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Energy-density spectrum of the vacuum around a cosmic string
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The explicit form of the spectrum of the energy density of the vacuum surrounding a cosmic
string as would be seen by an observer at rest is calculated. Spin-0, -4, or -1 massless fields are con-
sidered and it is found that the result is independent of the spin value. An interpretation which
differs from the one usually found in the literature is also given.

Among the interesting, fundamental issues raised by
the possible existence of cosmic strings and the new phe-
nomena predicted to occur as a consequence of the gravi-
tational field of a string lies the effect on the quantum
vacuum in the vicinity of a string. Although almost a de-
cade has elapsed since the possibility of string formation
was suggested1 and its possible cosmological relevance as-
sessed, most of the research on the influence of a
string is very recent, in particular the conclusion that an
energy density is “induced” by the strmg 1n the surround-
ing vacuum, even if the spacetime is flat.®

The most recent analysis known to the authors is main-
ly concerned with vacuum polarization, particle detectors
response, and the stress-energy-momentumn tensor.!>!4
However, with the exception of a particular case,'* the
precise form of the energy-density spectrum has not been
calculated in general.

It is the purpose of this paper to calculate explicitly the
form of the spectrum of the energy density of the vacuum
near a cosmic string as would be seen by an observer at
rest. The calculations that follow use a simple and
straightforward formalism that has been presented else-
where'® and which enables a direct and simple interpreta-
tion of the results. The analysis presented here is restrict-
ed to spin-0, —7, or -1 massless fields; the consideration of
other fields is left for future publications.

The metric describing the geometry of spacetlme
around a straight cosmic string at distances larger than
‘the radius of the string p, ( =Ipmp/mgyr ~10~% cm for
a typical energy scale of grand umﬁed theones"’
m gy ~ 10° GeV) is given by®10:16-21

2= —dt?+-dz?+dp>+p*d¢* , 1)

where ¢ is a cyclical coordinate with a period equal to
27 /v, v_'=1—4u, and uc?/G is the constant mass per
unit length of the string [ =A" mgyr/mp)*~107% for
A=10"? and mgyy~ 10" GeV]. This corresponds to a
locally flat spacetime that has a conelike singularity at
p=0 with an angle deficit ¢ =8mu.

The Wightman functions for a spin-0 field, solutions of
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the scalar wave equation in the spacetime represented by
(1), are given by”%12:22,23

1 v sinh{v0)

W:t , Ay : )
X )= g Sinh0 cosh(v6)—cos(vAg) @
where
coshO— Az* 4 p*+p'2—(t —t' Fie)

(4

2pp
and A¢g=¢—¢’. For an observer at rest, we choose the
points x =(r+0/2,p,¢,z) and x'=(r—0/2,p,$,z), ob-
taining

1 v vO4
W)= ;
(o)= 82757 sinho, coth 5 , 3)
where
. o+ie )
sinh(6, /2)= %

According to the formalism, we now need the Fourier
transform of the Wightman functions:

W)= [ " wHoedo @
which, for the present case reduces to (see the Appendix)
W *(w)=———L} (2wp) , , (5a)
8mp
W ~(0)=0, (5b)
where

I (t)=— —21VT£+2sin(w)1,V(t) ,
and I, is a function which is defined in the Appendix.

In general, the energy density is given by’

de.
dw

Therefore, around a cosmic string,

o~ _ .
=?[W.+(w)+W“(w)] . ' (6)
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de o’

-
do 277 27rwp
Thus, unless v is an integer, a cosmic string produces a
distortion on the wusual vacuum energy spectrum,
de /dw=*w® /27>, in a way which has been thoroughly

discussed elsewhere.'®
If wp << 1, Eq. (7) reduces to (see the Appendix)

sin(vm)I,(20p) | . (7

de w3
- = ' 8
while for wp >> 1, the asymptotic form of Eq. (7) is%*
de &
%=—'—2ﬂ2 ——-—*—2(77_@3 3172 cot(vw/2)
><sin(2wp+w/4)‘ . (8b)

Figure 1 shows a plot of (27%c3 /#w®) (de /dw) versus
wp/c for v=1.000004, a value derived usmg the esti-
mates mentioned earlier; the integrations in Eq. (7) were
performed numerically.

Similarly, the energy density for a spin-1 field is given
by25

1.0000030 .

dw

272¢3 de
hwd

1.0000015 | ' o
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FIG. 1. Energy-density spectrum of the vacuum surrounding
a cosmic straight string. The curve has been obtained with
v=1.000004 in agreement with the values mentioned in the
text. As a function of v the curve follows the same general pat-
tern, an increase in v merely increases the amplitude of the os-
cillations.
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___ﬁifw

)

—W(r4+0/2,7—0c/2)]do .
(9)

Since u#=(1,0) for an observer at rest, we only need to

calculate the Fourier transform of 3W* /dt. Now, since
W™ _ 30 dw*r
at a do ’
where sinh(84 /2)=i(o F i€)/2p, it follows that
iwo — ipﬁ
da_ l‘i dzi

=2ia)pf j:cos(zi)W"tdz:t , (10)

ziwpsin(z 4 )

[

dzi

where 6, =2iz, and I'* are the integration contours
shown in Fig. 2. Thus, exactly the same result as in the
scalar case is obtained: substituting (10) in (9), the energy
spectrum turns out to be as in Eq. (7).

For the electromagnetic (spin-1) field, the energy densi-
ty is given by?

de 1 ® 32
A kv iwo
do =

X[WHir4+0o/2,7—0/2)
—~W (r+0/2,7—0/2)]do .
(11)

This time, the only term that needs to be calculated is

w PWE d
f_w EYD) e’ U=frt§;:

2iwpsin(z.. )
xe  PIEE gy

+

d
sec(z 4 ) 4

= ——(2a>p)2fricos(zi YWEdz,, .
(12)

Substituting in (11), we again obtain the energy spectrum
of the scalar case, Eq. (7) and Fig. 1.

The energy density found to exist in the vacuum sur-
rounding a cosmic string can be interpreted in a way

COMPLEX PLANE COMPLEX PLANE
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FIG. 2. The integration contours used for evaluating the in-
tegrals in the Appendix. For practical calculations, it is con-
venient to deform I'* as shown.



which agrees with our previous work:'® the spectrum
given by Eq. (7) is a distortion of the (Lorentz-invariant)
zero-point field assumed by stochastic electrodynamics to
be the vacuum state. The distortion is created by the
gravitational field of the string only and no other process-
es such as energy induction or particle creation are neces-
sarily invoked in order to understand the result. The re-
sult being independent of the spin of the field does not
seem to be interpretable in a clear and simple way.

We gratefully acknowledge fruitful discussions with P.
C. W. Davies.
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APPENDIX

Integral (4) can be rewritten as -

v pw COtlvzye'™

8% ¥ — = sin(z4 )cos(z ) 5o

Wt w)=

where we have set s=0/2p, t=20p, z,=—i0,/2,
and thus sin(z,)=s¥Fie. Since s=sin(x-+iy)tie
=sin(x )cosh(y )+i[cos(x )sinh(y )te] we define the
curves I'* as those on which Im(s)=0, ie.,
I't:sinh(y )= Fe/cos(x), see Fig. 2. The integral then
becomes Egs. (5):

t .
W)= — —Y—x fr Meusmmdz=lj(t) where sin(z)=sin(x )cosh(y), .

+ sin(z)

87p

0 since I" can be closed in the upper semiplane without enclosing any poles .

The integral I} (¢) can be evaluated in a simple way. Deforming I't as in’Fig. 2, we get

ITt)y=—i [° cot[v(—m/2+iy)] —itcosh(y)
4 (1) zf_w cosh(y) e dy

w cosh(y)

+if - COt[V("T/Z'*‘iy)].citcosh(y)dy_’_z,n.l‘ Res {

or

sin[¢ cosh(y )]dy

I;L(zf)=.25in(1/77)f0°°

cosh(y)[cosh*(vy ) —cos¥(vr/ 2)]

e it sin(z)cot( vz)

sin(z)

z=0

I

_2m __ 2m | (A1)

= _—~— 4 2sin(vm)I, (),
v v

where it can be readily seen that I (¢)= —2t, and expanding sin[ cosh(y )] for ¢ << 1, one gets?$

dx

I} (t)=2t [——+
. T 2vcosa

v sin2a ) dx e
0o coshx —cosa 0 coshx +4cosa

=27t ,

where a=v/2, this expression leads to Eq. (8a) and the last expression in (A1) is the equation following Egs. (5), the

rest is just algebra.
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