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Abstract

The dynamics of energy relaxation in thermalized one- and two-dimensional arrays with non-
linear interactions depend in detail on the interactions and, in some cases, on dimensionality. We
describe and explain these di3erences for arrays of the Fermi–Pasta–Ulam type. In particular, we
focus on the roles of harmonic contributions to the interactions and of breathers in the relaxation
process. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The ability of extended systems to support the localization and transport of
vibrational energy has been invoked in a number of physical settings including DNA
molecules [1], hydrocarbon structures [2], energy storage and transport in proteins
[3–5], the creation of vibrational intrinsic localized modes in anharmonic crystals using
an optimally chosen sequence of femtosecond laser pulses [6], photonic crystal waveg-
uides [7], and targeted energy transfer between donors and acceptors in biomolecules
[8]. It has become increasingly clear that thermal ?uctuations may strongly a3ect
(sometimes leading to degradation but at times actually helping) the process of energy
localization and energy mobility [1,2,9–17]. It is thus clearly important to investigate
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the nature and dynamics of thermal ?uctuations in nonlinear arrays. The understanding
of the spatial and temporal evolution of the thermal relaxation landscape will in turn
lead to a better understanding of other chemical and physical processes that may be
occurring in the relaxing landscape.
The spatial and temporal evolution of an in?ux of energy into or an eFux of energy

out of a nonlinear array, and the dynamical pathways that characterize energy relaxation
in such an array, depend on a large number of factors (for recent reviews of a huge
literature see Refs. [18,19]). The nature of the interactions and where the nonlinearities
reside (in the local potentials or in the interactions), the boundary conditions (free,
Gxed, or periodic), the size of the system, its dimensionality, the way in which energy
is deposited in the system (initial conditions), etc., can all in?uence the evolution
profoundly, and no general formalism that encompasses all these variations has yet been
developed. It is, thus, necessary in this study (as in most others) to circumscribe the
range of our inquiry. We have been particularly interested in discrete extended systems
in which localized energy can also be mobile [11,13,14], and so our studies have
focused on arrays with hard nonlinear interactions and no local potentials, speciGcally
on Fermi–Pasta–Ulam (FPU) lattices. Some movement of localized energy may also
occur in arrays with soft local potentials (see e.g. Ref. [1]), but it is much more diHcult
to achieve. We thus concentrate on FPU arrays.
SpeciGcally in this paper, we study energy relaxation in one-dimensional [20] and

two-dimensional FPU arrays with quartic potentials. The Hamiltonian in one
dimension is

H =
N∑
i=1

ẋ2i
2
+

k
2

N∑
i=1

(xi − xi−1)2 +
k ′

4

N∑
i=1

(xi − xi−1)4 ; (1)

where N is the number of sites; k and k ′ are the harmonic and anharmonic force
constants, respectively. In two dimensions for an N × N lattice

H =
N∑

i; j=1

ẋ2i; j
2

+
k
2

N∑
i; j=1

[(xi; j − xi−1; j)2 + (xi; j − xi; j−1)2]

+
k ′

4

N∑
i; j=1

[(xi; j − xi−1; j)4 + (xi; j − xi; j−1)4] : (2)

To study energy relaxation we initially thermalize the system at temperature T (see
below), then connect the boundary sites (two end sites for a one-dimensional system,
4(N − 1) edge sites for two-dimensional arrays) to a zero-temperature reservoir via
damping terms, and observe the thermal relaxation of the array toward zero temperature
[10,20–22]. We Gnd that relaxation occurs through an interesting cascade of decay
times that is sensitively dependent on the precise form of the interactions. This leads us
to focus on two issues in the relaxation process: (1) the explicit role of the harmonic
terms vs. anharmonic terms in the FPU Hamiltonian, and (2) the e3ects of array
dimensionality.
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To thermalize the system to a given temperature T , we augment the equations of
motion resulting from Eqs. (1) with the Langevin prescription connecting each site to
a heat bath. In one dimension

Lxi = − @
@xi

[V (xi − xi−1) + V (xi+1 − xi)]− 
0ẋi + �i(t) : (3)

Here V (xi − xj) is the FPU potential, 
0 is the dissipation parameter, and the �i(t) are
mutually uncorrelated zero-centered Gaussian �-correlated ?uctuations that satisfy the
?uctuation-dissipation relation at temperature T :

〈�i(t)〉= 0; 〈�i(t)�j(t′)〉= 2
0kBT�ij � (t − t′) : (4)

The brackets here and below denote an ensemble average, and kB is Boltzmann’s
constant. The generalization to two dimensions is immediate. We implement free-end
boundary conditions, that is, x0 = x1 and xN = xN+1 in one dimension and x0; j = x1; j,
xN;j = xN+1; j, xi;0 = xi;1, and xi;N = xi;N+1 in two dimensions. For the integrations of the
equations of motion we use the fourth order Runge–Kutta method.
The thermalization process involves the spontaneous emergence of anharmonic

(including localized) modes. In order to understand the dynamics of such modes, we
begin again with a thermalized array and explicitly inject a breather-like excitation of
energy much higher than the thermal energy. We then observe how the entire system,
thermalized array plus injected excitation, evolves and relaxes toward zero temperature.
In Section 2 we itemize the measures used to display the relaxation process. In Sec-

tion 3 we present our relaxation results, obtained primarily from numerical simulations.
Section 4 shows what happens to an explicitly injected local excitation as the arrays
relax to zero temperature. Section 5 provides a brief summary and synthesis of the
outcomes.

2. Measures of thermal relaxation

Once our system is thermalized to temperature T we disconnect it from the thermal
bath (i.e., we remove the �i(t) and 
0ẋi terms from Eq. (3) or the equivalent terms
from the two-dimensional set of equations), and we connect the edge sites to a cold
T=0 reservoir through the addition of dissipative terms −
ẋ to the equations of motion
for these sites. We then continue the integration using the thermalized positions and
displacements as the initial conditions. An ensemble is constructed by repeating this
experiment for di3erent thermalized initial conditions. There are of course a variety of
ways to display the outcome, and in our work we have chosen three. One, the most
“global” measure, is to follow the decay of the total array energy E(t) as a function of
time. The second is to follow the spectrum of the system as a function of time. This
gives a frequency-by-frequency picture of the relaxation process and therefore a more
complete description. The third is to show a spatial energy landscape as a function of
time.
The total energy E(t) of the array is simply the Hamiltonian function evaluated

with the displacements and velocities obtained from the equations of motion. For a
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one-dimensional harmonic array this function has been calculated analytically by Piazza
et al. [10] for small 
 and large N :

E(t)
E(0)

=
1
�

∫ �

0
dq e−2t=�(q) = e−t=�0I0(t=�0)

=
{
e−t=�0 for t��0 ;
( 2�t�0

)−1=2 for t��0 :
(5)

In the Grst line I0 is the modiGed zero-order Bessel function, and �0 =N=2
. The decay
time �(q) for phonons of wavevector q is

1
� (q)

=
1
�0

cos2
(q
2

)
: (6)

The second line in Eq. (5) gives the short-time and long-time behaviors. The for-
mer is a simple exponential decay associated with the lowest frequency phonon mode
since it has the shortest decay time. The power law relaxation arises from the cascade
of di3erent decay times of the di3erent phonon modes. For Gnite N the decay be-
comes exponential again when only the modes near the band edge of the spectrum still
survive. Note that the decay is not exponential throughout (a common misapprehension
for harmonic systems), although the initial exponential behavior does last longer the
larger the system is. Each phonon mode decays separately (exponentially) and indepen-
dently of all the others. This translates to an independent and separate decay of each
frequency portion of the spectrum (see below). The calculation of the total energy is
more cumbersome but basically similar for two-dimensional arrays. One Gnds that the
decay time for phonons of wavevector q = (qx; qy) is

1
�(q)

=
1
�0

[
cos2

(qx
2

)
+ cos2

(qy
2

)]
; (7)

which upon integration over wavevectors leads to

E(t)
E(0)

= e−2t=�0I 20 (t=�0) =
{
e−2t=�0 for t��0 ;
( 2�t�0

)−1 for t��0 :
(8)

The behavior of E(t)=E(0) for one- and two-dimensional anharmonic arrays is expected
to be di3erent than Eqs. (5) and (8), respectively. These behaviors will be presented
in the next section.
Our second measure of thermal relaxation focuses on the decay pathways of the

di3erent spectral regions as the array cools down. We concentrate on the time evolution
of the Fourier transform of the relative displacement correlation function. Relative
displacements provide a particularly sensitive measure of how adjacent masses are
moving relative to one another. In a thermalized array the spectrum of interest is
deGned as

S(!) = 2
∫ ∞

0
d�C(�) cos!� ; (9)
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where in one dimension

C(�) =
1

(N − 1)

N∑
i=2

〈�ixi (t + �) �ixi(t)〉 (10)

and �ixi(t) is the relative displacement

�ixi (t) ≡ xi (t)− xi−1(t) : (11)

In two dimensions

C(�) =
1

N (N − 1)

N∑
i=2

N∑
j=1

〈�ixi; j(t + �)�ixi; j(t)〉

+
1

N (N − 1)

N∑
i=1

N∑
j=2

〈�jxi; j(t + �)�jxi; j(t)〉 ; (12)

where

�ixi; j(t) ≡ xi; j(t)− xi−1; j(t); �jxi; j(t) ≡ xi; j(t)− xi; j−1(t) : (13)

The thermal equilibrium spectrum for harmonic arrays in one [14] and two dimen-
sions can be calculated analytically. In one dimension with periodic boundary condi-
tions (for suHciently long chains the boundary conditions do not a3ect the equilibrium
spectrum)

S(!) =
4
0kBT

N

N−1∑
q=0

1− cos (2�q=N )
[r21(q) + !2][r22(q) + !2]

; (14)

where

r1;2(q) =−
0
2

±
√(
0

2

)2
− 4k sin2

(�q
N

)
: (15)

In two dimensions

S(!) =
4
0kBT
N 2

N−1∑
p;q=0

2− cos (2�p=N )− cos (2�q=N )
[r21(p; q) + !2][r22(p; q) + !2]

; (16)

where now

r1;2(p; q) =−
0
2

±
√(
0

2

)2
− 4k

[
sin2

(�p
N

)
+ sin2

(�q
N

)]
: (17)

For anharmonic chains these spectra must be obtained numerically.
To monitor the decay of the spectrum when the thermalized arrays are connected to

a cold reservoir we introduce the time-dependent spectra

S(!; t) ≡ 2
∫ �max

0
d�C(�; t) cos!� ; (18)

where �max ≡ 2�=!min and !min is chosen for a desired frequency resolution; the choice
!min=0:0982, corresponding to �max =64, turns out to be numerically convenient. The
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time-dependent correlation function is actually an average over the time interval t − t0
to t, where we have chosen t0 = 100 (short enough for the correlation function not to
change appreciably but long enough for statistical purposes) and is deGned as follows
in one dimension:

C(�; t) =
1

(N − 1)

N∑
i=2

1
Rt

∫ Rt

0
d�′ 〈�ixi(t − �′) �ixi (t − �′ − �)〉 ; (19)

where Rt ≡ t0 − �max. The generalization to the two-dimensional case is obvious.

3. Thermal relaxation

We start by presenting two sets of Ggures, each associated with one of the measures
for relaxation mentioned in the previous section. Each set presents both one- and
two-dimensional results. Along with these results we present some auxiliary Ggures
that help in the interpretation of the outcomes.
The total energy of a relaxing array decays in time, and the questions of interest

are how exactly the energy decreases with time for arrays with di3erent interactions
and in di3erent dimensions. The answers are illustrated in Fig. 1. Accompanying these
decay curves are the more detailed spectral decay curves shown in Fig. 2.
The decay of the total energy ratio for harmonic systems is independent of temper-

ature, which is veriGed numerically and therefore leads to a single curve in Fig. 1 in
each dimension for the given parameters k, N , and 
. The initial exponential decay
of the energy in both one and two dimensions, and the N and 
 dependences of the
decay rate, have been veriGed numerically. The long-time decay as an inverse power
law E(t)=E(0)∼ t− for both cases has also been veriGed. It is interesting to note that
Eq. (5) can be rewritten as an integral that makes explicit the cascade of relaxation
times giving rise to the inverse power law behavior:

E(t)
E(0)

= e−t=�0I0(t=�0) =

√
�0=2
�

∫ ∞

�0=2
d�

e−t=�

�
√
�− �0=2

: (20)

The lower limit, due to a nonzero shortest decay time, leads to the initial exponential
decay of the energy, but it is the long �−3=2 tail of slow relaxation times that leads to
the power law decay. We return to this point below.
The associated spectra for the harmonic arrays are shown in each of the Grst frames

of the two panels in Fig. 2. The evolution conGrms that low frequencies decay more
rapidly in the harmonic chain—the spectrum is absorbed by the cold reservoir from
the bottom up, and by the latest times shown, only the longer-lived band-edge modes
remain in the system. Since each spectral component is associated with an indepen-
dent phonon, the spectral decrease occurs “vertically”, that is, each spectral component
decays directly into the reservoir on its characteristic time scale; this is shown schemat-
ically for the one-dimensional systems in Fig. 3, where the downward arrows represent
absorption by the reservoir and their relative length schematizes the absorption rate.
For anharmonic arrays the relaxation behavior depends strongly on the presence

or absence of a harmonic component in the potential, and, in some respects, on
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Fig. 1. Temporal relaxation of the fractional energy for di3erent arrays with potential parameters and initial
temperatures indicated in the Grst panel. First panel: one dimension (N =50). Second panel: two dimensions
(20 × 20 lattices). In all cases 
 = 0:1. The fractional energy for the harmonic arrays is independent of
temperature.

dimensionality. First, we consider the purely anharmonic arrays. The dimensionality
plays a particularly important role in this case.
In one dimension the upper panel of Fig. 1 shows an essentially purely exponential

decay (veriGed separately), which is characteristic of a single predominant decay chan-
nel. The decay is more rapid at higher temperatures. Note that there are no phonons
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Fig. 2. Time evolution of spectra for various relaxing arrays. The upper three-frame panel is for
one-dimensional (50 sites) arrays, the lower three-frame panel for two-dimensional (20 × 20 sites) arrays.
First frames: harmonic interactions (k = 0:5). Second frames: purely anharmonic interactions (k′ = 0:5).
Third frames: mixed interactions (k = k′ = 0:5). The time progression is as indicated. The t = 0 spectrum
(solid curves) in each case is the equilibrium spectrum at T = 0:5, the initial temperature. In all cases

= 0:1. The thin vertical lines indicate the frequencies !=
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(two-dimensional panels).
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Fig. 3. Schematic representation of the spectral relaxation channels in one dimension. The one-dimensional
spectra of Fig. 2 for times t = 0 and 2000 are shown again here, and the arrows depict the pathways
of di3erent spectral components. Downward arrows indicate absorption by the cold reservoir, while angled
arrows denote degradation from one spectral region to another. The relative lengths of the arrows depict the
associated rates.

in this purely quartic system, so that single frequencies are not associated with nor-
mal modes of the system. Conversely, exact solutions of the FPU chain such as soli-
tons and intrinsic localized modes may involve many frequencies. The second frame
in the upper panel of Fig. 2 shows that the higher frequencies decay Grst, exactly
opposite to the harmonic chain. We Gnd that the relaxation pathway is for the high
frequency portions of the spectrum to degrade rapidly into lower frequency excitations,
as schematically indicated by the sloped arrows in Fig. 3. The lowest frequencies
decay into the reservoir and deGne the exponential decay rate seen in Fig. 1. In more
detail, the high frequency components of the spectrum are mainly due to highly mobile
localized modes that degrade into lower energy (less mobile) excitations as they move
and collide with one another. The lowest frequency excitations are in turn absorbed
into the cold reservoir but continue to be replenished through the degradation process.
It is important to note, however, that among the low frequency excitations are some
that persist for a very long time, certainly beyond the times of our simulations. Their
decay is surely slower than exponential, perhaps a stretched exponential. These, the
only remaining spectral components at time t=2000, are “labeled” by short downward
arrows in the relaxation schematic and include rather stable breather and=or soliton
modes that move very slowly and are localized away from the boundaries. Also, some
direct relaxation of all frequency components into the reservoir occurs as well (shown
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schematically by the short arrows at high frequencies in Fig. 3), but this direct
relaxation is slower than the energy degradation pathway. For example, when a highly
mobile localized excitation reaches a boundary, it typically remains at the boundary for
about one period of oscillation (which is short for a highly energetic excitation), during
which it loses a small portion of its energy to the reservoir. The remaining excitation
is re?ected back into the chain, where it will continue to lose energy through other
collision events and=or re-arrival at the boundaries. The role of high-frequency mobile
modes and of low-frequency slowly moving or stationary modes in this picture will be
tested in more detail in the next section, where we explicitly inject a high-frequency
localized mode into the array and observe the relaxation dynamics. We do note here
that our picture is consistent with known facts about localized states. In particular,
it is known that higher-frequency and=or higher amplitude localized modes can move
at higher velocities [9,12,16]. It is also known that while in motion such modes lose
energy through collisions with other excitations. Fig. 1 shows a faster decay at higher
temperatures, which is consistent with our observations elsewhere that the speed of an
injected pulse (and, therefore, we conjecture, the speed of a moving localized mode)
in these arrays increases with temperature [13].
The relaxation dynamics of the purely anharmonic array in two dimensions di3ers

from the one-dimensional case in a number of ways. First, we note that the decay of
the energy in Fig. 1 is (except for very early times) slower in the hard array than in
the harmonic one over the times of observation. Second, except for an initial short time
interval, the decay is found not to be exponential, indicating that there is no longer a
single predominant decay channel as there was in one dimension. In two dimensions
the relaxation pathway again includes degradation of higher frequency excitations to
lower frequencies, as can be seen in the spectral rendition in Fig. 2. However, whereas
in one dimension the degradation process is faster than the decay of low-frequency
excitations into the reservoir (and hence this latter decay is the rate-limiting step that
deGnes the total energy decay process), here the degradation process is slower, leading
to spectral bottlenecks and competing time scales. We Gnd that increasing the array size
leads to slower degradation of the high frequency components and to more pronounced
spectral bottlenecks in the mid-frequency range. Our physical picture of the source of
the competing time scales involves the observation that in two dimensions, localized
excitations are not nearly as mobile as in one dimension. In one dimension energy
degradation occurs as a consequence of high mobility and the resultant inevitable fre-
quent scattering. The reduced mobility in two dimensions was noted in earlier work on
pulse propagation [13] and will be supported and clariGed in the next section, where
we explicitly inject a high-amplitude breather into our system. At long times in the
two-dimensional system excitations of all energies eventually reach the boundaries.
These excitations typically lose some of their energy into the cold reservoir and the
remainder is re?ected back into the array, where it either degrades into lower energy
components or reaches a boundary again with the attendant energy loss. Note also
that with increasing temperature the total system energy decays more rapidly, which
is consistent with our assertion that mobility (low as it may be) in the purely hard
arrays increases with temperature because of the participation of more mobile higher
frequency components in the initial equilibrium mix of excitations.
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Fig. 4. Plot of !(t) as a function of time. A ?at line below !(t) = 1 indicates stretched exponential
behavior. First panel: purely anharmonic two-dimensional arrays of di3erent sizes, damping coeHcients,
and temperatures. Second panel: various one- and two-dimensional mixed arrays.

The result is an energy decay that is of stretched exponential form,
E(t)
E(0)

∼ e−(t=�1)" ; (21)

as is evident in the Grst panel of Fig. 4, where we plot

!(t) =
d

d ln t
ln
[
−ln

(
E(t)
E(0)

)]
(22)
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as a function of time for four purely anharmonic two-dimensional arrays of di3erent
sizes, damping coeHcients, and temperatures. When the decay is a stretched exponential
this rendition gives a ?at line at the value ! (t) = ". We Gnd that the value of " is
independent of temperature, as seen in the Ggure (we have tested this assertion for
various lattice sizes in the range T = 0:1–1.0), and that it increases with 
, as also
seen in the Ggure. For the 20 × 20 lattices we Gnd that " is around 0:33 for 
 = 0:1
and " ≈ 0:43 for 
 = 1. The temperature independence is explained by the fact that
temperature does not dominate the mobility of the residual excitations nor does it
determine their rate of energy loss once they reach a boundary. On the other hand,
it is reasonable that increasing 
 leads to a faster long-time relaxation process (larger
") because more energy is lost to the reservoir upon each collision. We Gnd that "
also increases with N , which is somewhat of a puzzle. We Gnd, for instance, that in a
50× 50 array with 
= 0:1 (and for any temperature) " ≈ 0:52. The issue of the size
dependence of relaxational processes following a stretched exponential behavior is a
diHcult problem that has only recently been addressed in a di3erent context [23]. In
summary, for the purely anharmonic two-dimensional arrays

" = " (N; 
) : (23)

The mixed arrays, i.e., those with interactions that have both quadratic and quartic
potential contributions, are of course the ubiquitous FPU systems since it is diHcult
to envision a “real” physical system that has no quadratic potential terms (one might
also say this about cubic potential terms that have not been included here [24]). The
thermal relaxation of these arrays proceeds similarly in one and two dimensions. At
early and intermediate times the mixed arrays relax very similarly to the harmonic
arrays (i.e., exponential decay followed by power law decay), albeit somewhat modiGed
and speeded up by the presence of high-frequency mobile excitations in addition to the
low-frequency phononic excitations. The rapid decay of both low and high frequency
excitations is evident in the third frames of both panels in Fig. 2. This similarity
in one dimension was noted by Piazza et al. [10]. After some time, however, the
mixed chain relaxation behavior changes to a stretched exponential. This occurs when
the low frequency modes have essentially all decayed. The higher frequency spectral
components that persist are localized long-lived excitations (note that high-frequency
phonon modes are unstable against breather formation in these systems [12]). Unlike
the purely anharmonic array, here there is no low-frequency residue to perturb the
high-frequency localized excitations and so they survive relatively unperturbed and
immobile for a long time. The persistence of high-frequency spectral components is
seen in the third frames of both panels in Fig. 2, and the schematic representation of the
progression in one dimension is shown in Fig. 3. The slow leakage of breather energy
into low energy modes that continue to dissipate into the cold reservoir is responsible
for the eventual stretched exponential relaxation of the system.
These behaviors can be seen clearly in the second panel of Fig. 4 which shows !(t)

for various one- and two-dimensional mixed arrays. The initial exponential behavior
(which corresponds to a ?at curve at ! (t) = 1), occurs over too short a time scale to
be clearly discernible. There then follows a power law decay regime which eventually
turns to a stretched exponential. In the power law regime, if the energy decays as
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E(t)=E(0)∼ (t=�0)− then it follows that ! (t) = (ln �=�0)−1, which is independent of
 and depends only on the ratio N=
 via �0. The two two-dimensional curves and
the one-dimensional curve with the same value of N=
 are all seen to decay with the
same slope. As all the curves settle into their asymptotic behavior, we see that "
depends neither on N nor on 
: the two one-dimensional arrays are of di3erent sizes
but asymptote to the same " (approximately 0:21), as do the two two-dimensional
arrays of the same size and initial temperature but with di3erent damping coeHcients
(" ≈ 0:03). On the other hand, the two-dimensional arrays that have di3erent initial
temperatures asymptote to di3erent values of " (approximately 0:25 for T = 0:1 and
around 0:03 for T = 0:5). The observed behavior is explained by the fact that the
slow leakage of energy out of the long-lived localized excitations is rate limiting. A
higher initial temperature leads to more energetic, more stable breathers with slower
leakage, hence explaining why " decreases with increasing temperature. Neither the
size of the system nor the damping coeHcient are important in this limit, since the
slowest process is the leakage. The low-energy outcome of that leakage is absorbed
quickly by the cold reservoir. Note that this description is consistent with that provided
for relaxation of lattices with local anharmonic potentials [22]. In summary, for one-
and two-dimensional arrays with quadratic plus quartic interaction potentials

" = " (T ) : (24)

It is interesting to stress that, like an inverse power law decay, a stretched exponential
can indeed be obtained from a distribution or hierarchical progression of decay times.
For example,

e−(t=�1)1=2 =
1

2
√
��1

∫ ∞

0
d� e−t=� e

−�=4�1

�1=2
; (25)

which should be compared with Eq. (20). More generally, if the distribution of
relaxation times varies as e−(�=�1)# , then the decay will go as a stretched exponen-
tial with "∼ 1=(1+#) at long times (the stretched exponential with "=1=2 is the only
one whose associated distribution is expressible in extremely simple analytic form, but
distributions associated with other fractional exponents are also known analytically or
numerically [25]). The distributions leading to inverse power decay and to a stretched
exponential decay are both broad, but the inverse power law of course arises explic-
itly from very long tails not present in the stretched exponential. In other words, the
relaxation of the last energy residues of a very large harmonic lattice takes longer than
those of a very large anharmonic lattice. There is an important di3erence, however:
in the harmonic lattice the persistent excitations are distributed over the entire lattice,
while in the anharmonic lattice they are localized. Also, in a ;nite lattice eventually
the harmonic decay is again exponential while that of the anharmonic system remains
a stretched exponential.
Spatial energy landscapes rendered in gray scale provide a pictorial representation of

the thermalization progressions. We follow widespread convention and deGne the local
energy in one dimension as

Ei =
ẋ2i
2
+

1
2
[V (xi − xi−1) + V (xi+1 − xi)] (26)
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Fig. 5. Local energy landscapes of one-dimensional 30-site arrays initially thermalized at T = 0:5. Time
advances along the y-axis until t = 1000. A gray scale is used to represent the local energy, with darker
shading corresponding to more energetic regions. First panel: harmonic chain, k = 0:5 and k′ = 0. Second
panel: purely anharmonic chain, k = 0 and k′ = 0:5. Third panel: mixed chain, k = k′ = 0:5.

Fig. 6. Local energy landscapes for a 20 × 20 purely anharmonic lattice (k′ = 0:5) initially thermalized at
T = 0:5 and with 
 = 0:1. From Grst to last frames: t = 0, 400, 800, 1200, 1600, and 2000.

with obvious generalization in two dimensions. Fig. 5 shows the temporal evolution
of the local energy landscape for each of the three chains. Particularly dramatic is
the spontaneous occurrence of an essentially stationary breather in the mixed chain.
It is this sort of breather that leads to the extremely slow relaxation of the mixed
chain energy. Spatial landscapes for two-dimensional systems are shown in six time
frames in Figs. 6 and 7 for the pure anharmonic and the mixed anharmonic lattices,
respectively. Note that in the purely hard array the localized high-energy regions move
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Fig. 7. Local energy landscapes for a 20× 20 mixed anharmonic lattice (k = k′ = 0:5) initially thermalized
at T = 0:5 and with 
 = 0:1. From Grst to last frames: t = 0, 400, 800, 1200, 1600, and 2000.

around and relax within the time scale of the progression. In the mixed array, on the
other hand, the “hot spots” persist and essentially do not move.

4. Relaxation with an injected breather

Our portrayal of the thermal relaxation process can be further bolstered by initially
injecting a high-energy localized excitation in the center of each thermalized array and
observing the behavior of this excitation during the relaxation process. Some of the
dimensionality di3erences are thereby clariGed. The injected excitation is chosen so as
to be close to a known exact breather solution of the anharmonic arrays.
In a one-dimensional array with an interaction potential V (xi − xi−1) = (xi − xi−1)n

as n→∞ and exact odd-parity breather is one of amplitude A at a site and −A=2
at each of the two immediately adjacent sites. An exact even-parity breather is one
with amplitude A at one site and −A at an immediately adjacent site. These are not
exact solutions when n is not inGnite and=or when there are quadratic contributions
to the potential, but they are close to exact, even for the FPU chain [26,27]. In two
dimensions the odd-parity solution with amplitude A at one site and amplitudes −A=4
at the four nearest neighboring sites is also nearly exact, but there is no equivalent to
the even-parity breather. We insert an odd-parity excitation at the center of our array
and in each case choose arrays suHciently large (300 sites in one dimension, 30× 30
in two dimensions) so that the excitation either decays or stops moving before ever
reaching the boundaries. In harmonic arrays the fate of such an injected excitation is
completely predictable and uninteresting: it spreads quickly over the entire array and
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thus loses its localized character. The associated Fourier decomposition into phonon
modes dictates the relaxation behavior.
To follow the excitation in the one-dimensional anharmonic arrays we calculate the

mean squared displacement

〈x2(t)〉 ≡
〈(

imax(t)− N
2

)2
〉

(27)

as a measure of the position of the excitation (its dispersion in the anharmonic chains
is very small [13]). Here N=2 is the initial point of highest energy in the chain and
imax(t) is the point of maximum energy at time t. Similarly, in two dimensions we
deGne

〈r2(t)〉 ≡
〈(

ix;max(t)− N
2

)2
〉

+

〈(
iy;max(t)− N

2

)2
〉

; (28)

where (N=2; N=2) is the initial point of highest energy and (ix;max(t); iy;max(t)) is the
point of maximum energy at time t.
In a purely anharmonic chain in one dimension, a short time after it is created the

excitation begins to move essentially ballistically in one direction or the other with
equal probability. The motion continues for a period of random duration, until the
excitation stops moving for a random period of time. Then it moves again in either
direction. Whatever its initial parity, while subsequently stationary the excitation has
even parity (the more stable of the two conGgurations). Any perturbation (usually
scattering of slow low-frequency excitations) that disturbs this parity sets the breather
in motion, and while it moves it alternates between even and odd parity. The excitation
only loses energy while in motion, through collisions with persistent low-frequency
excitations.
A typical mean squared displacement for the one-dimensional purely anharmonic

array is shown in Fig. 8. The mean square displacement follows the superdi3usive
law 〈x2(t)〉∼ t with  = 1:5 over the entire lifetime of the excitation. This particular
exponent is recovered for the purely quartic chain under all conditions that we have
tested, that is, independently of force constant, excitation amplitude, and temperature.
Parameter variations a3ect only the prefactor, which re?ects the breather velocity. In-
deed, it does not matter when in the course of the relaxation process the localized
excitation is introduced: its mean squared displacement grows with the same exponent
1:5 until the excitation is extinguished into the background. This conGrms the role of
the persistent low-frequency excitations. We have argued [20] that this particular su-
perdi3usive exponent can be understood in terms of scattering events that occur with
a time distribution %(t)∼ t−5=2 [28].
In a purely anharmonic two-dimensional array the motion is rather di3erent (which

is consistent with the spectral di3erences in one and two dimensions). A typical mean
squared displacement is also shown in Fig. 8. The law is now subdi3usive, 〈r2(t)〉∼ t 

with  =0:89 over the lifetime of the excitation. Again, this exponent is insensitive to
force constant, excitation amplitude, and temperature changes. It does re?ect the fact
that the excitation moves much less in two dimensions than in one (although it does
of course move and eventually recedes into the background). In earlier work [13] we
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Fig. 8. Mean squared displacement of a localized mode in various one-dimensional (300 sites) and
two-dimensional (30 × 30) FPU arrays. The slopes of the two short straight lines are 1:5 and 0:89. In
all cases A = 2, T = 0:1, and 
 = 0:1.

noted that a pulse in a one dimensional purely hard array tends to move more rapidly
but remains more tightly concentrated than a pulse in, say, a harmonic or soft array.
We also noted that in two (or more) dimensions these two tendencies are in some sense
contradictory since the only way that a symmetric excitation can move is by breaking
its symmetry and=or dispersing. The sort of perturbation that would set a breather in
motion requires an asymmetry that is more diHcult to achieve in two dimensions than in
one. If the distribution of collision times of energetic breathers with other excitations
that can set it in motion has suHciently long quiescent periods (long-tailed waiting
time probability distribution function) then the motion of the excitations is typically
subdi3usive [29]. Note that this does not preclude collisions that lead to energy loss
by the breather even if it is not set in motion.
The situation in mixed anharmonic arrays is similar in one and two dimensions, see

Fig. 8. The injected excitations at Grst move with the same characteristic exponents  
as in the corresponding purely anharmonic systems, but as the harmonic interactions
sweep the background thermal energy out of the system, the localized excitations stop
moving. The mean squared displacement in each dimension then becomes independent
of time (earlier in two dimensions than in one).

5. Summary

Energy relaxation in one- and two-dimensional nonlinear arrays with quartic
interparticle interactions (Fermi–Pasta–Ulam or FPU arrays) proceeds along energetic
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pathways completely di3erent from those of harmonic systems and is quite sensitive
to the presence or absence of quadratic contributions to the interactions. Relaxation in
a purely harmonic array involves the sequential decay of independent phonon modes
starting with those of lowest frequency and moving upward across the spectrum. The
decay of energy in these arrays is exponential at short and long times, but follows
an inverse power law at intermediate times. Throughout the decay process, the energy
is distributed uniformly over the entire array. A localized excitation injected in the
lattice simply decays according to the distribution of characteristic relaxation times of
its phonon components.
FPU arrays with quadratic and quartic interactions contain phonon-like modes as well

as high-energy nonlinear, and to varying degrees localized, excitations (provided the
initial temperature is suHciently high to excite these). The relaxation process involves
the decay of phonons in the same spectral order as in the harmonic arrays and also
energy losses through collisions of mobile high-energy localized excitations as they
collide with lower-frequency ones. Eventually, the harmonic interactions succeed in
“sweeping” the system clean of low-energy excitations and the remaining localized
modes are quasistationary breather solutions that persist for a very long time. The
decay to this quasistationary state is a stretched exponential with an exponent that
depends on temperature but not on system size or damping coeHcient. An explicitly
injected high-energy localized breather follows this behavior, with a mean squared
displacement that at Grst grows with time but then becomes independent of time when
the system has been swept clean of background excitations.
The greatest di3erences between one- and two-dimensional FPU arrays occur in the

purely quartic arrays. In all cases the relaxation begins from the high-frequency end of
the spectrum (opposite to the harmonic case) and involves not a direct absorption by the
cold reservoir but rather a degradation of high-frequency excitations to lower-frequency
ones. In one dimension this degradation process is considerably faster than in two
dimensions. The lowest frequency modes in one dimension are absorbed by the cold
reservoir but are quickly replenished by the degradation process. The energy relaxation
is essentially exponential, with a time constant determined by the decay of the lowest
frequency components. In two dimensions the degradation process is slower and there
are frequency bottlenecks so that the decay of the lowest frequency excitations into the
cold reservoir no longer constitutes the rate limiting process. Instead, the degradation
and decay contribute to a resulting stretched exponential energy decay with an exponent
that depends on system size and damping coeHcient but is independent of tempera-
ture. In both one and two dimensions there remains a thermal residue of localized
low-frequency excitations that continue to perturb and degrade higher frequency ones.
The array is never “swept clean” of low-energy excitations as is the mixed array, and
therefore no persistent breathers occur in this system. In order to conGrm this behavior
we have followed the dynamics of an injected high-frequency localized excitation in
these arrays. In one dimension this localized excitation remains localized but is very
mobile throughout its lifetime, being characterized by a super-di3usive mean squared
displacement. In two dimensions the excitation also remains localized and is much less
mobile (but nevertheless, always mobile until it disappears), being characterized by
subdi3usive motion.
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