amplitude of propagahains. This is a direct consequence of the virial theorem.
tion of a signal imposed at one end of the chain can each b@/e have also established that fluctuations are mobile in har-
optimized by tuning the temperature of the system. The resamonic and hard chains but not in the soft. Most interestingly,
nance behavior reflects the temperature dependence of thigermal fluctuations travel most rapidly and remain localized
distance traveled by the front of a signal and the dispersiover considerably greater distances in the hard chain. These
of this front once steady state has been reached. At a fixe@sults in turn can lead to very different transition rate statis-
temperature, any parameter change that leads to an increasss and effective damping coefficients for a bistable impu-
in velocity of propagation tends to increase the range of sitedty embedded in each of these arrays at a given temperature
where the signal can be detected as well as the SNR at [d4].
given site. Increased velocity of propagation is also associ- Another interesting line of inquiry concerns the propaga-
ated with a lowering of the resonance temperature for a givetion of an energy pulse along such arrays. As mentioned
site. earlier, we have found that the propagation of an energy

A complete understanding of the behavior of these simplgulse in a hard anharmonic array can be enhanced by im-
anharmonic arrays in a thermal environment requires anchersing the array in a thermal bath, and that hard anharmo-
relies on a number of other inquiries, some of which we havenicity in the springs causes a tight and persistent packing of
undertaken. One concerns the distribution of energy, and thihe energy{13].

-0.5
-0.75 |
-0.75 |
-1 H
-1
o o
P4 P4
@ @)

-1.26

-1.75
0

FIG. 8. SNR curves for sites 4 to 18p to bottom for the higher damping cas&=0.5, k'=5, y=0.5, wy=1. Second panel: SNR
curves for the higher frequency cage=0.5, k' =5, y=0.2, wy=2.
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Almost all of our results are numerical. Analytic results chored but otherwise does not contribute to the velocity
for the harmonic array provide some insights and point to-analysis. The velocities associated with E&2) are
ward the possibility that an approach based on linearization

methods[34] together with a linear response thedi33] x$(t)=Ae I"“ sin(wet+|n|b). (A3)
might lead to analytic insights for nonlinear arrays. We are
currently exploring these possibilities. This result is clearly consistent with the imposed signal at

The thermal resonances and other interesting behaviar=0. The solution(A3) can be used to calculate the zero-
that we have found for simple hard anharmonic chains aréemperature signal according to E§),
likely to be prototypical and therefore applicable to many
other discrete systems with anharmonic interactions. While < (Tt
many other systems have been investigated in which a care- n(wo) =
ful balance of parameters at zero temperature or a manipula-
tion of external noise lead to interesting localization, reso-The averaggwhich in this deterministic case is only over
nance, and synchronization phenomena, our systems afgne) eliminates rapidly oscillating contributions, leaving

among the simplest generic systems in which the temperanly a §-function type of contribution. The result is the
ture can be used as the tuning parameter to achieve similgower spectral density

effects. 2
A —2[n|
Srs.l(wo): ?e #, (A5)

e 10X () xp(t+ 7))d7. (A4)

—o0
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+ 03— iywy=0. (A7)

1
k| u+ G—Z
APPENDIX: HARMONIC CHAIN

. . . . . Next we multiply through by and solve the resulting qua-
In this appendix we consider a harmonic chain and Calcuaratic equatiorFI) y gh bu g4

late analytically some of the numerical results presented or
invoked in the body of the paper. Although the behavior of 2_ ok 2 : 2 2
. o o —(w§—2k—i * —2k—i —4k
linear chains is in general well understood, it is useful to ., = (@0 ye0) = V(@ y©o) .
present results in the particular context of this work. These 2k
are not readily available in the literature.

(A8)

Note thatu,u_=1, so if one solution i #*® then the
1. Zero temperature, with signal other ise#~'®. Which is which is not clear at this point
Consider first an infinite linear chain{<n<w) at  Must be positive for a physically acceptable solution and this
zero temperature, that is, in the absence of fluctuatipns ~ Will be used below to sort out the choice.
with the dissipative contribution The equations of motion To extractu we calculate the ratio, /u* , which is ei-
then are there®* ore 2#. If u,=e “"® thenu, /u_=e 2~ If, on
the other handu,=e*"'® thenu, /u_=e?*. Which it is
will be seen at the end when we inspect the magnitude of the
result.
In calculating the ratiau, /u* one must exercise caution
in taking complex conjugates because of the square root in
Eq. (A8); it is not appropriate to simply change everto a
xS(t)=— Aefln\u cog wet+|n|b)+c,, (A2)  —iinsuch an expression if one does not know the signs of
o the terms inside the square root. It is helpful to write each

_ _ complex number in terms of an amplitude and a phase,
where the superscripg denotes the presence of the signal.

The constantsw and b are to be determined. The additive (wg—2k—iywg)=2kae'?, (A9)
constantc,, must be independent of—it simply represents
an overall translation of the chaifbecause it is not an- so that

.).(n:k(xn+1+xn—1_2Xn)_'y$(nv (A1)

with the signalx,= A sin(wgt) applied at sitei=0. We con-
jecture the quasistationary solution
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2ka=[(wg—2k)2+ ,YZwé]l/Z, 2. Finite temperature, no signal
Now we solve the equations of motion
. _q — YWqo . .
B=tan Z—Zk . (A10) Xn=K(Xp 11+ Xp_1—2Xp) — ¥Xu+ (1) (A18)
wo_

without a signal. We are again interested in the stationary
Similarly, with behavior.
We define the Fourier transform and its inverse,

(05— 2k—iywg)?— 4k?=4k?v2e?'e, (A11) - -
) 1 )
we find Vo= 2 %€, X=X yee 2T (AL9)
n=0 =0
4k 1% = wo wi( 05— 4k— y?) 2+ 4y (w3 —2k)?]Y2, Transforming Eq(A18) immediately leads to
—2y(w2—2k) y ol ™4 L
Zeztanfly(—0 (A12) Yo+ 4ksir? N [ Yo Ya Fq(t), (A20)

wo(wh—4k— %)
where the inhomogeneous term is the transform of the noise,

Then
N—1
u,=—aelf+rels, u_=-aef-relc, (AL3) Fq(t)EZ:O fn(t)e?man, (A21)
and the ratiau, /u* is thus real. Multiplying top and bottom  The solution of this second order inhomogeneous differential
of this ratio byu_ gives equation is of standard form. The initial conditioaghich
we will take to be zerpare unimportant since we seek the
U, u,u_ 1 long-time behavior,
—= = : (A14)
u* uful Ju|? 1 .
0/ _ i ra(a)(t—7)
Yq(t)=lim — f Fq(7)[e"2
Further and explicitly toee [F2(Q) = Ta(@)]Jo
. . A . —eri(@(t=1) A22
lu_|?=(—ae'P—ve' )X (—ae P—ve '€ € ld7 (A22)
=&+ 12+ 2avcod B—e). (A15) and consequently
. 1 t
All that remains is the evaluation of the resulting expres- yg(t): lim —f ;:q(q-)[rz(q)erz(q)(tfr)
sions. In summary too LF2(d) =T 1(a)]Jo
—_ ry(a)(t—m)
a?®+ 12+ 2avcod B—e)=e 2F, (A16) ri(qe. ldr, (A23)
where
or
y v\ N
a’+ 12 +2avcodB—e)=e" ¥, (A17) rAd=-5*\\3 — 4k sir? ~/ (A24)

The choice is determined by whether the result<i& (in The superscript 0 is used to stress the absence of a signal.
which case the first equality holdsr >1 (in which case it is With this result and the correlation function for the ther-

the secontl The quantitiese, », B, and e are thus com-  mal fluctuations that follow immediately from E¢B),
pletely defined in terms of the system parameters.

We have tested our numerical simulations against the pre- (Fq(t)Fqr(t2))=2ykgT 8(t;—t)N 8y _q, (A25)
diction (A5) for large ranges of parameter values and have
found agreement to five significant figures. we obtain upon integration and Fourier inversion the velocity

The solutions presented in this section do not obeycorrelation function
N-periodic boundary conditions. It is fairly straightforward

using an imagelike method to construct explicitly periodic Cﬂ( r)s(kn(t)kn(H 7))

solution by applying the signal at ®N,+2N, ... but the N_1

changes would be exponentially smallNhand unimportant _ ykeT r(a)t

for sufficiently long chains. The quasistationary behavior as- TN &0 [ ) -] [ri(q)e

sumed above for sites not too distant frorms 0 sets in long

before the signal at=0 reaches sites N. —r,(q)en2@1], (A26)
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0.15 ‘ ‘ ‘ and the corresponding simulation results for two different
Lo temperatures. The agreement is typical of broad parameter
ranges.

01 | ot \ . 3. Finite temperature and signal: SNR

e Finally, we deal with the full equation of motion

S(w)

n Tl AW Xn=K(Xp+11Xn-172Xp) = ¥Xpt+ (1) (A28)
0.05 | TR AN |
it AN with the signalxy= A sin(wgt) applied at siten=0. The fluc-
[/ tuationf, is set to zero since the velocity of that site is fixed
T e, by the signal.
y o e The Fourier transform is defined as before, but in trans-
0 1 2 3 4 5 forming the equations of motion we must take into account
@ that Eq.(A28) does not hold fon=0. We thus multiply Eq.
FIG. 9. Spectruntd(w) for any site at two temperaturesT ~ (A28) by *™9" and sum oven but only fromn=1 to N
=0.05 (lower curve$ and kgT=0.1 (upper curves The smooth —1,
curves are the predictions in EGA27) and the jagged curves are
the numerical simulation results averaged over 500 runs. The ir- _
regularities can be eliminated at great CPU time cost by refining the E Xnequn: Yq— Xo- (A29)
time and/or frequency meshes and/or increasing the number of runs. n=1
Other parameterk=3, y=0.5.

N—-1

Proceeding in this manner we obtain in place of ERO0)

We note in passing that this reduces to the standard correla- q
tion function for a single harmonic oscillator in a heat bath, 9q+4k sinz(—
Cﬂ(T)HkBTe‘ Y7, when the coupling coefficierk— 0. The N
associated power spectral density is

Yt ¥Yq=Uq(t), (A30)

where the inhomogeneous term now is

sﬁ(w)zzj ‘drcg(r)cos(wr) Uq(t)=Fq(t) +K(2Xg— X1 —Xn—1) + X0+ Xo.
0 (A31)
2vkaT 2 N-1 1 .. . . .
_£YKglw The terms containing, and its derivatives are knowmx;,
N & [ri(a)+ w?[r3(a)+w?] and xy_, (they are equal by symmedryould have to be
found “self-consistently” ex-postsee below.
(A27) Equation(A30) is again a linear inhomogeneous differen-

tial equation with constant coefficients. Its solution has two
Figure 9 shows the predicted spectrysmooth curves additive contributions,

1 T T T T 1

SNR

-3 L L " L -4 L L L L L L L 1 L
kg T i
FIG. 10. First panel: Typical SNR curves as a function of temperature for sites 7, 8, 10, 11, and 12 along a harmonic clain with

=3, y=0.5, wy=1.0, andA=0.5. The numerical simulation resulfgin lineg in each case lie above the analytic curydsck lines.
Second panel: SNR as a function of site for different temperatures.
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yq(t):y'q‘om(t)+y;”h(t)_ (A32) Whereyz(t) is given in I_Eq.(A33) andyg(t) in Eq. (A2_2).
The correlation function and spectrum are then simply the

The portion ygom(t) is the solution of the homogeneous sums of the correlation functions and spectra for the system
equation, that is, withJ(t)=0, and the contributiogg‘h(t) with the signal but no fluctuationg&ero temperatujeand
is due to the inhomogeneity. those for the thermalized system in the absence of the signal.

Suppose thaF (t) were equal to zero. The solution in Thus, the spectrum is the sum of E@5) (appropriately
this case, which we denote ly(t) is exactly the solution of ~Wweighted by a delta function that places it@g) and Eq.
Sec. Al; that is, the inverse transform of (A27) In particular, the SNR for the harmonic system then

_ finally is
Ya(H=yg" "0 +yg""(t) (A33)
Rn(wo)

at long times must be precisely E@2). Now consider the 5
consequences of again includirg,(t). The homogeneous 2 a2
part of the solution has to be exactly as before, iyﬁ?,m . 2
=y3"°™ because the homogeneous part of the equation has ~ 10010 2 kg Tw? 1 ’
not changed, the constraint @§ also has not changed, and N 5 Pa— 5
initial conditions are in any case immaterial at long times. a=0 [ri(q) + o7][ra(q) + 7]
However, the inhomogeneous part of the solution does (A35)
change, and it does so in two ways. First and most important
is the direct contribution of the thermal fluctuations to thewhich decreases monotonically withas well as witi. This
solution. Second, and less important, is the changg @nd  result is consistent with the linear response theory approach
X_1 (which is the same as that gf) caused by the addition introduced and widely applied by Dykmaa al.[33]. Com-
of the noise, and the change that this in turn imposes on thparisons of this analytic result with numerical simulations
other displacements. This contribution is more difficult toare shown in Fig. 10cf. Fig. 4. Equation(A35) clearly

calculate and affects only sites neex 0. Ignoring the latter captures the correct behavior; the small discrepancies be-

we thus assume the solution tween analytic and numerical resuftghich always lie above
. 0 the analytic curves reflect the omitted terms discussed
Yo(D) =yq(t) +yg(t), (A34)  above.
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