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Abstract 

An extension of the parametrized post-Newtonian (PPN) formalism to third order in the ex- 
pansion parameter m/r is used to derive analytical expressions accurate to the same order for 
the motion of test particles and photons in the presence of the gravitational field of the sun 
represented by a static, isotropic metric. The consequences of including higher-order terms 
are discussed in relation to the so-called classical gravitational tests for the case of general 
relativity theory. Present observational or experimental data are not accurate enough to de- 
tect variations due to the inclusion of higher-order terms but a planned solar probe experi- 
ment may provide information that would make such detection possible. 

w Introduction 

The general f ramework within  which general relativity and other  theories of  
gravity, compat ib le  wi th  the exper imental  and observational  tests carried ou t  so 
far, are tested assumes (i) space-time to be a Riemannian  mani fo ld ;  (ii) the exis- 
tence o f  a metr ic  field gij(x) defining an in ternal  ds, where 

ds2 = gij dxi dxJ 

(iii) the equat ions  of  mo t ion  for test particles and  photons  to be derivable from 
the variat ional  principle 

@= l/ 't 3 \ d g ]  dg2 = 0 
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where/~ is a parameter along the geodesic lines; and (iv) atomic clocks to keep 
proper time s. The various theories then differ on the basis of their field equa- 
tions that determine gij. 

Research carried out on the problem of motion gave rise to an approximation 
scheme which later evolved into the parametrized post-Newtonian (PPN) frame- 
work [1-8].  Over the last decade this formalism has been developed as an ex- 
tremely useful theoretical tool which allows a clear classification of the theories 
according to the values they predict for certain parameters, values which can 
then be used for their comparison with tests [9-12]. Essentially, the formalism 
consists of assuming the components ofg i ]  to be analytic and expanding them in 
power series of the parameter m / r  around the flat vacuum solution (m = GM/c  2 

denotes the mass of the field's source and r the distance to its center). The ex- 
pansion is stopped at an order higher than that of Newtonian mechanics and 
each term in it is labeled with a coefficient which becomes the corresponding 
parameter. The equations of motion are then integrated to predict the outcome 
of experimental and observational tests, the numerical results depending on the 
values of the different parameters. 

In this paper an extension of the PPN analysis to order (m/r )  3 is presented. 
The results given in the PPN formalism are generalized to this order and the con- 
sequences of including the higher-order terms are discussed in relation to the ob- 
servational and experimental tests. 

w E q u a t i o n s  o f  M o t i o n  

For the case of the solar system it can further be assumed that the sun's 
gravitational field possesses spherical symmetry and that the planets are test 
particles moving in its presence. According to Birkhoff's theorem, one then has 
a static and isotropic field [13, 14]. The usual assumption that wave pulses travel 
along null geodesics ds = 0 is actually derivable for electromagnetic wave fronts 
from the combined Einstein-Maxwell equations [15, 16]. 

Under assumptions (i) and (ii), the most general proper time interval for a 
reference system based on the center of  the sun can be written in its standard 
form [17] as 

ds 2 = B( r )  d t  2 - A ( r )  dr  z - H ( r )  d~2 2 (1) 

where d~2 2 = dO 2 + sin 2 0 d~b 2 and the system of units being used is such that 
the speed of light c is equal to unity. 

Since the field is isotropic, we may consider the orbit of a particle to be con- 
fined to the "equatorial plane" 0 = rr/2. Equation (1) is then reduced to 

ds 2 = B ( r )  d t  2 - A ( r )  d r  2 - H ( r )  d $  2 
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Assumption (iii) allows us to derive the equations of motion by finding the 
extremum of the action, i.e., 

0=8 r[ds~ 2 6 B(r) _~2_ A(r) _~ 2_ d~ 2 2 

where the geodesic parameter g is defined by 

(ds~ 2 k 2 = I 0  for null geodesics 

dli] = k2' (positive constant for test particle geodesics (2) 

The usual procedure gives 

dt (3a) B (r) ~ = const = e 

H(r) d__~ = const =/- (3b) 
du 

d [A (~)2] dr [dH(r)(dd~y dB(r)(dtl2 ] (3c) 
d--~ (r) = - ~  [ dr \dtl/  dr \dial J 

as the equations of motion. 
For the motions of test particles (bound orbits) and wave signals (unbound 

orbits) one rewrites equation (2) in two slightly different forms: 

o: r A(,) (<,,y _ _  _ / . 2  + 

a(r) [H~(r) \d~/ H(r)J 

and 

k 2 

B(r)- A(r) \dt ] H(r) 

where use of equations (3a, b) has been made. 
Rearranging terms and integrating, we obtain 

cr(ck) I A (r) ] l/~ dr 
r = r + - Jr@i) L H(r)j  [(e/r)2H(r)/B(r) - (k/O2H(r)- 1] 1/2 

and 

r IA(r)]'/~ ar 
t = t i  + 

~,(ti) LB(r)J [1 - (r/e)2B(r)/H(r)- (k/e)2B(r)] ,/2 

(4) 

(5) 
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In order to eliminate the constants e, T, and k from expressions (4) and (5) one 
rewrites equation (2) as 

A(r) fdrl2 1 (re_)2 1 ( k )  2 
H2(r) \de /  + - - ~  - B(r) = - 

where use of equations (3a, b) has been made. 
One must now make a distinction between bound and unbound motion. Re- 

calling that for wave signals (k = 0) dr/de vanishes at the distance of nearest ap- 
proach of the signal to the sun (r = ro in Figure 1), we see that the previous 
expression gives 

Bo (6) 

where Ho = H(ro ) and Bo = B(ro ). 
For test particles dr~de vanishes at perihelion and aphelion (1" and r+, respec- 

tively), so that 

(er)2 _ B~ a -B-1  
H~ 1 _ H :  1 (7a) 

( k )  2 = B+H;1- B+ (7b) 

( k )  2 -  H§ - H_ (7c) 

where H_+ = H(r+_) and B_+ = B(r+_). 

J 
J 

J 

Fig. 1. Quantities referred to in the calculation of  the motion of  a wave signal ~. 



and 

f~(~)[A(r)]  1/2 (~ = ~  + 
"~(~i) LH(r)J 
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Inserting equations (6) and (7) in equations (4) and (5) one obtains 

dr 
[(Bo/Ho)H(r)/B(r) - 1] 1/'2 

[~r(t) [A(r)]l/2 
t = t i + |  

~,(ti) LB(r)J 

for wave signals, and 

and 

dr 
[1 - (Ho/Bo)B(r)/H(r)] 112 

f 
r(40 A al2 (r) 

r +- 
. , r ( $ i  ) H(r) 

�9 [ H _ [ B  -~ (r) - B _  - 1  ] - H+[B -1 (r) - B+ 1 ] 

1 
1 }-1/2 

H(r) dr 

f r l t~  ) A 1/2 (r) t = ti -+ B (r) 

{ l B_[H-I(r)-H-1]-B+[H-I(r)-H~I]}  -1/2 
�9 B(r---) - B + B _ ( H + I  _ H _ l )  d r  

for test particles. 
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(8a) 

(8b) 

(9a) 

(9b) 

w Order of Approximation 

So far, the derived equations of  mot ion are exact and valid for any metric 
theory of  gravity. Here one assumes that the field equations of  whatever theory 
one is considering admit of  asymptotically flat vacuum solutions and introduce a 
variant o f  the post-post-Newtonian formalism consisting of a series expansion for 
the three components  goo = B(r), gl 1 = -A(r), and g33 = -H(r) accurate to third 
order in the parameter m/r. These expansions are given by 

m m 2 m 3 
A(r) = 1 + 23' - -  + 46 + 8X - -  (10a) 

?" ~ r 3 

m m 2 m 3 
B(r) = 1 - 2~ --r + 2/3 7 - 2 r / - ~ -  (lOb) 

H(r )  = r 2 (10c) 



798 SARMIENTO G. 

In fact, H(r) is not being expanded, rather it is defined in such a way as to 
identify r, 0, and ~ with spherical polar coordinates and to interpret r as the 
distance from the source. The results will then be coordinate independent [18]. 

Inserting equations (10) in equations (8) and integrating one obtains 

and 

{[ Em z (1 am~](n ~_) 
= <~ -+ 1 + ~ - ~ LJ \ 2  - arctan 

m / (46 - 3'2)m 
+ - - 3 ' + t  ror 4r 

m to- ,sa + 43 , )  am + 
ro [ 4ro 

a2m2(r- ro) (r- to) a/~ a2m 3 + 
4ro 2 (r+ro) 3/2 + 2ro 3 

(r + ro) sl~ J ,i 

+ [ J - ( 2 a  + 3 ' ) 3 r o  2 + - f f i ]  m2) ( r2 -ro2) 112 

+(2D-3a~+D]m2](r-roy ,2 
\ ro r / ro  \ r+ro l  

(1 la) 

t=ti  + +rro2 ](r2-ro:)l/2 +(a+3")mln r+(r2-ro2)q2] 
ro J 

[a (3a+ 23')am (F G~m2]. It-roy/2 
+m - 2to + ~o + r / 2 r o J  \ r+ro/  

Em2(  am~(Tr ~_) 
+ - -  1 -  -arcsin 

2ro ro 1 \ 2  

a2m2r [1 (3a+3")m] (r-r~ a3m3r2 (r-r~ r ( l l b )  

+ 2r-----~ ro- J(r---+ro) 3/-----S* 2ro - - - - -T-  (r+ro)S/2Jri 

where 

C = 4X + 2a6 - 2/33' + 3 3'a2-+ rl - 4a/3 + ~ a 3 - 263' - ~a3 '  ~ 2 +2L 3,3 (12a) 

D = 4a  a + 2~23 , - 2a13 + 2a8 - �89 a3" 2 + rl 

E = 8 a  2 + 4 6  + 4 a ' 7  - 4/3 - 3 '2 

F = 4r? - 20a/3 + 30a a + 1 la27 + 8a6 - 2a72 

G = 4 a 6  +5a27 - 8a/3+ l l a  3 - a3' 2 +2~ 

s = ~ (v  ~ - 478 + 8x)  

(12b) 

(12c) 

(12d) 

(12e) 

(12f) 
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For the mot ion of  test particles, forced to move in bound orbits by the gravita- 
tional interaction, one has the familiar result of  Newtonian mechanics that the 
typical kinetic energy and the typical potential energy are of  the same order of  
magnitude. That is to say that v 2 ~ re~r, where v is the typical spatial velocity of  
any test particle. Therefore, if the expansion of  expression (1) is to be homoge- 
neous, terms invol~ng the square of  the spatial velocity of  the particles (dx t/dt)2 
need only be expanded up to second order in m/r.  

Using this simplification one can now rewrite equations (9) as 

~ r 1 + 7(re~r) + (46 - 3,2)(m2/2r 2) 

~=(~i+-K;X/2 r2[(1/r_ - 1 / r ) (1 / r -  l/r+)(1 +K3/r)l ~/2 dr (13a) 
ri 

and 

~ r r 2 + ( ~ , + 2 a ) m r + M m  2 +Nma/r  
t = t i + K ~ l / 2  r2[(1/r_ - 1 / r ) (1 / r -  l/r+)(1 +K3/r)]  1/2 dr (13b) 

ri 

where 

r+2(1 - B ;  ~ ) -  r2_(1 - B-~) 
K 1 = r+r_(B+l _ B__I) (14a) 

r+2(1 - B ; ~ ) -  r2_(1 - B_-~) 
K2 - r+r_(H;1 _ H -  1) (14b) 

2(r~ - 4a/3 + 4c~ 3) m3(r2+ - r2_) 
K3 = r+r_[r2+(1 _ B ; 1 ) _  r2( 1 _ B_I)  ] 

M = �89 (48 - ,,[2 + 4a'), + 8oe 2 - 4fl) 

N = o~(2M- 4/3) + 2(r/-/~'),) 

(14c) 

(14d) 

(14e) 

With the introduction of  a new variable ~ given by 

1 1 1 
- sin qJ 

r L F 

where 

1 1  (_~+ 1 )  1" 2 1 1 ( 1 1 )  - + and - - - - - -  - 
L 2 

one can integrate expressions (13) and obtain the variables ~b and t, which in 
terms of  the original variable r are given by 
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2 6-F 2 (r§ 

X [r(r+ + r_) - 2r§ [(r - r_)(r+ - r)] 1/2 
8 (r+r_)a/2r 2 

Y [r(r++r_)- 2r§ - r_)(r§  )lv l 
48 (r+r : )Sl2ra [ jr i 

and 

t LF2Z [(r- r_)(r+- r)] 1/2 p 
t = ti +-K~ 1/2 t -  ( ~  - -~ )  (r+r_)a/2 + (F2 _ L2)x/2 

[2(7+2a)Zm+ F-~:-L2Dn ] a rc tan (~+~)  1/2 

[m 1 (A 15WmaK3a~l "r(r++r-)-2r+r-I 
+ 2~p + ~ ~ /j  arcsin r(r+------ r_5 J 
-[(7 + 2 a ) E m - ( 3 -  5K3~ K32 ] I r ' ( r - r - ) l  '/2 . . . . .  

2L ] 4 jarctan Lr_(r+ - r) J 

- [ ( 7 + 2 e 0 (  3 - 8  lOK3 )mK32 + ( Q ~ a  - PWm) m2 

[(r-r-)(r+-r)] H2 I [ A _  5(7  3Wm2\ 3] 
(r+r_),/2r - -ff -~ + 2a + ~ ) m K 3  

[r(r+ +r_)- 2r+r_] [(r- r_)(r+- r)] 1/2 
(r+ r_)a/2 r 2 

[r(r+ + r_) - 2r+r_] 2 [(r - r_)(r+ - r)] ,/2 
96 (r + r_)Sl2r3 

5WmaK3 a [r(r+ + r_) - 2r+r_] 3 [(r- r_)(r+ - r)] 1/2 ]r 
+ 

512 (r+r_)V/2r4 j r  i f 

where KI, K2, and K3 are given by equations (14a, b, c) and 

K3 3Ka 2 5Ka a 
P = I  - + - -  

2L 8L 2 16L 3 

3Ka 15Ka 2 4 - - -  
Q 1- 2L 8L 2 

(15a) 

5K3316 + 1--~F 2] 

(15b) 

(16a) 

(16b) 
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5K3 
R = 1 - - -  (16c) 

2L 

7m (46 - 3 ,2) m 2 
T= 1 + + (16d) 

L 2L 2 

( 4 6  - 72) rn 2 
U = 7m § (16e) 

L 

V = (46 - 72) m 2 (16f) 

3 a72 
W=2a6+a23  , - 4 a ~ + - a  3 + +r/ (16g) 

2 2 

3 TRK32 X = VP- UQK3 + ~ (16h) 

y=K3(VQ_--+3URK32 5TK32)4 

Z LP+ QK3 + 3RK32 5K33 
2 8L 16L 2 

II=2F2P+LQK3 + 3R( 2L2 - F2)K3 2 + 
4L 2 

A=m2K3(3R~ K3 WQm) 

~=m2K32 ( 5 7  3 3WRm) 

E = K 3 ( Q +  9RK34L + 5(2F216F2L 2+L2)K32) 

Wm 
~ = C + - -  

L 

5(3L 2 - 2p 2) K33 
8L 3 

(16i) 

(16j) 

(16k) 

(16/) 

(t6m) 

(16n) 

(16o) 

One has thus derived expressions for the trajectories of photons [equations (11)] 
and test particles [equations (15)] accurate to third order in m/r. 

w Classical Gravitational Tests 

The expressions derived for the trajectories of test particles and photons may 
now be used to calculate the values of the measurements performed in the actual 
experimental and observational tests [17, 19-21]. Every metric theory would 
predict different results since the set of parameters A = {a, ~, 7, 6, r/, X} is dif- 
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ferent for each theory. Since the post-Newtonian calculations have already been 
made for most of the metric theories [17, 20, 21], the following discussion is 
restricted to the case of general relativity and illustrates how the realized exten- 
sion modifies the previous calculations. The values for A in general relativity are 
(1, O, 1, 1, O, 1}. 

4.1. Deflection o f  Electromagnetic Signals by the Sun. Figure 1 shows a 
light ray ~ approaching the sun from a very great distance. The total change in 
4 as r decreases from infinity to its minimum value ro and then increases again to 
infinity is just twice its change from oo to ro, that is, 214(ro) - 4(~176 If the tra- 
jectory were a straight line, this would just equal rr; hence the deflection of the 
orbit from a straight line is 

A4t = 214(ro)- 4(~176 ~r 

If this is positive then the angle 4 changes by more than 180 ~ that is, the trajec- 
tory is bent toward the sun; if A4l is negative, then the trajectory is bent away 
from the sun. 

Setting r = ro and ri = oo in equation (1 la) and evaluating gives 

~r m _ - ~ ( ~ + 3 '  - -  

4 ( t o )  = 4 ( ~ 1 7 6  -+ - -~ - ( ~  + 7 )  ro  ro  2 

+ [ - - ~ - o ~ ( ~  -~ -9/3+ 9 2 + 4 6 - 7 2  ) 

Hence to third order in m/r the deflection is 

El___4_ ] m  2~_~o 2 -  [aE~___a~/67a23 A 4 l = 2 ( a + T )  rom+ - 2o~(~+T) - 18fl 

+ 93,a + 8 8 , 2 3 , 2 ) ,  23, ( ~ ,  1~_ _ ~ ) _  16X 

Taking m = 1.47664 • l0 s cm and ro = R o  = 6.9598 • 101~ cm one obtains 

A4t -- 1.7505(10764962082) arc sec 

the digits in brackets are uncertain due to our limited knowledge ofm and R o. 
4.2. Advance o f  the Planets" Perihelia. Consider now a test particle bound 

in an orbit around the sun. For this type of motion, the change in 4 as r decreases 
from r+ to r_ is the same as the change in 4 as r increases from r_ to r§ so the 
total change in 4 per revolution is 214(r+) - 4(r_)l. This change would equal 2rr 
if the orbit were a closed ellipse, so in general the orbit precesses in each revolu- 
tion by an angle 
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dx~p = 21~b(r+)- ~b(r_)l- 27r 

I f  Acp is positive (negative) the whole orbit should precess in the same (opposite) 
direction as the mot ion of the test particle. Equation (15a) with r = r+ and ri = r_ 
gives (")  ~(r§ = ~(r ) +- ~r~:; 1/~ r P  + 

Hence to third order in m/r the precession per revolution is 

which for the cases of  Mercury, Venus and Icarus gives the values 0.429799, 
0.862494 X 10 -1 , and 0.100827 arc sec/year, respectively. 

4.3. Time Delay o f  Electromagnetic Signals. From Figure 1 we see that the 
time required for an electromagnetic signal to go from one point (ra, 01 = 7r/2, ~1) 
to a second point (rz, 05 = 1r/2, ~2) is given by 

( t ( r l ,  ro) + t(ro, r~) 
/ 

t(ra, r2) =J t ( ra ,  ro) - t(ro, r2) 
I 
L t ( r l ,  ro = r2) 

if Iq~l - Cz l> l r /2  

if  I~bl - q~2l<rr/2 

if I~1 - r = rr/2 

The time required for light to go from r to r0 is given by equation (1 lb).  The 
leading term [r 2 - ro 211/2 is what one should expect if  light traveled in straight 
lines at unit velocity, the other terms produce a general-relativistic time delay. 

For a light signal going from the earth to Mercury being near superior con- 
junction (so that the signal just grazes the sun) and back, the maximum round- 
trip time delay is given by 

At  = 2 {t(re, R o )  + t ( R o ,  rg) - [r~ - n ~  ] a/2 _ [r~ - R ~  ] i/2} 

Using equation (1 lb) ,  inserting the values for rn, R o ,  and A mentioned above 
and taking r 9 = 5.9197 • 1012 cm and re  = 1.4959 X 1014 cm one obtains 

At = 7.7281(253) X 106 cm = 2.5778(247) • 10 -4 sec 

where the brackets enclose digits which are uncertain due to limited knowledge 
o f m  and R o.  The value in seconds has also an uncertainty due to the value for 
the speed of  light (c = 2.997925 • 10 l~ cm/sec). 

4.4. Experimental and Obseraational Measurements. The experimental and 
observational values for the three discussed effects are 

Ar = 1.761 + 0.016 arc sec (References 22-24) 

2xcp = 43.16 + 0.21 arc sec/century for the planet Mercury (Reference 25) 

At  --~ 250 + 1.5 psec (References 26 and 27) 
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These values are, respectively, 1.006, 1.004, and 0.9698 times the values pre- 
dicted by general relativity using the expressions derived here. From these calcu, 
lations it is apparent that the first relativistic correction essentially is m/r orders 
of magnitude less than the Newtonian value, that the second correction is in turn 
m/r orders of magnitude less than the first one and that the same relation ex- 
hibits the third correction with respect to the second one. The corresponding 
predicted values being reported would then be m/r orders of magnitude more 
accurate than the calculations carried out using the post-Newtonian formalism 
if our determinations of the values of  the planetary orbital and solar elements 
were such as to make such accurate calculations possible. 

w Conclusion 

The improvement reported above is far greater than the obtainable accuracy 
with present experiments and observations. For a discussion on the phenomena 
that limit the observational or experimental resolution and the accuracy achieved 
so far the reader is referred to the original reports [22-27]. 

Advances in technology as well as the gathering of more data are expected to 
provide us with more accurate experiments and more precise observational re- 
sults in the near future. There is, however, a planned solar mission which may 
provide values accurate at least to second order in m/r [28-33]. An extension 
of the analysis to order (m/r) 3/2 for modeling the experimental results of such a 
mission has been performed by Hechler [34]. The derivation of more general 
expressions than those already published and the calculations that will predict 
the outcome of the mentioned solar mission are currently under progress and 
will be published later on [35]. 
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