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Breathers and thermal relaxation as a temporal process: A possible way
to detect breathers in experimental situations
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Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the
scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical
system. We briefly review the methods used in the analysis and characterize a breather in terms of
the results obtained with such methods. Our present work focuses on spontaneously appearing
breathers in thermal Fermi—Pasta—Ulam arrays but we believe that the conclusions are general
enough to describe many other related situations; the particular case described in detail is presented
as another example of systems where three incommensurable frequencies dominate their chaotic
dynamics(reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in
nonlinear systemsThis characterization may also be of great help for the discovery of breathers in
experimental situations where the temporal evolution of a local varitikéethe site energyis the

only available/measured data. ZD05 American Institute of PhysidDOI: 10.1063/1.1896265

The possibility of detecting and characterizing spontane-
ously formed breathers (highly localized modes) in non-
linear arrays via the algorithms and tools from time se-
ries analysis is investigated in detail. It is found that this
approach can be of great help in both tasks, especially
when one is dealing with experimental situations where
only a single, local variable (e.g., site energy) may be
measured with the required accuracy. It also provides a
way to confirm the chaotic character of the breather and
to complete its dynamical description. Additionally, it is
shown that spontaneous breathers in
B-Fermi—Pasta—Ulam arrays may be considered as an-
other example of the group formed by systems where
three incommensurable frequencies dominate their dy-
namics, a reminder of the mechanism proposed by Ruelle
and Takens for the onset of chaotic behavior.

I. INTRODUCTION

very complex(turbulen) when many frequencies are present.
In the early 1970s, Ruelle and Takens proposed that truly
chaotic time dependence can result after only a few
bifurcations® and offered a specific mechanism by which
this might occur. Subsequent work by Newhouse, Ruelle,
and Taken’ showed that, in a system with a phase-space
“flow” consisting of three incommensurable frequencies,
there exist arbitrarily small changes in the parameters of the
system which convert the flow from a quasiperiodic, three-
frequency flow to one which is chaaotic.

While there are experiments showing that such systems
can and do display chaotic behaviothere are others and
some numerical computations that fail to find chaos associ-
ated with three or more frequencfi‘—:m the 1980s, Grebogi,
Ott, and Yorké reported the results of numerical experiments
on a model system which was designed to have exactly three
frequencies and in which they could easily identify periodic,
two-frequency quasiperiodic, three-frequency quasiperiodic,

In the 1940s, Hopf described the bifurcation which re-and chaotic behavior. More important, they measured a prob-

sults from the introduction of a new frequency into the dy-ability for the existence of chaos as a function of the strength
namics of asysterﬁthis work led Landau to conjecture, as a of the nonlinear coupling between the various modes, and
possible mechanism for the onset of turbulence, the succefsund that chaos appeared to have zero measure until the
sive destabilization of fluid modes of incommensuratecoupling was almost 3/4 of the critical coupling. Further
frequencf. Accordingly, as a stress parameter of the systemefinement of the Ruelle—Takens scenario is found in experi-
is increasede.g., the Reynolds numbeisuccessive discrete ments carried out during the late 1980shere the transition
frequencies appear in the Fourier power spectrum of the fluitb chaos follows this route although only a very small por-
variables along with their integer harmonic sum and differ-tion of the parameter space is occupied by ch#uws chaotic
ence combinations, making the system’'s time dependencdeansition is via an exchange of stability between states
which have phase locked to two-frequency quasiperiodicity
dpresent address: Atmospheric, Oceanic & Planetary Physics, Clarendon _Recently’ _It hf(l)S been found that breathers do _ShOW a
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Similar behaviof*® another example where, as will be
b)(lilfecst:a%rt]IZdrg?g:s;a'l?ﬁe@;gféiafézzratory Imperial College, University OShOWﬂ in the fOllQWIﬂg, the number of relev{-;(mcomm(-en_ :
London, Prince .Consort Rd., London SW? 2BZ, UK; ele<’:tronic mail: Eurable} freq.uenues involved in the chaot|c Qynamlcs IS
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another example in which the chaotic behavior of the whole
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system is characterized by a finite and small number of in- 3000+
commensurable frequencies; its evolution starts with a ther-
mal distribution of energy and moves into states where most 2500
of the energy is concentrated in a highly localized mode: a
breather initially moving(and showing a quasiperiodic be- 2000

havior in time, alternating with resting stage@here it

looks periodic in spage after the small initial transient, the _§ 1500+

evolution will be shown to be governed by a dynamics de- =

termined by three frequencies and characterized as chaotic 1000+

by the fact that its first Lyapunov exponents are positive.

Eventually, the breather will decay since the system must 500+

reach equilibrium at the particular value of the temperature = =

bath it is immersed in, a process that is consistent with its 0- 3 6 9 12 15 18 21 24 27 30

chaotic dynamics and is due to the loss of energy via bounc-
ing at the boundaries and possible collisions while in motion
with Iow—frequency phonons that might have survived. FOI’FlG-Hl- (hCoIor |onlidne Energy Iar;]dscape of SO;:it(le( mixed relaxing harray

- . . initially thermalized atT=0.5. Other parameter&=k’'=0.5, y=0.1. The
the fu'! description and detajlls of the a‘_naIySIS and the mle%orizontal axis indicates the position along the chain and time advances
that different modes play in harmonic, anharmonic, andalong the vertical axis fror=0 until t=3000. An intensity scale is used to
mixed systems, the reader is referred to Ref. 9, and espé¢epresent the local normalized eneryt) Eq. (3), with higher intensity
cially to Ref. 10. It must be stressed that we are using tr1§orresponding to more energetic regions; color figure available for the on-

. ’ ’ . i _line edition.

energy in the breather as a representative variable to describe
the dynamics of the whole system because it contains most
of the energy present in the system and thus is much easier {0 \opEL SYSTEM
measure it and follow its evolution in comparison to the _ _
energy in the other sites; we do not neglect these other sites In the present study, we shall consider the energy in each
and their dynamical influence since the breather keeps intene of the oscillators in a nonlinear array as the data that
acting with them and participating in the collective behavior'epresent the time series under analysis; the main reason for
at all times. this selection is due to the fact that the energy is one of the

The first reference to chaotic breathers is probably thafnost accessible variables for experimental, precise measure-
of Cretegnyet al.™ where they studied the breathers that Ments. As already mentioned, we shall use the breather found

appear in a rather different Fermi—Pasta—Ulam system. Thig Refs. 9 and 10 for @-Fermi-Pasta-UlartFPU) relaxing
main differences are(i) their isolated system considers pe- array with 30 qscnlators and shown for a longer lapse in F|g..
riodic boundary conditions while the case analyzed in thel: Boundsry 3';?3 a(;g cpnqected to a zer?]—tempergture ]?nw—
following appears in a system with free-end boundary site{OnNMent by adding dissipation termgXx; to the equations o

connected to a zero-temperature environment that allows fd?“?tion of these sites. The equations of motiqn are.integrated
relaxation via energy dissipation at these sitéi; their using a fourth-order Runge—Kutta method with a time inter-

— 4 . ..
simulations adopt as initial condition the highest frequencyvaI At=5x 10, which assures a precision of at least ten

o : : . significant figures over all time ranges reported herein; be-
(7=) mode:x;=(-1)'a, wherex; is the displacement of par- . .
ticle i from its equilibrium position and is its amplitude S0 of this small value fakt, the fact that positions, ve-
(si this i d t sol E’ th dd I P ¢ Ifcities, and energies have to be stored for all sites at every
S'.”C'at |sth|s anlex_at_c solu '03’ teyda ; etl)_ls_mathamouré 0 tep of integratior{implying a considerable amount of stor-
n(;ﬁe, 0 the ve OCI' |esh In order 1o .e.s”a 'r'lze I? ”;O e age for large arraysand the fact that these highly localized
Wh'e n oulr ex?mphe,t e system Is |n|t|§|\ y,t erTalze atamodes decay exponentially in tim@vith comparatively
chosen value for the temperatufe(details in Refs. 9, 12, on0mous time constants, of the order of%8%,%° we are
and 13 and then allowed to relax(iii) their resulting

not able to follow the evolution of the breather up to its

breather is never at rest and propagates in general with aé'omplete disappearance. Such a smalls necessary to ob-
most the same spedith modulug, while the breather in our

tain reliable values in the calculations; the best example is

example is able to move or remain at réas a result of the  provided by the derivation of the first Lyapunov exponents
interactions with the energy remaining in the sites not di-sec. |11 D).

rectly involved in the breathgrlt must be mentioned that One can easily note in Fig. 1 the quick decay of long-
according to Ref. 10, boundary conditions do not stronglyyavelength phonons and the persistence of certain high-
affect equilibrium properties but do affect relaxation dynam-frequency spectral components. The harmonic part of the
ics. interaction allows the relaxation process to sweep the system
The finding of very similar mechanisms for some of the clean of the excitations that most readily perturb the sponta-
main general evolutionary paths, those which are present ineously created breather, making it possible for the breather
the two types of system just mentionéelach type distin- to persist. Even though the spontaneous creation and further
guished by the main differences mentioned egrlishows evolution of the localized mode are a consequence of the
that breathers are quite robust structures that appear spontmllective dynamics of the system, involving all oscillators,
neously and are really ubiquitous, chaotic modes. one can see in Fig. 1 that after the transient lafuheing

Oscillator
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FIG. 2. Local normalized energy as a function of time
for the oscillator at sites 2@ray) and 21(black. Note

in both sites, the two stages where the localized mode
stops moving: a resting breather with its corresponding
oscillations containing most of the energy in the sys-
tem, and the almost nu{undetectableenergy that re-
mains in these sites when the breather is in motion
(te[1500,1800).
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which some energy is lost by dissipation at the boundary!l. BREATHERS AT REST
siteg, and once the breather is well established as a highly

localized mode, there is not much energy in the sites whic A
are not directly involved in the breather structure. This l‘ea2 Or—tZeC‘a[fzoorég [36;0%; %{ﬁi?éfz?: 25;2322 i)gleg stliﬁ?ts)elzgs_l

. f
ture enab_les us to. use th? energy in the breather. as the d"1§‘rjzled. We shall also make a distinction between the two cen-
representing the time series and asserts the validity of th

tools employed in the analysis. Note, however, that even at
much longer times, there are some lapses where high-

There are two such situations: a first resting stage in sites

0-07 T T T T T T T T T T T T
frequency spectral components appear outside the breathe .
(tenuous shadow in sites 26—28 close to the top of the figure  0.06 -
indicating that the rest of the system is still participating in :
the dynamics; it must also be recalled that while these com- 4, 0.05 i
ponents stay static, they do not perturb the localized mode8 44 _
unless the moving breather collides with thémaces of the %_ .
collisions with other modes that set the breather in motion or g 0.03 -
stop it can be clearly seen in Fig).1 < -
. . . 0.02 -
The local energy is customarily defined as ]
5 0.01 | -
1 1 m ‘ )

Ei(t) =_—+ _V(Xi+1 - Xi) + _V(Xi - Xi—l) (1) 0.00 s pohy J(w ) L 1 . s I

2m 2 2 00 01 02 03 04 05 o.;s2 0.7 08 09 1.0 1.1 1.2

wherey; is the displacement of particldrom its equilibrium wen

position,N is the number of site$/(z) is the FPU potential, 0.07 ————————
K K 0.06 -
V(2= -2+ 2, ) :
2 4 0.05 -
() .
and k and k’ are the harmonic and anharmonic force con- 'g 0.04 -
stants, respectively. In what follows, we shall consider the%_ :
local normalized energy: E 0.03 -
0.02 _
&(t) ;
BN =gy (3 oot j
Ei:]_ & (t) ’ R
. . . 00 “l ! 1 1 1 &L_

of a particular site and therefore we shall drop the subindex 0.0 01 02 03 04 05 0.7»2 07 08 09 1.0 1.4 1.2

/2T

In our example, the spontaneously created breather in-
vol\{es three OSCI!latorS while in motldndd-parlity and four FIG. 3. Fourier transform of the time series shown in Fig. 2 for site 21 and
oscillators when it stop&even parity; we shall first concen- te[640,1440, i.e., first resting stage of the breather, and for site 20tand
trate our analysis on oscillators where the localized-energy: [2000,3000 or second resting stage; both sites are in the center of a

: : : : : - breather. Note that for the second stdlgever pane), the intermediate fre-
mode stops for a certain lapse and its breathing is conspic Fiency (ioy/ 2) becomes less relevant than the highest tng2s), an

ous; the reason for this being that iff is ther_‘ when One Cakhterchange that takes place as the breather starts m@éng.470, 1900,
easily apply the tools employed for time series analysis.  Sec. V).
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0.9 + « Oscillator 19 % e
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08 Oscillator 18 . A,,:b,;_' .
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] . ..',':g:'“ FIG. 4. Return maps for the oscillators in sites 18
0.6 ° . £ oot : (black points, lower left clustgrand 19(gray points,

] . OO upper right clusterfor t € [2000,3000 or second rest-

E 0351 S98 ing stage. The graph shows the energy extrema in one
n 1 e oscillator, E,,, vs the previous extrema in the same os-

0.4 -

cillator, E,-;. Note again the difference in the range for
the variation of the amplitudes of central oscillators
(site 19 in this caseand that for the variation of the
amplitudes of adjacent oscillatof®8); this difference is
already present in Fig. 2.

tral oscillators that form the main body of the breather  The tools used for the analysis of time series are a cus-
(where most of the breather energy is concentyaded their  tomary content of many present day textbooks; we use a free
corresponding two adjacent oscillatdrghere the amount of package designed and described by Hegger, Kantz, and
involved energy is smaller The qualitative dynamical be- Schreiber* which is probably the most complete package of
havior of the central oscillators is very similar and indepen-strategies and algorithms available.
dent of the resting stage of the breatligites 21 and 22 in
the first case and 19 and 20 in the segofidhe same is true
for the corresponding adjacent oscillatésges 20 and 23 for
the first stage, and 18 and 21 for the second)ogeantita-
tive differences are evaluated in the following sections.
The local normalized energy as a function of time is  The easiest well-known procedure to begin the analysis
shown in Fig. 2 for the oscillators at sites 20 and 21 whichis to calculate the Fourier transform of a time series to obtain
interchange their roles in the two resting stages of thehe number of frequencies involved in the dynamics and their
breather: site 20 is an adjacent oscillator in the first stage ancbrresponding values. Figure 3 shows a typical graph of the
a central oscillator in the second one, while site 21 goes fromesults where one can easily detect several values; in order of
a central oscillator in the first stage to an adjacent oscillatorelevance during the first resting stagmight in the graph
in the second one. these values arew;/27=0.0122, w,/27=0.0722, w3/ 27

A. Number and values of the frequencies involved in
the dynamics

4.5
| ]
4.0
] .
3.5 1 |
g a
3.0 \-‘
] '_ FIG. 5. Mutual information method applied to the data
2.5 1 . of the first resting stage plotted in Fig. 2, site 21. Simi-
I(T) ) lar results are obtained for the other oscillators involved
2.0 + in the main central body of the breather while it is at
A rest. The existence of a first minimumat 50 is easily
1.5 1 spotted; this value will be used in reconstructing the
A attractor shown in Fig. 6.
1.0
0.5
0.0 —————— T
-20 0 20 40 60 80 100 120 140 160 180 200 220
T
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E (t-27)

FIG. 6. Reconstructed attractor it? for E(t) at site 21
and t €[640,144Q (first resting stage, Fig.)2 The
value 7=50, obtained from Fig. 5 is used for this
reconstruction.

=0.5981, and two, much less intense values @ii27 local normalized energy for the same sik}), (i.e., when
=0.5289(=(w3—w,)/2), and w3/ 7; all values with a pre- the site’s kinetic energy is null and there is only the coupling
cision of £0.0005. energy of the site with its neighbgrsand the local maxima
From the analysis of the trajectories, one can see thaif E(t) occur at a time when the oscillator happens to be at
during the second resting stage, for example, sites 18 and 2f8e average value of its trajectofiye., when the site’s kinetic
oscillate in phase with a frequeney/ 4, while sites 19 and  energy attains its maximum value and the coupling energy is
21 also oscillate in phase with the same frequency but imull since the trajectories of the breather’s sites coincide at
antiphase with the first two sites. This allows one to identifythe average valye
w3/ 27 as the frequency associated with the kinetic energy of The oscillations observed in the trajectories are also
each individual oscillatofan oscillatory motionx(t) with ~ modulated byw,/27 (but now sites 18 and 19 are in phase
frequencyw, has an oscillating kinetic energyx?(t) whose  while sites 20 and 21 are also in phase but in antiphase with
frequency is &]. The local minima and maxima of a site’s respect to the first pair of siteand only slightly byw,/27
trajectory coincide with the local minima of the [sites 18 and 2019 and 2] now oscillate with a phase

1.0 S
]
0.8 -
0.6 -
ENN i FIG. 7. Number of false neighbors as
a function of the embedding dimen-
0.4 - sion m for the reconstructed attractor
in Fig. 6. It is clear that fom=3 there
1 are already no false neighbors.
0.2 4
] [
0.0 \l ] ] ] ] ] [ ]
' I ' | ' I ' I ' I ' I ' I ' I ' 1 ' I ' 1
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457 A= 0003751/t
max
5.0 -
5.5
for the oscillator in site 21 and

] FIG. 8. Largest Lyapunov exponent
S(e,m,t) 5,

€[640,1440Q, first resting stage. The

value in the upper right corner is cal-
6.5 4 culated according to the method men-
tioned in the text.

-7.0 -

75 T . , . r . :
0 100 200 300 400

Time

difference ofw and there is also a phase differencerd2 in ~ C. Time delay graphs
the oscillations of the first pair of sites with respect to the

We shall now devote our analysis to confirm whether our
second ong

time series is periodic or not by means of the useful graphi-
cal device consisting of plotting the time series using delay
coordinates. In our case, a delay-coordinate reconstruction in
k2 means plotting each value of the time series of the local

We now look for possible periodic or quasiperiodic be-normalized energyE(t) for one oscillatorversusa time-
havior using the return map method, where the local exdelayed version, and a twice delayed versigB(t),E(t
tremal values of the time series are plotted as a function of 7),E(t—27)), for a fixed delay timer. If the system was to
the immediately preceding extrema. In our case, we shalettle into a periodic state, the delay-coordinate points would
plot the normalized energy extrema in an oscillgdtenoted fit together in a loop that would make one revolution for each
by E,) as a function of the previous extrema in the sameoscillation in the time series, i.e., it would reproduce the
oscillator (E,-;). The return map for oscillators 18 and 19 is periodic orbit of the true system state space. In other words,
shown in Fig. 4. Note that this plot agrees with Fig. 2, whereperiodic motion inR* means that trajectories trace out a one-
one can see that a central oscillatsite 19 in the present dimensional curve of states throug.
case¢ has an amplitude that fluctuates between 0.5 and 1.0, For nonperiodic systems, however, the problem may still
approximately, while the amplitude of an adjacent oscillatorinvolve self-intersections of the state space curve. In order to
(site 18 varies from 0.0 to 0.4, approximately. remove them, we use am-dimensional delay plot which

Since in the case of a periodic dynamics this plot wouldconsists of the vector of delay coordinatég&(t),E(t
consist of single pointgwhose number would indicate the —7),E(t-27),...,E(t-(m-1)7)); attractors that are more
periodicity of the system we can rule out this possibility. complicated than simple closed curves will require more di-
Unfortunately, it does not seem adequate to try to use th&nensions to be untangled. In other words, we are performing
return maps for a clear distinction between quasiperiodic dya topological embedding of a compact sEtt), which
namics (where the return map would be a simple closedamounts to finding a one-to-one continuous function from
curve and probably chaotic dynamidgeturn map repre- the setE(t) to R™, wherem is the embedding dimension of
sented by an open thick curvehe data do not allow for a the set. A delay-coordinate embedding means that every state
trusty statement. The following analysis, however, will pro-of the system can be uniquely represented by the measured
vide a reliable answer. data because of the one-to-one property; furthermore, it can
be proved that a finite-dimensional attractor can always be
embedded in som&™ with m slightly larger than twice the
dimension of the attractor.

The proper choice of the delay timds quite important.
Site No. First stop Second stop If it is taken too small, there is almost no difference between
the different elements of the delay vectors and this redun-

B. Return maps

TABLE I. First Lyapunov exponent.

+ . . .
;g 8'88(1) Zg;g'ggg ;i dancy makes the vectors meaningless if the data are noisy
21 0.003 75+0.000 09 and the variation of the signal during the lapse is less

29 0.003 62+0.000 12 than the noise Igve!. In an experimental situation, the mini-
mum value forr is given by the sampling rate. On the other
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1.0
0.9 -
0.8 -I |
E(t) ‘ FIG. 9. Normalized energy as a function of time for the
center of the breather as it moves from sites 21-22 to
0.7 - sites 27-28t [1470,1632), and back to sites 19-20
‘F (te[1632,1895).
0.6 ‘
0.5 T T I T I T T T
1500 1600 1700 1800
Time

hand, if 7 is taken too large, the different coordinates may be  If 7=0, the joint probabilities reduce fw; =p;&; andl(7)
almost uncorrelated and the reconstructed attractor may begields the Shanon entropy of the data distribution. The value
come very complicated, even if the “true” underlying attrac-of the mutual information is independent of the particular
tor is simple(typical of chaotic systems where the autocor-choice of histogram if it is fine enough, and therefore, one
relation function decays fastUnfortunately, there exists no does not need to carry an index for the bin size. In the limit
rigorous way for determining an optimal value farMost  of large 7, E(t) and E(t+7) have nothing to do with each
suggested methods, however, yield values of similar magniether andp;; factorizes top;p;, and|(7) becomes null. The
tude, and this allows one to start with an estimate and optifirst minimum of I(7) marks the time delay wherg(t+7)
mize its performance through variations of the initial esti-adds maximal information to the knowledge we have from
mate. Changing the time delay produces geometricallye(t), or equivalently, where the redundancy is minimal. Fi-
different but topologically equivalent sets in a delay graphnally, if the minimum lies at considerably larger times than
and the results should not depend too sensitivelyrsince, the 1/e decay of the autocorrelation function, it is wiser to
otherwise, the invariance under smooth transformationgptimize 7 inside this interval.
would be absent indicating that the analyzed object may not Figure 5 shows the results from the mutual information
be a true attractor. method for the first resting stage in Fig. 2, where one can

In order to choose an adequate valuefaising the time  read the value of~ 50 for the first minimum of the curve.
series data, we need first of all, to make sure that the attractor
is unfolded, i.e., its extension in all space dimensions should
be approximately the santé.For guantitative evaluations EE———————
one has to rely on the use of statistical methods, the mos
natural of them being the autocorrelation function which  0.06 1
gives hints about stationarity and typical time scales beside:
being intimately related to the shape of the reconstructec
attractor. For our particular case, however, since this proce:
dure is based on linear statistics and does not take into ac3
count nonlinear dynamical correlations, a better estimate willg,
be given by the first minimum of the time delayed mutual 5
information, regarded by some as the easiest method to get ¢ g2 4 ]
reliable value forr.*®

Creating a histogram for the probability distribution of

0.04 1

the data on the explored lapse, and denoting the probability L J\
i insi i i i 0.00 T e eppapanganpapn A M fespnnpont
that the signal assumes a val_u_e inside t_the_bln_of this o0 o2 04 A o' o 1 4
histogram byp;, and the probability tha(t) is in bini and
E(t+7) is in bin j by p;(7); the mutual information function /2w
I(7) is then given by FIG. 10. Fourier transform of the time series shown in Fig. 9 for the energy
in the center of the moving breather during [1400, 1650 (i.e., when the
IGCEDS pij (DIn p;j(7) - 2> piInp;. (4)  breather goes to the right of the array, for the second)ti@empare to Fig.
i [ 3.
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there are some dynamical systems in the literature that show
attractors whose topology may be used to extract useful
physical information that may be hidden in the complex dy-
namics of such systems; for our present case, the geometrical
form of the attractor suffices to show the roles of the three
dominant frequencies.

In order to test the chosen value for the embedding di-
mension,m, one may calculate the number of points in the
trajectory that are within a certain distance from any con-
spicuous point or region where it is not possible to discern a
self-intersection from a simple projectidthese points are
1.0 thus candidates to be real neighboBne then can see if this

0.9

0.8

E (t-27)

0.7

04, ST 0.9 number decreases as one increases the embedding dimen-
6 0.7 S Tl / ' sion, indicating that the candidates were false neighbors and
. - 06 A close to the conspicuous point/region due to a projection.
E(t) 0.9 Lo 05 Q/‘\\/ Figure 7 clearly shows that the adequate embedding dimen-

sion is indeed three; as previously mentioned, the attractors
FIG. 11. Reconstructed attractor of the time series shown in Fig. 9. Comparg] the other sites where a breather reSts_beha\.’e in a similar
to the attractor in Fig. 6. way and all have the same embedding dimension.

In Fig. 6 we present a delay-coordinate reconstruction irD. Lyapunov exponents
IR3 for the local normalized energf(t) in the oscillator at

. ; o The final question on the dynamical character, quasiperi-
e Dd0 LaaDuig i Yl o 0L 109 ofchaotc b, wi be cleary decide by he cal

' ) T ulation of the(largesj Lyapunov exponents. This is due to
same lapse and site 19 or 20 oz [2000, 3000 look simi- (larges} Lyap P

o the fact that any bounded trajectory, which is not asymptoti-
lar. The f_orm of the attractor shown in Fig. 6 clearly ShOW_ScaIIy periodic and has a positive Lyapunov exponent, is a
the C!omlna_nce of the three m_comr_nensurable frequencie aotic trajectory. Let us take two points in the state space,
mentioned in Sec. | and determm(_ad_ln Sec. lll A. It may besay E(t) and E(t'), which are initially very close to each
regarded as a cone V\.”th apex pointing left and downw"’_‘rdsother:|E(t)—E(t’)| < §y<<1, and denote the distance between
and pase close to being para_IIeI to E(t—_r):const plane; the trajectories emerging from these two points at a later
the _hlghest freque_ncyw3/_2w) is r_espon§|ble f_or the faster time, sayAs1, by 8=|E(t+A)-E(t'+A)|, which can be
motion that describes circular-like tra_Jectonébes_t Seen ..o from the time series. Then, if it is found thist 5,62,
close to the bage the next frequency in Qecree_xsmg Ord_erthe largest Lyapunov exponent is determined by
(w,/27) governs the amplitude of these trajectories allowing
for wider motion near the base, and the smallest frequency
(w1/27) controls the displacement of the circular trajectories

1
A=— lim In(—). (5)
form the base to the apex. It does not seem to be the case, but A -0 \ oo
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FIG. 12. Mutual information method applied to the data
1.5

used in reconstructing the attractor shown in Fig. 11.
Compare to Fig. 5.
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1.0
| ]
0.8
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FNN FIG. 13. Number of false neighbors as a function of the
0.4 embedding dimensiom for the attractor shown in Fig.
11.
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If N\ is positive, this means an exponential divergence otoming less chaotic with time, in agreement with the expo-
nearby trajectories, i.e., chaos. In practice, there will be fluchential decay(with enormous time constantfound in Ref.
tuations due to many effecfsbut it is possible to derive a 10.
consistent, and unbiased estimator of the largest Lyapunov
exponent by computing

IV. BREATHERS IN MOTION

Se,mt) = |n<i > E(t+A)-E(t + A)|) , Since the breather has not completely formed during the
Uyl first moving stage, i.e., the energy is still dispersed in several
6) sites, the computation of the interesting values becomes very
complicated and inaccurate. Therefore, we only analyze the
whereU,, is a neighborhood oE(t) with diametere, and the  second moving stagée= [1470,1895%, when most of the en-
angular brackets denote an average over both, different ergy is concentrated in the moving breather. Note that during
values and minimal embedding dimensiog. If S(e,m,t) this lapse, there is some energy that simultaneously travels to
exhibits a linear increase with identical slope formalb-m,,  the left of the array, bounces back at sites 3 and 4, and
and for a reasonable range @fthen this slope can be taken collides with the moving breather just before it stops again
as an estimate of the maximal expon&ntor our particular  (Fig. 1).
case, different values fam, (from 2 to 5 were used and For the analysis of the moving energy, one has to set a
averaged; however, since the previous analysis had givethreshold value in order to decide when the breather has left
three as the exact embedding dimension, and the averagedsite and moved to the next one in the sense of its motion.
result did not differ from this particular curve, we only This allows for the individualization of the energy values
present the result with this single value. Also, the routineghat form the time series of the moving breather. The thresh-
used for the calculation@Ref. 14 use five values foe that  old value used is only determined by the two sites that form
are automatically generated from the time series data. the heart of the breather, and corresponds to half the value of
Figure 8 shows the value of the largest Lyapunov expothe energy in the breather at a particular site, i.e., when the
nent for the oscillator in site 21 calculated via the methodenergy in a sitgsay site 2] decreases to less than half its
briefly sketched earliefdescribed in detail in Ref. 24 initial value (energy in site 21 when breather is at rest in sites
Values for the largest Lyapunov exponents at the twa20-23, one then considers that the breather has moved from
stages where the breather stops are given in Table I; the timgich site(21) and takes the value of the energy in the fol-
delay used in the analysis is the same for both resting stagéswing site in the sense of the motigsite 22 in our ex-
(7=50). ample. The energy contained in the two central moving sites
The fact that all first Lyapunov exponents are positiveof the breather does not decrease considerably during the
confirms the chaotic character of the system dynamics. Sindapse it remains in motion and constitutes, therefore, a reli-
a larger positive value for the first Lyapunov exponent im-able indicator of its presence.
plies a faster divergence in time for states initially close to  Figures 9—14 show the results of the analysis; the simi-
each other, one can see from the values in Table | that thisrity with the results obtained for the resting breather is
divergence is less strong for the second stop in comparison t&triking. The characterization of the moving breather with
the first one. One could say that the localized mode is bethe discussed tools indicates a behavior that is remarkably

E(t")eU,
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pare to Fig. 8 and the values in Table I.
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similar to the behavior of the breather at rest; comparingem are also very useful for the detection and characteriza-
these figures to those in Sec. lll, several deductions can b#@n of spontaneously appearing breathers in thermal nonlin-
made. ear arrays. All the calculations performed for the example

Starting with Figs. 2 and 9, it can be observed that ther@nalyzed in detail, agree and confirm the results previously
is a decrease in the amplitude of the oscillators in the centdpbund for the dynamics of the syste%This specific detailed
of the breather as time increases, and that this shrinkage alsase constitutes an example of systems whose chaotic behav-
reduces its value with time; this is consistent with the factior is governed by a small number of incommensurable fre-
that the breather evolves under the influence of all the oscilgquencies, a situation reminiscent of the mechanism proposed
lators in the system. by Ruelle and Takens for the appearance of chaotic behavior.

From Figs. 3(upper pangland 10 one observes that the The usefulness of the analysis is of particular importance
highest frequencyws/27) is now playing a more important in experimental situations where the local enefgya simi-
role than the intermediate orie,/2), an interchange that lar local variablg is the only quantity that may be precisely
remains for the next stop of the breather, Figurélddver = measured as a function of time. We thus propose the use of
pane); recall Sec. lll A. This is also clear in Figs. 6 and 11 the analysis and tools described in the previous lines as a
where the interchange in the roles played (l/27) and  reliable methodprobably the easiest opéor the study of
(wo/27r) is responsible for the modification in the form of the nonlinear experimental situations where one suspects that the
attractor. Figures 6 and 11 also show that the region occupieagbiquitous breathers might be present. The recent experimen-
by the attractor is shrinking with time, i.e., the breather con-al detection of localized modes in an antiferromagnetic spin
tinues participating of the collective dynamics and losinglattice'’ could provide another example for the application of
energy via interactions with other modes still present in thehe analysis just described.
system, mainly while in motion; the energy lost by the
breather will in turn be dissipated at the end-sites of theycxNOWLEDGMENTS
array.
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