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In a paper published in this journal in 2001 by Dong et al. �W. G. Dong, X. Y. Huang, and Q. L. Wo,
J. Acoust. Soc. Am. 110, 120–126 �2001�� it was claimed that acoustic chaos was obtained
experimentally by the nonlinear interaction of two acoustic waves in a duct. In this comment a
simple experimental setup and an analytical model is used to show that the dynamics of such
systems corresponds to a quasiperiodic motion, and not to a chaotic one.
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I. INTRODUCTION

The study of nonlinear systems has attracted the atten-
tion of scientists since the experiments of Jacques Hadamard
were carried out in the early twentieth century. Since then,
this phenomenon has been extensively studied by many au-
thors, among others Poincairé, Kolmogorov, and Lorentz; a
compilation of these and many other studies can be found
elsewhere.1 At present, the mathematical tools designed to
analyze nonlinear dynamics and chaos are being applied to a
great variety of dynamical systems; an example of this is the
paper by Dong,2 where an experimental setup consisting of
two independently driven speakers placed at one end and on
a side of a cylindrical duct and a microphone at the other end
of the duct. The main objective of this paper was to define
whether the resulting behavior of the interaction of two
acoustic waves in a duct is chaotic or not. After analyzing an
experimentally acquired time series and finding that �i� the
largest Lyapunov exponent of the signal is positive, and �ii�
the dimension of the reconstructed attractor is fractal, the
authors concluded that the interaction of the two acoustic
waves inside the duct is chaotic. In this comment, it is shown
that the analysis presented in Dong’s paper2 is not sufficient
to characterize the dynamics of such a system, since a qua-
siperiodic signal can be easily confused as a chaotic one if
�a� the Lyapunov exponent analysis is not performed over an
adequate time domain and �b� the error bars of the computed
attractor fractal dimension include an integer value. Experi-
mental data and a simple numerically generated signal are
presented to support these affirmations.

Quasiperiodic behaviors are not difficult to produce or

scarce in nature, but are difficult to characterize. In a simple
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case, a quasiperiodic motion can be thought of as a mixture
of periodic motions with different incommensurable frequen-
cies. As a result, a Fourier spectrum of a quasiperiodic signal
consists of peaks at the values of the main fundamental fre-
quencies and their linear combinations. The geometrical
shape of its attractor in the phase space is a n-dimensional
toroidal surface specified by the n fundamental frequencies.
In fact, most of the nonlinear mathematical tools provide
information to detect a quasiperiodic behavior. Detailed defi-
nitions and examples of Lyapunov exponents’ analysis were
given by Kantz,3 but briefly, the Lyapunov exponent of a
signal measures the rate of separation between nearby trajec-
tories. If the distance between these trajectories does not
change, it can be said that the dynamic response of the sys-
tem is periodic and the largest Lyapunov exponent is zero. In
contrast, if these trajectories diverge in time, exponentially to
be precise, it could indicate that the system is chaotic and the
largest Lyapunov exponent is positive. In a third case, if the
system is quasiperiodic, these trajectories follow different
paths but they would eventually approach each other only to
diverge again and to repeat the process again and again. As a
consequence, when a quasiperiodic behavior is suspected,
the Lyapunov exponent analysis is required to be performed
during times sufficiently large to identify these turn backs. In
addition to this criterion, the time delay �denoted by J in
Dong’s paper2� used to calculate both the Lyapunov expo-
nent and the dimension of the attractor Dc is also a critical
variable to identify quasi-periodic behaviors. If it is taken too
small, there would be almost no difference between the dif-
ferent elements of the delay vectors and this redundancy

makes the vectors meaningless if the data is noisy and the
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variation of the signal during the lag J is less than the noise
level.4 On the other hand, if J is taken too large, then the
different coordinates may be almost uncorrelated and the re-
constructed attractor may become very complex, even if the
“true” underlying attractor is a simple one. According to
Swinney,5 the method that estimates the value of J, using the
first minimum of the time delayed mutual information is bet-
ter and easier than the one that uses the autocorrelation.

In the next section, a simple experimental setup consist-
ing of the same elements used in Dong’s paper,2 and which
provides the time series analyzed below is presented. As ex-
pected, this data showed a Fourier spectrum with only the
linear combination of the fundamental frequencies.
Lyapunov exponents, return maps, and embedding dimen-
sions were calculated for this data depicting a quasiperiodic
motion and not a chaotic one. In addition, a simple quasip-
eriodic signal was created to test our dynamic-analysis bat-
tery; both, experimental and numerical results agree.

II. EXPERIMENTAL SETUP

As mentioned before, a simple experimental device,
which basically consists of the same elements presented in
Dong’s paper,2 was constructed and tested to prove our affir-
mations. Briefly, this setup consists of a cylindrical duct with
speakers on both ends. The duct is a circular cylinder made
of PVC, 60 cm long, 8 cm in diameter, and a 3 mm-wide
wall. Two speakers PROAM model SPK-350 of 8 � and
75 W were placed at each one of the two ends of the duct.
For each speaker, a function generator SRS was connected to

FIG. 1. Experimental arrangement.
FIG. 2. Temporal signal with f1=88, f2=145 Hz, and Vin=2 V.
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an audio amplifier �ONKYO, with total harmonic distortions
�0.001� to produce the input-speaker voltage signals. A
Bruel & Kjaer microphone with its Measuring Amplifier
�2610 type� was installed on the side of the duct to detect the
pressure signal. The output of the microphone amplifier was
measured and recorded by an acquisition system HP 3206A
connected to a computer using HP-VEE software.

Each speaker was driven by a pure sinusoidal signal of
one of the two incommensurable frequencies: f1=88 or f2

=145 Hz, both of them with an amplitude of Vin=2 V �Fig.
1�. A typical signal from the microphone is shown in Fig. 2;
Fig. 3 shows a numerical signal used to mimic this dynamics
which is simply a linear combination of two pure sinusoidals
with frequencies f1 and f2.

III. ANALYSIS AND RESULTS

There are many criteria to classify dynamical systems,
the most common are: the return map �commonly known as
the experimental Poincaré section�, Fourier spectrum, the
phase space embedding dimension, the sign of the largest
Lyapunov exponent, and the time delayed reconstructed at-
tractor and its dimension.3,6–8 Our analyzes were performed
in terms of these time series analysis using the algorithms
provided by Kantz.8

The step was to find out if the temporal signal was pe-
riodic or not via the return map �constructed by plotting the
local extremal values of the time series as a function of the
immediately preceding extrema�. The return map can also
help in the distinction between periodic and chaotic dynam-
ics; it is, however, a qualitative test only and more careful
analysis should be performed before trying to draw any con-
clusion. Qualitatively, there are several possibilities. The plot
may consist of single points �whose number indicates the
periodicity of the system� or it may be a simple �thin� closed
curve that indicates a probable quasiperiodic dynamics. On
the other hand, if the plot is an open �usually thick� curve,
then the chances of having a chaotic dynamical system in-
crease.

The return maps obtained for the signals are shown in
Figs. 4 and 5, and correspond to a closed �period-one� curve.
As mentioned above, this is a distinctive signature of a qua-

FIG. 3. Numerical signal with f1=88 and f2=145 Hz.
siperiodic motion.
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To find the attractor we reconstructed the state space of
the system using the well known method of time-delayed
graphs. There are two important factors for this process: the
time delay, J, used for the reconstruction and the embedding
dimension, D, of the phase space where the attractor will be
reconstructed. An incorrect choice of the embedding dimen-
sion for the reconstruction of the attractor could imply a
wrong interpretation of the behavior of the dynamical sys-
tem. An underestimate of the true dimension could show
self-intersections or false periodicity due to the projection of
a higher dimensional object. For the calculation of the time
delay, an algorithm that uses the statistical ideas of the aver-
age mutual information was employed; as presented by
Kantz.8 An optimal value of J=2.1 ms is obtained using this
method. To compute a good estimate of the embedding di-
mension, De, we used the false neighbors method which
measures the Euclidean distance between two neighboring
points of the attractor assuming it is embedded in a
D-dimensional space and compares this value to the one ob-
tained assuming a �D+1�-dimensional embedding space. If
going from dimension D to D+1 unprojects away the two
points by showing a clear increment of the Euclidean dis-

FIG. 4. Return map of the temporal signal in Fig. 2.
FIG. 5. Return map of the numerical signal in Fig. 3.
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tance, this then shows that they were false neighbors. The
dimension that has the lowest percentage of false neighbor-
ing points gives a good estimate for the true embedding di-
mension. Again, we used the algorithm provided by Kantz.8

The reconstructed attractors, using the values obtained
via the time series analysis, are presented in Figs. 6 and 7,
and correspond to tori. Using the Grassberger–Procaccia al-
gorithm, the dimension of the attractor �Dc� was calculated to
be Dc=2.02�0.09, a value which lies on a range where no
conclusions can be drawn as it could indicate an integer di-
mension. In Dong’s paper,2 Dc varies from 1.98 to 2.39. As
this range surrounds an integer value, it should not be used to
conclude a chaotic dynamics. In fact, there is another point
of concern in Dong’s paper2 as their text-reported values of
Dc do not correspond with the linear fits shown in their
graphs; Figs. 12 and 13 of Ref. 2 show values of Dc

J=4

=2.35 and Dc
J=10=2.33, respectively. However, later in the

text it is stated that Dc
J=4=2.15 and Dc

J=10=2.5.
The Kantz’s algorithm3,8 was used to calculate the larg-

est Lyapunov exponent. The value of this exponent is ob-
tained by computing the slope of a well-defined monotoni-

FIG. 6. Reconstructed attractor of the temporal signal in Fig. 2, and J
=2.1 ms, De=3, and Dc=2.02.

FIG. 7. Reconstructed attractor of the numerical signal in Fig. 3, and J

=2.1 ms, De=3, and Dc=1.95.
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cally growing plot of the divergence of nearby trajectories in
the phase space �in logarithmic scale because the algorithms
assumed an exponential growth of this divergence�. Our re-
sults are presented in Figs. 8 and 9. It is important to notice
that the Lyapunov exponent �the slope of �S versus time�,
when calculated for reasonably large periods, is undefined. In
particular, the divergence of adjacent trajectories in time,
Figs. 8 and 9, is oscillatory for both the experimental and the
numerical signals presented in this work �this periodic be-
havior is evident along the entire length of the data�. This
behavior is also observable in Figs. 10 and 11 in Dong’s
paper,2 although there �S �ln�divergence�� is shown for a
short period of time and only one oscillation is present. In
addition, from the reconstructed attractor, the return map, the
fractal dimension, and the Fourier spectrum of our experi-
mental data we can conclude that there is not evidence of a
chaotic behavior. First, the reconstructed attractor clearly
represents a two-dimensional tori. Second, the return map is
a closed and well defined curve. Third, the Fourier spectrum
�not shown� peaks only at the original frequencies, their har-
monics, and linear combinations of them. The lack of a con-
tinuous component in a frequency power spectrum is a hall-
mark of a periodic or quasiperiodic dynamics.

FIG. 8. �S for the experimental time series with f1=88 Hz, f2=145 Hz,
Vin=2 V, J=2.1 ms, and De=3.

FIG. 9. �S for the numerical signal with f1=88 Hz, f2=145 Hz, J

=2.1 ms, and De=3.
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There is an artifact on the methods used to calculate the
divergence of trajectories when they are applied to periodic
�with more than one fundamental frequency� and quasiperi-
odic signals. Those methods are designed to look for an ex-
ponential divergence of nearby trajectories, and hence, the
results are rather spurious when the divergence is not expo-
nential. Interestingly, if one estimates the period of oscilla-
tion in graphs 10 and 11 in Dong’s paper,2 or Figs. 8 and 9 in
this work, it turns out to be nothing else than the difference
between the fundamental frequencies of the systems, i.e.,
730 Hz in the original paper, and 57 Hz in our case
�145–88 Hz�. This tells us then, that if one thinks of two
nearby trajectories in phase space, they never touch each
other but get very close in regions near the “hole” of the
torus and are relatively apart in the “opposite” regions of the
same torus. This qualitatively explains the oscillatory shape
of the plots presented in Figs. 8 and 9 in this work or in Figs.
10 and 11 of the original paper.

IV. CONCLUSIONS

From our analysis, we can conclude that the dynamics
reported in Dong’s paper2 is quasiperiodic and not chaotic.
This conclusion is based on the fact that the results in the
calculations of the Lyapunov exponent were misinterpreted:
incorrectly calculated to show an apparent positive value.
This was presented as the strongest evidence for chaos. If the
calculation would had been carried out for longer time span,
it would had shown the oscillatory behavior in the diver-
gence of the trajectories �ln�divergence� in Dong’s paper,2 or
�S in this paper� from where the Lyapunov exponent is cal-
culated, in the same way that it was presented here. To avoid
this confusion, we propose the calculation of the largest
Lyapunov exponent to be performed for longer times as this
would allow the observation of a clear oscillatory behavior.
Our experiments were also carried out all over the speaker
optimum operational range, from 2 to 25 V, with similar re-
sults; no signatures of chaotic behavior were found.
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