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Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the
scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical
system. We briefly review the methods used in the analysis and characterize a breather in terms of
the results obtained with such methods. Our present work focuses on spontaneously appearing
breathers in thermal Fermi–Pasta–Ulam arrays but we believe that the conclusions are general
enough to describe many other related situations; the particular case described in detail is presented
as another example of systems where three incommensurable frequencies dominate their chaotic
dynamicssreminiscent of the Ruelle–Takens scenario for the appearance of chaotic behavior in
nonlinear systemsd. This characterization may also be of great help for the discovery of breathers in
experimental situations where the temporal evolution of a local variableslike the site energyd is the
only available/measured data. ©2005 American Institute of Physics. fDOI: 10.1063/1.1896265g

The possibility of detecting and characterizing spontane-
ously formed breathers (highly localized modes) in non-
linear arrays via the algorithms and tools from time se-
ries analysis is investigated in detail. It is found that this
approach can be of great help in both tasks, especially
when one is dealing with experimental situations where
only a single, local variable (e.g., site energy) may be
measured with the required accuracy. It also provides a
way to confirm the chaotic character of the breather and
to complete its dynamical description. Additionally, it is
shown that spontaneous breathers in
b-Fermi–Pasta–Ulam arrays may be considered as an-
other example of the group formed by systems where
three incommensurable frequencies dominate their dy-
namics, a reminder of the mechanism proposed by Ruelle
and Takens for the onset of chaotic behavior.

I. INTRODUCTION

In the 1940s, Hopf described the bifurcation which re-
sults from the introduction of a new frequency into the dy-
namics of a system;1 this work led Landau to conjecture, as a
possible mechanism for the onset of turbulence, the succes-
sive destabilization of fluid modes of incommensurate
frequency.2 Accordingly, as a stress parameter of the system
is increasedse.g., the Reynolds numberd, successive discrete
frequencies appear in the Fourier power spectrum of the fluid
variables along with their integer harmonic sum and differ-
ence combinations, making the system’s time dependence

very complexsturbulentd when many frequencies are present.
In the early 1970s, Ruelle and Takens proposed that truly
chaotic time dependence can result after only a few
bifurcations,3 and offered a specific mechanism by which
this might occur. Subsequent work by Newhouse, Ruelle,
and Takens4 showed that, in a system with a phase-space
“flow” consisting of three incommensurable frequencies,
there exist arbitrarily small changes in the parameters of the
system which convert the flow from a quasiperiodic, three-
frequency flow to one which is chaotic.

While there are experiments showing that such systems
can and do display chaotic behavior,5 there are others and
some numerical computations that fail to find chaos associ-
ated with three or more frequencies.6 In the 1980s, Grebogi,
Ott, and Yorke7 reported the results of numerical experiments
on a model system which was designed to have exactly three
frequencies and in which they could easily identify periodic,
two-frequency quasiperiodic, three-frequency quasiperiodic,
and chaotic behavior. More important, they measured a prob-
ability for the existence of chaos as a function of the strength
of the nonlinear coupling between the various modes, and
found that chaos appeared to have zero measure until the
coupling was almost 3/4 of the critical coupling. Further
refinement of the Ruelle–Takens scenario is found in experi-
ments carried out during the late 1980s,8 where the transition
to chaos follows this route although only a very small por-
tion of the parameter space is occupied by chaossthe chaotic
transition is via an exchange of stability between states
which have phase locked to two-frequency quasiperiodicityd.

Recently, it has been found that breathers do show a
similar behavior,9,10 another example where, as will be
shown in the following, the number of relevantsincommen-
surabled frequencies involved in the chaotic dynamics is
three. This is the reason to present this particular case as
another example in which the chaotic behavior of the whole
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system is characterized by a finite and small number of in-
commensurable frequencies; its evolution starts with a ther-
mal distribution of energy and moves into states where most
of the energy is concentrated in a highly localized mode: a
breather initially movingsand showing a quasiperiodic be-
havior in timed, alternating with resting stagesswhere it
looks periodic in spaced; after the small initial transient, the
evolution will be shown to be governed by a dynamics de-
termined by three frequencies and characterized as chaotic
by the fact that its first Lyapunov exponents are positive.
Eventually, the breather will decay since the system must
reach equilibrium at the particular value of the temperature
bath it is immersed in, a process that is consistent with its
chaotic dynamics and is due to the loss of energy via bounc-
ing at the boundaries and possible collisions while in motion
with low-frequency phonons that might have survived. For
the full description and details of the analysis and the roles
that different modes play in harmonic, anharmonic, and
mixed systems, the reader is referred to Ref. 9, and espe-
cially to Ref. 10. It must be stressed that we are using the
energy in the breather as a representative variable to describe
the dynamics of the whole system because it contains most
of the energy present in the system and thus is much easier to
measure it and follow its evolution in comparison to the
energy in the other sites; we do not neglect these other sites
and their dynamical influence since the breather keeps inter-
acting with them and participating in the collective behavior
at all times.

The first reference to chaotic breathers is probably that
of Cretegnyet al.,11 where they studied the breathers that
appear in a rather different Fermi–Pasta–Ulam system. The
main differences are:sid their isolated system considers pe-
riodic boundary conditions while the case analyzed in the
following appears in a system with free-end boundary sites
connected to a zero-temperature environment that allows for
relaxation via energy dissipation at these sites;sii d their
simulations adopt as initial condition the highest frequency
sp−d mode:xi =s−1dia, wherexi is the displacement of par-
ticle i from its equilibrium position anda is its amplitude
ssince this is an exact solution, they add a small amount of
noise to the velocities in order to destabilize the moded,
while in our example, the system is initially thermalized at a
chosen value for the temperatureT sdetails in Refs. 9, 12,
and 13d and then allowed to relax;siii d their resulting
breather is never at rest and propagates in general with al-
most the same speedsin modulusd, while the breather in our
example is able to move or remain at restsas a result of the
interactions with the energy remaining in the sites not di-
rectly involved in the breatherd. It must be mentioned that
according to Ref. 10, boundary conditions do not strongly
affect equilibrium properties but do affect relaxation dynam-
ics.

The finding of very similar mechanisms for some of the
main general evolutionary paths, those which are present in
the two types of system just mentionedseach type distin-
guished by the main differences mentioned earlierd, shows
that breathers are quite robust structures that appear sponta-
neously and are really ubiquitous, chaotic modes.

II. MODEL SYSTEM

In the present study, we shall consider the energy in each
one of the oscillators in a nonlinear array as the data that
represent the time series under analysis; the main reason for
this selection is due to the fact that the energy is one of the
most accessible variables for experimental, precise measure-
ments. As already mentioned, we shall use the breather found
in Refs. 9 and 10 for ab-Fermi–Pasta–UlamsFPUd relaxing
array with 30 oscillators and shown for a longer lapse in Fig.
1. Boundary sites are connected to a zero-temperature envi-
ronment by adding dissipation terms −gẋi to the equations of
motion of these sites. The equations of motion are integrated
using a fourth-order Runge–Kutta method with a time inter-
val Dt=5310−4, which assures a precision of at least ten
significant figures over all time ranges reported herein; be-
cause of this small value forDt, the fact that positions, ve-
locities, and energies have to be stored for all sites at every
step of integrationsimplying a considerable amount of stor-
age for large arraysd, and the fact that these highly localized
modes decay exponentially in timeswith comparatively
enormous time constants, of the order of 1013–14d,10 we are
not able to follow the evolution of the breather up to its
complete disappearance. Such a smallDt is necessary to ob-
tain reliable values in the calculations; the best example is
provided by the derivation of the first Lyapunov exponents
sSec. III Dd.

One can easily note in Fig. 1 the quick decay of long-
wavelength phonons and the persistence of certain high-
frequency spectral components. The harmonic part of the
interaction allows the relaxation process to sweep the system
clean of the excitations that most readily perturb the sponta-
neously created breather, making it possible for the breather
to persist. Even though the spontaneous creation and further
evolution of the localized mode are a consequence of the
collective dynamics of the system, involving all oscillators,
one can see in Fig. 1 that after the transient lapsesduring

FIG. 1. sColor onlined Energy landscape of 30-site mixed relaxing array
initially thermalized atT=0.5. Other parameters:k=k8=0.5, g=0.1. The
horizontal axis indicates the position along the chain and time advances
along the vertical axis fromt=0 until t=3000. An intensity scale is used to
represent the local normalized energy,Estd Eq. s3d, with higher intensity
corresponding to more energetic regions; color figure available for the on-
line edition.
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which some energy is lost by dissipation at the boundary
sitesd, and once the breather is well established as a highly
localized mode, there is not much energy in the sites which
are not directly involved in the breather structure. This fea-
ture enables us to use the energy in the breather as the data
representing the time series and asserts the validity of the
tools employed in the analysis. Note, however, that even at
much longer times, there are some lapses where high-
frequency spectral components appear outside the breather
stenuous shadow in sites 26–28 close to the top of the figured
indicating that the rest of the system is still participating in
the dynamics; it must also be recalled that while these com-
ponents stay static, they do not perturb the localized mode
unless the moving breather collides with themstraces of the
collisions with other modes that set the breather in motion or
stop it can be clearly seen in Fig. 1d.

The local energy is customarily defined as

eistd =
pi

2

2m
+

1

2
Vsxi+1 − xid +

1

2
Vsxi − xi−1d s1d

wherexi is the displacement of particlei from its equilibrium
position,N is the number of sites,Vszd is the FPU potential,

Vszd =
k

2
z2 +

k8

4
z4, s2d

and k and k8 are the harmonic and anharmonic force con-
stants, respectively. In what follows, we shall consider the
local normalized energy:

Estd =
eistd

oi=1

N
eistd

s3d

of a particular site and therefore we shall drop the subindexi.
In our example, the spontaneously created breather in-

volves three oscillators while in motionsodd-parityd and four
oscillators when it stopsseven parityd; we shall first concen-
trate our analysis on oscillators where the localized-energy
mode stops for a certain lapse and its breathing is conspicu-
ous; the reason for this being that it is then when one can
easily apply the tools employed for time series analysis.

III. BREATHERS AT REST

There are two such situations: a first resting stage in sites
20–23 for tP f640,1440g, and a second one in sites 18–21
for tP f2000,3000g; therefore, only sites 18–23 will be ana-
lyzed. We shall also make a distinction between the two cen-

FIG. 2. Local normalized energy as a function of time
for the oscillator at sites 20sgrayd and 21sblackd. Note
in both sites, the two stages where the localized mode
stops moving: a resting breather with its corresponding
oscillations containing most of the energy in the sys-
tem, and the almost nullsundetectabled energy that re-
mains in these sites when the breather is in motion
stP f1500,1800gd.

FIG. 3. Fourier transform of the time series shown in Fig. 2 for site 21 and
tP f640,1440g, i.e., first resting stage of the breather, and for site 20 andt
P f2000,3000g or second resting stage; both sites are in the center of a
breather. Note that for the second stageslower paneld, the intermediate fre-
quencysv2/2pd becomes less relevant than the highest onesv3/2pd, an
interchange that takes place as the breather starts movingstP f1470,1900g,
Sec. IVd.
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tral oscillators that form the main body of the breather
swhere most of the breather energy is concentratedd and their
corresponding two adjacent oscillatorsswhere the amount of
involved energy is smallerd. The qualitative dynamical be-
havior of the central oscillators is very similar and indepen-
dent of the resting stage of the breatherssites 21 and 22 in
the first case and 19 and 20 in the secondd. The same is true
for the corresponding adjacent oscillatorsssites 20 and 23 for
the first stage, and 18 and 21 for the second oned; quantita-
tive differences are evaluated in the following sections.

The local normalized energy as a function of time is
shown in Fig. 2 for the oscillators at sites 20 and 21 which
interchange their roles in the two resting stages of the
breather: site 20 is an adjacent oscillator in the first stage and
a central oscillator in the second one, while site 21 goes from
a central oscillator in the first stage to an adjacent oscillator
in the second one.

The tools used for the analysis of time series are a cus-
tomary content of many present day textbooks; we use a free
package designed and described by Hegger, Kantz, and
Schreiber,14 which is probably the most complete package of
strategies and algorithms available.

A. Number and values of the frequencies involved in
the dynamics

The easiest well-known procedure to begin the analysis
is to calculate the Fourier transform of a time series to obtain
the number of frequencies involved in the dynamics and their
corresponding values. Figure 3 shows a typical graph of the
results where one can easily detect several values; in order of
relevance during the first resting stagesheight in the graphd,
these values are:v1/2p=0.0122, v2/2p=0.0722, v3/2p

FIG. 4. Return maps for the oscillators in sites 18
sblack points, lower left clusterd and 19sgray points,
upper right clusterd for tP f2000,3000g or second rest-
ing stage. The graph shows the energy extrema in one
oscillator,En, vs the previous extrema in the same os-
cillator, En−1. Note again the difference in the range for
the variation of the amplitudes of central oscillators
ssite 19 in this cased and that for the variation of the
amplitudes of adjacent oscillatorss18d; this difference is
already present in Fig. 2.

FIG. 5. Mutual information method applied to the data
of the first resting stage plotted in Fig. 2, site 21. Simi-
lar results are obtained for the other oscillators involved
in the main central body of the breather while it is at
rest. The existence of a first minimum att,50 is easily
spotted; this value will be used in reconstructing the
attractor shown in Fig. 6.

023501-4 Castrejón-Pita, Castrejón-Pita, and Sarmiento Chaos 15, 023501 ~2005!

Downloaded 28 Apr 2005 to 132.248.41.205. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



=0.5981, and two, much less intense values at:v4/2p
=0.5289s<sv3−v2d /2pd, andv3/p; all values with a pre-
cision of ±0.0005.

From the analysis of the trajectories, one can see that
during the second resting stage, for example, sites 18 and 20
oscillate in phase with a frequencyv3/4p, while sites 19 and
21 also oscillate in phase with the same frequency but in
antiphase with the first two sites. This allows one to identify
v3/2p as the frequency associated with the kinetic energy of
each individual oscillatorfan oscillatory motionxstd with
frequencyv, has an oscillating kinetic energy~ẋ2std whose
frequency is 2vg. The local minima and maxima of a site’s
trajectory coincide with the local minima of the

local normalized energy for the same site,Estd, si.e., when
the site’s kinetic energy is null and there is only the coupling
energy of the site with its neighborsd, and the local maxima
of Estd occur at a time when the oscillator happens to be at
the average value of its trajectorysi.e., when the site’s kinetic
energy attains its maximum value and the coupling energy is
null since the trajectories of the breather’s sites coincide at
the average valued.

The oscillations observed in the trajectories are also
modulated byv1/2p sbut now sites 18 and 19 are in phase
while sites 20 and 21 are also in phase but in antiphase with
respect to the first pair of sitesd and only slightly byv2/2p
fsites 18 and 20s19 and 21d now oscillate with a phase

FIG. 6. Reconstructed attractor inR3 for Estd at site 21
and tP f640,1440g sfirst resting stage, Fig. 2d. The
value t=50, obtained from Fig. 5 is used for this
reconstruction.

FIG. 7. Number of false neighbors as
a function of the embedding dimen-
sion m for the reconstructed attractor
in Fig. 6. It is clear that form=3 there
are already no false neighbors.
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difference ofp and there is also a phase difference ofp /2 in
the oscillations of the first pair of sites with respect to the
second oneg.

B. Return maps

We now look for possible periodic or quasiperiodic be-
havior using the return map method, where the local ex-
tremal values of the time series are plotted as a function of
the immediately preceding extrema. In our case, we shall
plot the normalized energy extrema in an oscillatorsdenoted
by End as a function of the previous extrema in the same
oscillatorsEn−1d. The return map for oscillators 18 and 19 is
shown in Fig. 4. Note that this plot agrees with Fig. 2, where
one can see that a central oscillatorssite 19 in the present
cased has an amplitude that fluctuates between 0.5 and 1.0,
approximately, while the amplitude of an adjacent oscillator
ssite 18d varies from 0.0 to 0.4, approximately.

Since in the case of a periodic dynamics this plot would
consist of single pointsswhose number would indicate the
periodicity of the systemd, we can rule out this possibility.
Unfortunately, it does not seem adequate to try to use the
return maps for a clear distinction between quasiperiodic dy-
namics swhere the return map would be a simple closed
curved and probably chaotic dynamicssreturn map repre-
sented by an open thick curved; the data do not allow for a
trusty statement. The following analysis, however, will pro-
vide a reliable answer.

C. Time delay graphs

We shall now devote our analysis to confirm whether our
time series is periodic or not by means of the useful graphi-
cal device consisting of plotting the time series using delay
coordinates. In our case, a delay-coordinate reconstruction in
R3 means plotting each value of the time series of the local
normalized energyEstd for one oscillatorversus a time-
delayed version, and a twice delayed version:sEstd ,Est
−td ,Est−2tdd, for a fixed delay timet. If the system was to
settle into a periodic state, the delay-coordinate points would
fit together in a loop that would make one revolution for each
oscillation in the time series, i.e., it would reproduce the
periodic orbit of the true system state space. In other words,
periodic motion inRk means that trajectories trace out a one-
dimensional curve of states throughRk.

For nonperiodic systems, however, the problem may still
involve self-intersections of the state space curve. In order to
remove them, we use anm-dimensional delay plot which
consists of the vector of delay coordinatessEstd ,Est
−td ,Est−2td , . . . ,Est−sm−1dtdd; attractors that are more
complicated than simple closed curves will require more di-
mensions to be untangled. In other words, we are performing
a topological embedding of a compact setEstd, which
amounts to finding a one-to-one continuous function from
the setEstd to Rm, wherem is the embedding dimension of
the set. A delay-coordinate embedding means that every state
of the system can be uniquely represented by the measured
data because of the one-to-one property; furthermore, it can
be proved that a finite-dimensional attractor can always be
embedded in someRm with m slightly larger than twice the
dimension of the attractor.

The proper choice of the delay timet is quite important.
If it is taken too small, there is almost no difference between
the different elements of the delay vectors and this redun-
dancy makes the vectors meaningless if the data are noisy
and the variation of the signal during the lapsemt is less
than the noise level. In an experimental situation, the mini-
mum value fort is given by the sampling rate. On the other

TABLE I. First Lyapunov exponent.

Site No. First stop Second stop

19 0.000 98±0.000 11
20 0.001 42±0.000 21
21 0.003 75±0.000 09
22 0.003 62±0.000 12

FIG. 8. Largest Lyapunov exponent
for the oscillator in site 21 andt
P f640,1440g, first resting stage. The
value in the upper right corner is cal-
culated according to the method men-
tioned in the text.
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hand, ift is taken too large, the different coordinates may be
almost uncorrelated and the reconstructed attractor may be-
come very complicated, even if the “true” underlying attrac-
tor is simplestypical of chaotic systems where the autocor-
relation function decays fastd. Unfortunately, there exists no
rigorous way for determining an optimal value fort. Most
suggested methods, however, yield values of similar magni-
tude, and this allows one to start with an estimate and opti-
mize its performance through variations of the initial esti-
mate. Changing the time delay produces geometrically
different but topologically equivalent sets in a delay graph
and the results should not depend too sensitively ont since,
otherwise, the invariance under smooth transformations
would be absent indicating that the analyzed object may not
be a true attractor.

In order to choose an adequate value fort using the time
series data, we need first of all, to make sure that the attractor
is unfolded, i.e., its extension in all space dimensions should
be approximately the same.14 For quantitative evaluations
one has to rely on the use of statistical methods, the most
natural of them being the autocorrelation function which
gives hints about stationarity and typical time scales besides
being intimately related to the shape of the reconstructed
attractor. For our particular case, however, since this proce-
dure is based on linear statistics and does not take into ac-
count nonlinear dynamical correlations, a better estimate will
be given by the first minimum of the time delayed mutual
information, regarded by some as the easiest method to get a
reliable value fort.15

Creating a histogram for the probability distribution of
the data on the explored lapse, and denoting the probability
that the signal assumes a value inside theith bin of this
histogram bypi, and the probability thatEstd is in bin i and
Est+td is in bin j by pijstd; the mutual information function
Istd is then given by

Istd = o
i,j

pijstdln pijstd − 2o
i

pi ln pi . s4d

If t=0, the joint probabilities reduce topij =pidi j andIstd
yields the Shanon entropy of the data distribution. The value
of the mutual information is independent of the particular
choice of histogram if it is fine enough, and therefore, one
does not need to carry an index for the bin size. In the limit
of large t, Estd and Est+td have nothing to do with each
other andpij factorizes topipj, and Istd becomes null. The
first minimum of Istd marks the time delay whereEst+td
adds maximal information to the knowledge we have from
Estd, or equivalently, where the redundancy is minimal. Fi-
nally, if the minimum lies at considerably larger times than
the 1/e decay of the autocorrelation function, it is wiser to
optimizet inside this interval.

Figure 5 shows the results from the mutual information
method for the first resting stage in Fig. 2, where one can
read the value oft,50 for the first minimum of the curve.

FIG. 9. Normalized energy as a function of time for the
center of the breather as it moves from sites 21–22 to
sites 27–28stP f1470,1632gd, and back to sites 19–20
stP f1632,1895gd.

FIG. 10. Fourier transform of the time series shown in Fig. 9 for the energy
in the center of the moving breather duringtP f1400,1650g si.e., when the
breather goes to the right of the array, for the second timed. Compare to Fig.
3.
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In Fig. 6 we present a delay-coordinate reconstruction in
R3 for the local normalized energyEstd in the oscillator at
site 21 andtP f640,1440g using the value fort found in Fig.
5; reconstructed attractors of the oscillators in site 22 for the
same lapse and site 19 or 20 fortP f2000,3000g look simi-
lar. The form of the attractor shown in Fig. 6 clearly shows
the dominance of the three incommensurable frequencies
mentioned in Sec. I and determined in Sec. III A. It may be
regarded as a cone with apex pointing left and downwards,
and base close to being parallel to anEst−td=const plane;
the highest frequencysv3/2pd is responsible for the faster
motion that describes circular-like trajectoriessbest seen
close to the based, the next frequency in decreasing order
sv2/2pd governs the amplitude of these trajectories allowing
for wider motion near the base, and the smallest frequency
sv1/2pd controls the displacement of the circular trajectories
form the base to the apex. It does not seem to be the case, but

there are some dynamical systems in the literature that show
attractors whose topology may be used to extract useful
physical information that may be hidden in the complex dy-
namics of such systems; for our present case, the geometrical
form of the attractor suffices to show the roles of the three
dominant frequencies.

In order to test the chosen value for the embedding di-
mension,m, one may calculate the number of points in the
trajectory that are within a certain distance from any con-
spicuous point or region where it is not possible to discern a
self-intersection from a simple projectionsthese points are
thus candidates to be real neighborsd. One then can see if this
number decreases as one increases the embedding dimen-
sion, indicating that the candidates were false neighbors and
close to the conspicuous point/region due to a projection.
Figure 7 clearly shows that the adequate embedding dimen-
sion is indeed three; as previously mentioned, the attractors
in the other sites where a breather rests behave in a similar
way and all have the same embedding dimension.

D. Lyapunov exponents

The final question on the dynamical character, quasiperi-
odic or chaotic behavior, will be clearly decided by the cal-
culation of theslargestd Lyapunov exponents. This is due to
the fact that any bounded trajectory, which is not asymptoti-
cally periodic and has a positive Lyapunov exponent, is a
chaotic trajectory. Let us take two points in the state space,
say Estd and Est8d, which are initially very close to each
other:uEstd−Est8du,d0!1, and denote the distance between
the trajectories emerging from these two points at a later
time, say D@1, by d= uEst+Dd−Est8+Ddu, which can be
read from the time series. Then, if it is found thatd.d0e

lD,
the largest Lyapunov exponent is determined by

l =
1

D
lim

d0→0
lnS d

d0
D . s5d

FIG. 11. Reconstructed attractor of the time series shown in Fig. 9. Compare
to the attractor in Fig. 6.

FIG. 12. Mutual information method applied to the data
used in reconstructing the attractor shown in Fig. 11.
Compare to Fig. 5.
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If l is positive, this means an exponential divergence of
nearby trajectories, i.e., chaos. In practice, there will be fluc-
tuations due to many effects16 but it is possible to derive a
consistent, and unbiased estimator of the largest Lyapunov
exponent by computing

Sse,m,td =K lnS 1

uUnu o
Est8dPUn

uEst + Dd − Est8 + DduDL ,

s6d

whereUn is a neighborhood ofEstd with diametere, and the
angular brackets denote an average over both, differente
values and minimal embedding dimensionm0. If Sse ,m,td
exhibits a linear increase with identical slope for allm.m0,
and for a reasonable range ofe, then this slope can be taken
as an estimate of the maximal exponentl. For our particular
case, different values form0 sfrom 2 to 5d were used and
averaged; however, since the previous analysis had given
three as the exact embedding dimension, and the averaged
result did not differ from this particular curve, we only
present the result with this single value. Also, the routines
used for the calculationssRef. 14d use five values fore that
are automatically generated from the time series data.

Figure 8 shows the value of the largest Lyapunov expo-
nent for the oscillator in site 21 calculated via the method
briefly sketched earliersdescribed in detail in Ref. 14d.

Values for the largest Lyapunov exponents at the two
stages where the breather stops are given in Table I; the time
delay used in the analysis is the same for both resting stages
st=50d.

The fact that all first Lyapunov exponents are positive
confirms the chaotic character of the system dynamics. Since
a larger positive value for the first Lyapunov exponent im-
plies a faster divergence in time for states initially close to
each other, one can see from the values in Table I that this
divergence is less strong for the second stop in comparison to
the first one. One could say that the localized mode is be-

coming less chaotic with time, in agreement with the expo-
nential decayswith enormous time constantsd found in Ref.
10.

IV. BREATHERS IN MOTION

Since the breather has not completely formed during the
first moving stage, i.e., the energy is still dispersed in several
sites, the computation of the interesting values becomes very
complicated and inaccurate. Therefore, we only analyze the
second moving stage:tP f1470,1895g, when most of the en-
ergy is concentrated in the moving breather. Note that during
this lapse, there is some energy that simultaneously travels to
the left of the array, bounces back at sites 3 and 4, and
collides with the moving breather just before it stops again
sFig. 1d.

For the analysis of the moving energy, one has to set a
threshold value in order to decide when the breather has left
a site and moved to the next one in the sense of its motion.
This allows for the individualization of the energy values
that form the time series of the moving breather. The thresh-
old value used is only determined by the two sites that form
the heart of the breather, and corresponds to half the value of
the energy in the breather at a particular site, i.e., when the
energy in a sitessay site 21d decreases to less than half its
initial valuesenergy in site 21 when breather is at rest in sites
20–23d, one then considers that the breather has moved from
such sites21d and takes the value of the energy in the fol-
lowing site in the sense of the motionssite 22 in our ex-
ampled. The energy contained in the two central moving sites
of the breather does not decrease considerably during the
lapse it remains in motion and constitutes, therefore, a reli-
able indicator of its presence.

Figures 9–14 show the results of the analysis; the simi-
larity with the results obtained for the resting breather is
striking. The characterization of the moving breather with
the discussed tools indicates a behavior that is remarkably

FIG. 13. Number of false neighbors as a function of the
embedding dimensionm for the attractor shown in Fig.
11.
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similar to the behavior of the breather at rest; comparing
these figures to those in Sec. III, several deductions can be
made.

Starting with Figs. 2 and 9, it can be observed that there
is a decrease in the amplitude of the oscillators in the center
of the breather as time increases, and that this shrinkage also
reduces its value with time; this is consistent with the fact
that the breather evolves under the influence of all the oscil-
lators in the system.

From Figs. 3supper paneld and 10 one observes that the
highest frequencysv3/2pd is now playing a more important
role than the intermediate onesv2/2pd, an interchange that
remains for the next stop of the breather, Figure 3slower
paneld; recall Sec. III A. This is also clear in Figs. 6 and 11
where the interchange in the roles played bysv3/2pd and
sv2/2pd is responsible for the modification in the form of the
attractor. Figures 6 and 11 also show that the region occupied
by the attractor is shrinking with time, i.e., the breather con-
tinues participating of the collective dynamics and losing
energy via interactions with other modes still present in the
system, mainly while in motion; the energy lost by the
breather will in turn be dissipated at the end-sites of the
array.

Figures 5 and 12, on the one hand, and Figs. 7 and 13,
on the other, confirm that the time delay chosen is an optimal
value, and that the immersion dimension is strictly three for
both states of the breather, at rest or in motion; this, in con-
junction with the other findings already mentioned, partly
explains the similar behavior during both states.

Finally, even though the value of the first Lyapunov ex-
ponent for the moving breather is smaller than its value when
the breather is at rest, it remains positive
s0.000 88±0.000 15d, confirming that the analyzed breather,
either at rest or in motion, is indeed a chaotic system.

V. DISCUSSION

It has been shown that the analysis and tools employed
for time series and state reconstruction of a dynamical sys-

tem are also very useful for the detection and characteriza-
tion of spontaneously appearing breathers in thermal nonlin-
ear arrays. All the calculations performed for the example
analyzed in detail, agree and confirm the results previously
found for the dynamics of the system.10 This specific detailed
case constitutes an example of systems whose chaotic behav-
ior is governed by a small number of incommensurable fre-
quencies, a situation reminiscent of the mechanism proposed
by Ruelle and Takens for the appearance of chaotic behavior.

The usefulness of the analysis is of particular importance
in experimental situations where the local energysor a simi-
lar local variabled is the only quantity that may be precisely
measured as a function of time. We thus propose the use of
the analysis and tools described in the previous lines as a
reliable methodsprobably the easiest oned for the study of
nonlinear experimental situations where one suspects that the
ubiquitous breathers might be present. The recent experimen-
tal detection of localized modes in an antiferromagnetic spin
lattice17 could provide another example for the application of
the analysis just described.
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