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Energy relaxation in nonlinear one-dimensional lattices
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We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type.
The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping
forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower-frequency modes
relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy
nonlinear modes into lower-energy ones. The lowest-energy modes are absorbed by the cold reservoir, but a
small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency
localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit
behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is ex-
tremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breath-
ers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized
arrays and observing the relaxation behavior.
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[. INTRODUCTION that occurs in harmonic lattices is clearly an important ques-
tion: one thinks, for example, about the amazing energy-
The localization of vibrational energy in discrete nonlin- transfer cascade occurring in the photosynthetic prddéis
ear arrays has attracted a huge amount of interest in the past about the ability of some proteins to efficiently store and
15 years as a possible mechanism for the efficient storageansport and thereby convert chemical energy into mechani-
and transport of energy. The reasons for the broad interest ital energy{11-13. Transport across a thermal gradient and
these phenomena are at least twofold: on the one hand, theylestions concerning the validity of the usual Fourier law
embody many of the interesting effects of the interplay ofhave very recently been addressed in a number of papers
nonlinearity, discretization, and stochasticity, and on thg14-17. Relaxation to thermal equilibrium and the nature of
other they may be of use in explaining a variety of physicalthis equilibrium have been addressed in recent wd&—
and biophysical phenomena. The interest in nonlinear array®1], as has the transport of energy in thermal arfays-26.
serving as energy storage and transfer assemblies for chemi- In addition to the phonons associated with the linear por-
cal or photochemical processes, is not uncomifignand  tion of the potential in a nonlinear array, a variety of station-
literature on the subject goes back for two decd@sMore  ary, and nonstationary but long-lived excitations are possible,
recently, the localization and transport of vibrational energyincluding solitons[17,24,25,27—2P(long-wavelength exci-
has been invoked in a number of physical settings includingations that persist from the continuum limit upon discretiza-
DNA molecules[3], hydrocarbon structurd4], the creation tion), periodic breather§8,9,21,24,25,28—37(spatially lo-
of vibrational intrinsic localized modes in anharmonic crys-calized time periodic excitations that persist from the
tals[5], photonic crystal waveguid¢8§], and targeted energy anticontinuous limit upon coupling and so-called chaotic
transfer between donors and acceptors in biomolediles  breatherg21] (localized excitations that evolve chaotically
Many types of nonlinear arrays exhibit spontaneous localThese nonlinear excitations arigeven spontaneouslyand
ization, and in each of these the conditions that lead to losurvive for a long time in numerical experiments, and they
calization are complex and multifaceted. A vast literatureclearly play an important role in determining the global mac-
deals not only with different types of arrays but with issuesroscopic properties of nonlinear extended systems.
such as boundary conditions, initial conditions, whether the The nonlinearity in discrete nonlinear arrays may occur in
system is closed or forced, thermal effects, etc. It is imposthe interaction/(x; ,x;) and/or in the “local” or “external”
sible to present here a full catalog or even sensibly organizepotentialsU(x;). Here x; is the displacement of particlie
panorama of results; a number of excellent reviews havéom its equilibrium position. While the presence of local
aided greatly in the effoit8,9]. potentials favors energy localization, we are interested in lo-
Increasing attention has recently been devoted to thermatalized energy that can also move, and mobility tends to be
ized nonlinear arrays. Whether energy can be transmittedasier in the absence of a local potenfiaD,22,23. We
without the destructive thermal and dispersive degradatiotherefore focus on Fermi-Pasta-UlaiRPU) lattices of unit
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masses, each connected to its nearest neighbors by quadra ' 12
and/or quartic springéFPU 8 mode). Here we deal only 10| =TT
with the one-dimensional problenithe two-dimensional 4.00 | ; 08 Lo
FPU system will be considered elsewhgB8]). The Hamil- ) s 06 [
tonian of the system is 04
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whereN is the number of sitesk andk’ are the harmonic
and anharmonic force constants, respectively. In this work "%
we focus on the thermal relaxation of FPU chains. Thermal
relaxation and associated mobility properties turn out to be
entirely differentin purely harmonic k' =0), purely anhar- %90 3.0
monic (k=0), and “mixed” (k andk’# 0) one-dimensional o
(1D) systems. FIG. 1. Equilibrium spectrum for each of the three arrays with

To study energy relaxation we initially thermalize the sys-N =50 atT=0.5. Inset: frequency vs energy for the three potentials.
tem at temperatur& (see beloyw. We then connect the end
sites of the system to a zero-temperature reservoir via apprge prackets here and below denote an ensemble average,
priate damping terms and observe the thermal relaxation af |4 kg is Boltzmann's constant. We implement free-end
the array toward zero temperatuf£9,39,4Q. In order to boundary conditions¢o=x,; andxy=>Xy . 1, @ common set of
understand the role of thg various interactidgsiadratic, boundary conditions in relaxation studi(ev;t;e do stress, how-
quartig and of the localized modes that spontaneouslys, e that although boundary conditions do not strongly af-
emerge in the thermalization and relaxation process, we pefa.t equilibrium properties, they do strongly affect some re-
form a second numerical experiment where we inject, at thg,, o+ion dynamics For the integrations here and

center of the thermalized chain, a localized breatherlike exéubsequently we use the fourth-order Runge-Kutta method.
citation of energy muc_h hlgher than the thermal energy. The 1he equilibrium energy landscape of our arrays can be
dynamics of such excitations have been studied in some d@naracterized via appropriate correlation functions and/or as-

tail in a variety of contexts, but not in thermalized arrays.gqjated frequency spectra. A convenient choice is the rela-
Again, we observe how the thermal energy as well as thg, o displacement autocorrelation function

excitation energy relax toward equilibrium.

Section Il describes the preparation of our system. In Sec. N
[Il we discuss the relaxation behavior of an initially thermal- C(r)= 2 (Aj(t+7)A (1)), (4
ized chain connected to a zero-temperature reservoir. In Sec. (N-1) =

IV we consider the relaxation behavior when a high-energy
localized excitation is introduced in the thermalized chainwhereA,(t) is the relative displacement
Section V contains a summary of the results.
Aj(H)=xi(t) =X —1(1). 5
II. INITIAL CONDITIONS

. S . . The associated spectrum is
Different energy distributions in nonlinear arrays evolve P

quite differently[18,21,28,4], and therefore existing work is .
not sufficient to predict the relaxation behavior of initially S(w)zzf dr C(7)coswr. (6)
thermalized arrays. To thermalize the system to a given tem- 0
peratureT we augment the equations of motion resulting  Typical equilibrium spectra for the three chains are shown
from Eqg. (1) with the Langevin prescription connecting eachin Fig. 1. The temperature and other parameters are indicated
site to a heat bath: in the figure and caption. The harmonic spectrum has a peak
; nearw=+4k= /2, and this is also roughly the temperature-
e - independent spectral width. This spectrum can be calculated
Xi=- (9_xi[v(xi_X“1)+V(X‘+1_Xi)]_ YoXi+ (1), analytically [23], and one obtaingwith periodic boundary
(2)  conditions, but for sufficiently long chains the boundary con-
ditions do not affect the thermal equilibrium spectjum
Here V(x;—X;) is the FPU potentialyy, is the dissipation

parameter, and they;(t) are mutually uncorrelated zero- AvyekaT V21 1—cog 27a/N
centered Gaussiag-correlated fluctuations that satisfy the S(w)= Yo% 5 Z( Zq ) = (D
fluctuation-dissipation relation at temperatilte N 450 [ri(a)+ w?][r5(a) + »?]

(mi(1))=0, (7i(t)n(t'))=2y0ksTo(t—t"). (3)  where
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2 T
rlyz(q)=—§i \/(?) —4ksin2(Wq). (8)

The inset in Fig. 1 shows the frequency vs energy curves
obtained from the usual relation for the period of an oscilla-
tion in a potentiaV(y),

1.0 T T T

0.8

0.6 |

S
ur
E)=2T, «E) a[™ 2 o o
w =—_, T = ———— 4}
7(E) 0 V2[E-V(y)]
where the amplitudg,, .« is the positive solution of the equa- 02}

tion V(y)=E. Note that the frequencyw =k associated
with the harmonic oscillator in the inset lies in the middle of

this spectrum, and that the harmonic spectrum is temperatur %0y 5 500.0 1000.0 1500.0 2000.0
independent except for the overall coefficient. The tempera- t

ture dependence of the nonlinear array spectra is consider-

ably more complex. The purely hard FPU chashort- » > L

dashed lingsshows a broader spectrum, consistent with thd™tially each array is in thermal equilibrium at the temperature

fact that at energies around 0(&ur temperature oscillator |nd|9at_ed in the figure. The normalized energy of the harmonic ar-
. : . . . . ray is independent of temperature.

frequencies associated with a purely hard potential are higher

than that of a harmonic oscillatécf. inse). For a consider-  shown in Fig. 2. Associated with this evolution we define the

ably lower energy, safz=0.1, the typical frequency associ- time-dependent spectra

ated with a purely hard oscillator in the insetlg@ver than

that of a harmonic oscillator; the associated spectrum at a

temperaturd = 0.1 (not shown hergis narrower than that of

the harmonic chain. The mixed chdiong-dashed lineshas

a broader spectrum than the harmonic or purely hard arraywhere 7, ,=27/ @i, @and i, is chosen for a desired fre-

at any temperature, again consistent with the inset. Whereagiency resolution; the choice,;,=0.0982, corresponding

the harmonic array only supports extended magésnon$,  to 7,,,,=64, turns out to be numerically convenient. The

some of the frequencies for the purely hard and mixed arrayime-dependent correlation function is actually an average

are associated with nonlinear modes that incl(eipecially  over the time intervat—t, to t, where we have choseg

at high frequencigdocalized modes. Furthermore, it should =100 (short enough for the correlation function not to

be remembered that whereas each phonon mode is charactelange appreciably but long enough for statistical purposes

ized by a single frequency, each nonlinear mode in generalnd is defined as follows:

involves many frequencies.

FIG. 2. Energy vs time for various relaxing arrays wil+ 50.

S(w,1)=2 J T 4rC( 7 t)cosw, (10)
0

1 N'oq rat
C(Tat):mi;A—tL dr’ (Ai(t—7)A(t—7"— 1)),
(11)

Relaxation of thermalized arrays from an initial tempera’wheremzto— Tmax. In Fig. 3 we display the evolution of
ture T to zero temperature has been studied in systems witlo gpecira for each of the chains. The spectral rendition is
nonlinearlocal potentials[39,40. Some aspects of thermal e\ eajing because it clearly indicates that the decay mecha-
relaxation in FPU chains have recently been investigatedlisms for harmonic and each of the anharmonic arrays are
[19]; our results significantly clarify and expand on theseentirely different.

recent results. In particular, we provide more detailed insight  geyera) features of the energy decay curves are notewor-
into the mechanisms that contribute to the thermal relaxatloqhy' The energy in the harmonic arrésolid curve in Fig. 2

process. We also provide a more detailed analysis of thg - culated by Piazza et 41L9] to be given by
relaxation dynamics at long times.

As in previous relaxation studies, we disconnect the ther- E(t) .,
malized array from the temperatufeheat batl{i.e., we re- E(0) © olo(t/ 7o), (12
move thew;(t) and y, terms from the equations of motipn
and connect the ends of the chasites 1 andN) via a  wherel, is the modified zero-order Bessel function. At first
damping with ratey to a zero-temperature reservoir. This the decay is exponential with time constant=N/2y (7
causes the total energy of the chain to decay through these250 in the figur¢ and then at times larger than this time
end points. In all our simulations we sgt=0.1. We present the decay changes to/¢,) ~*%. The exponential decay time
several sets of figurgsll in dimensionless unijdo illustrate  is that associated with the lowest-frequency phonon modes
the relaxation behavior. Typical energy relaxation curves fosince they have the shortest decay times. The power-law re-
arrays averaged over initial thermalized configurations ardaxation arises from a cascade of different decay times of the

IIl. RELAXATION OF THERMALIZED ARRAYS
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FIG. 3. Time evolution of spectra for various relaxing arrays.
First panel: harmonic chain witk=0.5. Second panel: purely an-
harmonic chain withk’=0.5. Third panel: mixed chain witlk
=k’=0.5. The thin vertical line indicates the frequeney= 4k
= /2. Initially (t=0 curves each array is in thermal equilibrium at
T=0.5.

different phonon modes. Eventually the decay becomes ex-
ponential again when only the highest-frequency modes sur- =
vive, but the energy in our chain is too low at that point to be

picked up within our precision. A well-known but important =

point needs to be made here so that the contrasting behavior = ————

of anharmonic chains can be clarified later: the phonons in
the harmonic chain are of courselependendf one another,

and each has to be absorbed by the cold reservoir separately.
As noted above, each is absorbed on a different time scale. In

— t=0 ]
—-=— 1=2000

S(w,1)

3.0

FIG. 4. Schematic representation of the spectral relaxation chan- e —— = == =
nels. The spectra of Fig. 3 for timés-0 andt=2000 are shown FIG. 5. Energy landscapes of 30-site arrays initially thermalized
again here, and the arrows depict the pathways of different spectralt T=0.5. Time advances along theaxis until t=1000. A gray
components. Downward arrows indicate absorption by the cold resscale is used to represent the local energy, with darker shading
ervoir, while angled arrows denote degradation from one spectratorresponding to more energetic regions. First panel: harmonic
region to another. The relative lengths of the arrows represent thehain, k=0.5 andk’=0. Second panel: purely anharmonic chain,
associated rates. k=0 andk’=0.5. Third panel: mixed chairk=k’=0.5.
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the first panel of Fig. 3 we show the spectrum of the har-about localized states. In particular, it is known that higher-
monic chain at different times during the relaxation processfrequency and/or higher amplitude localized modes can
starting with the initial thermalized spectrufim this figure ~ move at higher velocitie§18,21,23. It is also known that

S(w,0)=S(w) of Fig. 1]. The evolution confirms thdbw  While in motion such modes lose energy through collisions
frequencies decay more rapidly in the harmonic chain—thavith other excitations. Also, Fig. 2 shows a faster decay at
spectrum is absorbed by the cold reservoir from the bottonfligher temperatures, which is consistent with our observa-
up, and by timet=2000 only the longer-lived band-edge tions elsewhere that the speed of an injected pialsd there-

modes remain in the system. The spectral decrease occUf¥€: We conjecture, the speed of a moving localized mode

“vertically,” that is, each spectral component decays directly!n these arrays increases with tempera{22. The energy
into the reservoir; this is shown schematically in Fig. 4,!andscape associated with these descriptions is shown in the

where the downward arrows represent absorption by the re§€cond panel of Fig. 5. _ _ _
ervoir and their relative length schematizes the absorption Almost all FPU analyses in the literature involve arrays
rate. The first panel of Fig. 5 shows the time evolution of thefhat include both harmonic and anharmonic contributions,
local spatial energy landscape using a gray scale to contralt!t the distinct role of each has not been clarified. Our re-
higher-energy(darke from lower-energy(lighter) regions. laxation results show an interesting sequence of relaxation
The purely hard array relaxes more rapidly than the harpehawors. At early times the mixed array relaxes more rap-
monic and the energy decays essentially exponentially, indiidly than the harmonic, because there are low-frequency ex-
cating a single predominant decay channel. Note that being @tations close to harmonic phonofisut note that phonons
purely quartic chain, there are no phonons in this system. Ware no longer exact normal modesd high-frequency exci- -
also observe in the second panel of Fig. 3 that higheri@tions in the system. Energy relaxation and decay thus in-
frequency excitations relax first. At time= 2000 only low- volves both of the mechanisms discussed above. Again, be-

frequency excitations remain in the chain. This behavior i€@use initially the high-frequency modes move more rapidly
exactly opposite to that of the harmonic chain. We find tha@t higher temperature, the early time decay is faster at higher
the dominant relaxation mechanism is for the high-frequencyemperatures. That both low- and high-frequency modes re-
portions of the spectrum to degrade into lower-frequency ex'@x rapidly is clearly seen in the third panel of Fig. 3, which
citations, as schematically indicated by the sloped arrows iijuickly loses both low@s in the first pangland hightas in

Fig. 4. Such a degradation is possible here since individudf® second panefrequency portions of the spectrum. In the
frequencies are not associated with normal modes in the anergy decay curve there is then a crossing after which the
harmonic system. In turn, these lower-frequency excitation&1xed chain relaxes much mosowly than the harmonic
decay into the reservoir. Specifically, the high-frequency@nd the purely anharmonic. This occurs when the low-
components of the spectrum are mainly due to mobile localfrequency modegphonons have essentially all decayed, and
ized modes that degrade into lower-energy excitations a@nly certain high-frequency spectral components remain, as
they move and collide with one another, and this degradatiof/®arly seen in the spectrum. We conjecture that these persis-
occurs with a relatively short-time constant that is shorter fof€Nt modes are localizegliasistationarybreathers that decay
localized modes that have a higher velocity. The lower-8Xtremely slowly, and again pursue this notion in the next
frequency excitations are in turn absorbed into the cold res3€ction. The associated decay schematic is illustrated in Fig.
ervoir but continue to be replenished through the degradatiofl- Note that with increasing temperatures the stationary
process. We conjecture that the absorption of the lowestreathers are more energetic, leading to a slower decay of the
frequency components defines the observed exponential dital chain energy atlong times. Indeed, we find that the very
cay constant of the total chain energy. However, and impor_—SIOW decay at long times is a stretched exponential, as shown
tantly, among the low-frequency excitations are some that" Fig. 6. Here we plot
persist for a very long time, certainly beyond the times of our

simulations. These, which are the only remaining spectral B(t)=——In
components at timé= 2000, are “labeled” by short down- dint
ward arrows in the relaxation schematic and include rather

stable breather and/or soliton modes that move very slowlyf E(t)/E(0) is of stretched exponential form dxp(t/7)“],

and are localized away from the boundaries. At the saméhen B(t) =o. Figure 6 shows the stretched exponential be-
time, some portion of the high-frequency spectrum is alsdhavior for various arrays and clearly points t@-@ependent
directly absorbed by the cold reservdindicated by the but N- and y-independent exponent. The decrease of
short downward arrow in the high-frequency region of Fig.with increasing initial temperature is explained by the greater
4). For example, when a highly mobile localized excitation stability of more energetic breathers. TNeand y indepen-
reaches a boundary it may be absorbed directly by the resedence is explained by the fact that the rate-limiting step in
voir (or it may be reflected and return into the chain withthe slow relaxation is the leakage of the breather. The low-
some energy logsThe role of high-frequency mobile modes energy output of this leakage is quickly absorbed by the cold
and of low-frequency slowly moving or stationary modes inreservoir[40].

this picture will be tested in more detail in the next section, These results immediately raise a question that in hind-
where we explicitly inject a high-frequency localized mode sight pervades a number of results throughout the literature:
into the array and observe the relaxation dynamics. We dd both the purely quartic chains and also the mixed chains
note here that our picture is consistent with known factssupport high-frequency localized solutions, why do these

( E(t)
—In m

} . (13

066608-5



R. REIGADA, A. SARMIENTO, AND KATJA LINDENBERG PHYSICAL REVIEW E64 066608
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FIG. 6. Plot of B(t) as a function of time for various mixed ) ) ) )
arrays. A flat line belows(t)=1 indicates stretched exponential ~ FIG. 7. Time evolution of spectra for various relaxing arrays
behavior. initially at T=0.1 with a high-amplitude localized mode injected at
t=0. First panel: harmonic chain witt=0.5. Second panel: purely

. . . nharmonic chain witkk’=0.5. Third panel: mixed chain witk
modes relax so rapidly in the former but seem to persist fo?’i k’=0.5. The thin-vertical line again indicates the frequemcy

very long times in the latter? The answer lies in the crucial _ -~
. . =4k=+2. Thet= h .
role of the quadratic terms of the potential and the conse- V2. Thet=0 spectra are not shown

quent behavior of the low-frequency portion of the spectrumcifically, we inject an odd-parity excitatiotamplitudeA at
When localized solutionénreather}sare sufficiently strongly  sjte N/2 and— A/2 at each immediately adjacent $it€hese
perturbed, they respond by movifit8,21,29 and hence are  gisplacements lead to an exact breather solution for the in-
subject to the degradation process described earlier. In @raction potentiaV(x; — X _1) = (Xi—X;_;)" as n—w (as
mixed chain, the low-frequency excitatiofighonons that  oes the even-parity breather of amplitul@t one site and
can easily perturb breathers decay quickly, and at later times o gt an immediately adjacent sitand are quite close to
only the essentially unpgrturbed high—frequency breathers rgsyact for the quartic FPU potentipd2,43. The fate of the
main. These almost-stationary solutions of the system hardlyycitation as the entire system relaxes clarifies the roles of
move. Since localized breather modes tend to lose their efjne gifferent spectral components in the relaxation process.
ergy only while they move, these quasistationary breathergne excitation amplitude is sufficiently largé\ £ 2) to in-

can persist for a very long time. In the purely anharmonicg,re clear presence above the thermal background.

chain, on the other hand, there are no phonons and the low- |, the previous section we introduced the notion of local-
frequency excitations include slowly-moving quasistationaryj;eq modes as an important component in the thermal relax-

anharmonic modes that persist for a long time and that constion process of the FPU systems. We explicitly differenti-
tinue to perturb the high-frequency localized modes. Thesgtaq betweermobile and stationary localized modes, and
energetic localized modes thus continue to move and collidggted that energy loss occurs when a localized mode moves
with the low-frequency modes, resulting in degradation intoznq collides with other localized modes. We also stated that
lower-energy excitations. this energy loss occurs through degradation into lower-
The third panel in Fig. 5 shows the spontaneous appeafrequency modes. In order to focus on this mechanism with-
ance, slowing motion, and eventual stoppage of a breather igyt additional interference from the ends of the chain other

the mixed chain. It_ is this breather, abs_ent from the purelfhan the normal low-frequency decay processes discussed
hard array, thqt n"_namly leads to the persistent hlgh-freq_uencgar“er’ in this section we use relatively long chaims,
spectral contributions and to the extremely slow relaxation of_ 354 This is sufficiently long that we never see a high-

the mixed chain energy at long times. energy localized mode reaching a boundary site before it has
degraded or stopped moving.
IV. RELAXATION OF THERMALIZED ARRAY The motion of the injected excitation during the relaxation
WITH AN INJECTED LOCALIZED EXCITATION process is followed in two ways. As before, we obtain the

_ ) ) _spectrum of the chains at various timege Fig. 7. We also
In the previous section we portrayed a relaxation dynamigg|culate the mean-squared displacement
for anharmonic FPU arrays that involves a very specific view

of the roles of high-frequency localized modes, low- )
frequency anharmonic modes, and phonons. In order to fur- (x5(1)=
ther test these ideas, in this section we start again with the

thermalized chain, but now we inject a high-amplitude local-as a measure of the position of the excitati@a dispersion
ized excitation at timé=0 in the center of the chain. Spe- in the anharmonic chains is very smp]). HereN/2 is the

N 2
imax(t)_E > (14)
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FIG. 8. Typical injected breather trajectories. Upper panel: FIG. 9. Mean-squared displacement of a localized mode in vari-
purely anharmonic array. Lower panel: mixed array. ous FPU arrays at various temperatures. The short straight line is a
guide to the eye and has a slope of 3/2.

initial point of highest energy in the chain aing,(t) is the  turbed again and again by slow low-frequency localized ex-
point of maximum energy at time citations that collide with it and repeatedly set it in motion.

In a harmonic chain the progression is as expected for &hese low-frequency modes are precisely those that, as de-
harmonic system. The initial localized excitation spreadsscribed in the previous section, persist for a long time in the
quickly over the entire array and thus loses its localized charabsence of a harmonic component. This sequence of events
acter. The associated Fourier decomposition into phonoferves to confirm our thermalization analysis of Sec. Il
modes dictates the relaxation behavior seen in Fig. 7, which Mean-squared displacement results for a variety of pa-
is much like that seen in Fig. 3, except that the high-rameter combinations are shown in Fig. 9. The mean-squared
frequency(longer-lived phonon modes are now more popu- displacement is seen to follow the superdiffusive law
lated. (x2(t))~t* with «=3/2 over the entire lifetime of the exci-

In the purely anharmonic chain, shown in the secondation. This particular exponent is recovered for the purely
panel of Fig. 7, the initial excitation introduces frequencyquartic chain under all conditions that we have tested, that is,
components in a fairly broad spectral ran@ecluding fre-  independently of force constant, excitation amplitude, and
quencies well above the corresponding thermal rangart  temperature. Variations in parameters affect the breather ve-
of this spectral contribution is associated with an excitatiorlocity, which in turn modifies the coefficient af?, but not
that remains spatially localizethe rest appears because thethe power(a higher temperature, a stronger force constant,
injected excitation is not an exact mode of the thermalizedand a higher excitation amplitude all lead to higher veloci-
chain; whereas the localized mode appears with each realizties). Indeed, it does not even mattehenin the course of
tion, the other spectral contributions vary somewhat in detaithe relaxation process the localized excitation is introduced:
from one realization to anotheiConsistent with our descrip- its mean-squared displacement follows the above behavior
tion in Sec. Ill, the high-frequency components again relaxuntil the excitation is extinguished, again confirming that this
quickly, indicating an energy degradation of the high-behavior is mainly caused by the persistent low-frequency
frequency excitations into lower-frequency modes. The deexcitations.
tailed trajectory of the initial localized excitation is quite A model that leads to the observed power law and con-
interesting, and a few particular realizations are shown in théains the main features of the excitation collision picture was
upper panel of Fig. 8. After a short time the excitation begingecently developed in a different contgxd]. It describes a
to move in one direction or the other with equal probability light particle that moves with a constant speed among
(an initially even-parity excitation behaves very similarly but point scatterers arranged randomly on a line. The intervals
takes a longer time to begin to move because even-paritpetween scattering points,,, are independent identically
breathers are more stable in FPU chaiffhe motion con- distributed random variables described by a probability den-
tinues for a period of random duration. Then the excitatiorsity function u(&). If the density decays ag(&)~ & (*7)
stops moving for a random period, until it moves again inwith 1<y<2 when¢ is large, then the mean-squared dis-
either direction for a random period of time. While station- placement of the light particle goes &g?)~t*=t3"7. In
ary, we have observed thathatever its initial configuration, particular, wheny=3/2 thena=3/2 as in our results. This
even or oddl the excitation has even parity, but when it model, suitably modified, may describe our system. Our scat-
moves it alternates between even and odd parity. Furtheterers(low-energy breatheyslo move, but all that is required
more, the excitation only loses energy while in motion. Ato obtain the observed power law is that the times at which
detailed analysis reveals that the stationary excitation is pethey collide with the injected excitation be distributed ac-
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—4.0 - connected to a zero-temperature reservoir through damping
terms. In another scenario, we have introduced a high-energy
localized excitation in the thermalized array and have ob-
served the relaxation process and the fate of this excitation.
This second scenario serves to confirm our description of the
| dynamics of thermal relaxation. Throughout we have applied
free-end boundary conditions.

Our most salient results concern the role of harmonic con-
. tributions to the FPU potential as distinct from the thermal-
ization of an array. In other words, we emphasize that one
can equilibrate an array at a given temperature, whether or
not its interactions include quadratic interactions, and we
pose the following question: What exactly is the role of these
interactions?

We have confirmed that thermal relaxation in a purely
harmonic chain involves the sequential decay of independent
phonon modes starting with those of lowest frequency and

FIG. 10. Distribution of collision times of the high-frequency moving upward across the spectrum. We have also confirmed
localized mode in the purely anharmonic FPU chain for times muctthat the total energy of the array decays exponentially for
greater than the typical oscillation period of the breather. Theshort times and as an inverse power law at longer times, as
straight line has a slope of 5/2. calculated by Piazzat al [19]. When a localized excitation

is introduced in a purely harmonic array it quickly spreads
cording to »(t)~t~%? (in the work of Barkaiet al. [44], and loses any localized identity.
distance intervals and time intervals are interchangeable be- In a purely anharmonic chain there are no phonons, and
cause the scatterers are statiopaijhe quiescent periods the anharmonic excitations, in general, include localized
simply modify the coefficient of this and of the resulting modes. High-frequency spectral components include highly
mean-squared displacement distribution, but the pawés ~ localized modes that may be stationary but are easily set in
determined by the collision time distribution exponent. Nu-€ssentially ballistic motion by sufficiently strong scattering
merical results for the distribution of times between breathegvents. As a result, their net motion is superdiffusive. When
collision events are shown in Fig. 10. The data is ngisyd  not in motion these modes can retain their energy for a long
could of course be made smoother with more realizationstime, but while in motion they lose energy through collisions
but the confirming trend is clear. This is of course simplywith other excitations and eventually degrade into lower-
phenomenology, since we have no explicit dynamical mode€nergy excitations. The lowest-energy excitations decay into
to obtain this distribution. the cold reservoir, while other low-energy excitations persist

In the mixed chain, whose spectra are shown in the thirdor a long time in the chain. The spectral relaxation proceeds
panel of Fig. 7, the initial excitation again leads to the ap-mostly from the high-frequency end of the spectrum down-
pearance and persistence of high-frequency spectral compward. At long times the energy residue that remains in the
nents. Typ|Ca| trajectories of the highest-energy mode§hain in the form of Iow-frequency localized excitations that
(which here, too, remain localizgdre shown in Fig. 8. The move slowly is quite persistent but very small. To confirm
difference between the purely anharmonic and the mixedhis description we have observed the dynamics of an in-
typical trajectories are evident: whereas the excitations in thiected localized high-amplitude excitation. We observe that it
former continue to move until extinguished, the excitationsiS perturbed by the thermal excitations, which sets the
in the mixed chain slow down and eventually stop altogethepreather in motion. This motion alternates with quiescent
when all perturbing excitations have been swept out of thderiods, but resumes when the excitation is again perturbed
system. Once there are essentially no other excitations tgufficiently strongly. Since during its lifetime there is always
collide with a stationary breather, it remains in the system irf slowly moving thermal background, the breather continues
spite of the dissipative bath acting on its ends. This is comto resume motion until it disappears into the relaxing thermal
pletely consistent with the landscape shown in Fig. 7. Thdackground. The time dependence of the mean-squared dis-
mean-squared displacement in Fig. 9 clearly reveals this bélacement of the breather is remarkably universal over its
havior as well: the exponent begins at 3/2 but eventuallyentire lifetime, (x?)~t32 independently of initial breather

bends towards=0 when the breather stops moving. amplitude, temperature, and force constant. .
In a mixed anharmonic array the relaxation process in-

volves phononlike modeéwith the lowest frequencies de-
caying firs} and also high-frequency anharmonic modes
In this paper we have studied energy relaxation in one{with the highest frequencies decaying firsthe relaxation
dimensional nonlinear arrays with quartic interparticle inter-is at first rapid, but as the phonon decay “sweeps” the sys-
actions(Fermi-Pasta-Ulam or FPU arrgydn one scenario, tem clean of low-energy excitations, quasistationary high-
we have thermalized the arrays to a temperafuend then  energy breathers are no longer perturbed and remain essen-
observed the relaxation of the arrays when the boundaries atially stationary; the subsequent relaxation process is

In v(t)

3.0 40 5.0
Int

V. CONCLUSIONS
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exceedingly slow. When a high-energy localized excitation iszation and background sweeping processes that lead to a
injected in the mixed array, at first it is perturbed by thermalsimilar outcome. From a narrower perspective, there are a
excitations that induce motion. However, as the thermal exnumber of questions that remain to be explored, including
citations are swept out of the system through the harmonicelaxation in higher dimensions and the incorporation of
channel, the breather stops moving and survives for a vergnore realistic potentials.
long time, thus confirming the relaxation picture. Associated
with this description is a mean-squared displacement that at
first goes as(x?)~t*? but then becomes independent of
time. This work was supported in part by the Engineering Re-
From a broader perspective, we have shown that vibrasearch Program of the Office of Basic Energy Sciences at the
tional energy localization and persistence is aided by th&). S. Department of Energy under Grant No. DE-FGO03-
presence of an efficient mechanism to remove other backB6ER13606. Partial support was provided by a grant from
ground excitations that might perturb and/or destroy localizathe University of California Institute for Mexico and the
tion. In our specific model, localization is due to hard anhar-United StateqUC MEXUS) and the Consejo Nacional de
monic interactions and the removal mechanism involves &iencia y Tecnolog de Meico (CONACYT), and by IGPP
harmonic phonon channel, but one can envision other locablnder project Los Alamos/DOE 822AR.
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