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Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their
interactions with other excitations. We review numerical results for the relaxation of breathers in
Fermi—Pasta—Ulam arrays, with a specific focus on the different relaxation channels and their
dependence on the interparticle interactions, dimensionality, initial condition, and system
parameters. €2003 American Institute of Physic§DOI: 10.1063/1.1537090

Breathers are highly localized oscillatory excitations in  solitond*°® (long-wavelength excitations that persist from the
discrete nonlinear lattices that have been invoked as a continuum  limit  upon  discretization  periodic
possible way to store and transport vibrational energy in  breathers?9-3(spatially localized time periodic excitations
a large variety of physical and biophysical contexts. A that persist from the anticontinuous limit upon coupjirend
particular scenario where the robustness and longevity of so-called chaotic breathéts (localized excitations that
breathers has been a matter of considerable debate in- evolve chaotically. Nonlinear excitations have been ob-
volves nonlinear arrays subject to thermal relaxation via  served to ariséspontaneously or by desigand survive for
the connection of surface sites to a cold environment. The a long time in numerical experiments, and they clearly play
important questions are these: Can breathers(created an important role in determining the global macroscopic
spontaneously or by desigh survive for a long time in properties of nonlinear extended systems.
such a relaxing environment? If they can survive, can Of particular interest to us is the dynamics of breathers
they move? We detail answers to these questions, one of in a chain relaxing to zero temperature. We invoke the term
which is rather unequivocal: Breathers that move do not  “preather” rather loosely to denote an oscillatory excitation
live very long. So is another: Breathers are quite robust confined to a very small number of adjacent lattice sites.
when they do not move. The more complicated question Since our interest lies in breathers as possible storers and
then deals with the conditions that allow breathers to re-  carriers of energy, we have concentrated on issues of longev-
main stationary and undisturbed for a long time in a  ity, and on lattices where breathers can move most easily
relaxing environment. We detail some conditions that even while the entire system is relaxing to zero temperature.
lead to this outcome, and others that definitely do not. Breathers are known to move more easily in nonlinear lat-
tices with no on-site interactions, and so we have focused on
lattices with nonlinear interactions. In Ref. 14 we studied the
|. INTRODUCTION relaxation to zero temperature of one-dimensional chains ini-
The localization of vibrational energy in discrete nonlin- tially thermalized at a finite temperature. Among other is-
ear arrays has attracted a huge amount of interest in the pagites, we investigated the effects of different types of inter-
several decades as a possible mechanism for the efficieattions. In Ref. 15 we extended these studies to two
storage and transport of enerffgr recent reviews see Refs. dimensions, and found that while many relaxation properties
1 and 2, and references thereiNore recently, the localiza- are insensitive to dimensionality, in some cases there are
tion and transport of vibrational energy has been invoked inmportant differences. In both, we were principally interested
a number of specific physical settings including DRAy-  in the spontaneous appearance and evolution of breathers
drocarbon structureébthe creation of vibrational intrinsic lo- during the overall decay process. In Ref. 16 we focused on
calized modes in anharmonic crystalgphotonic crystal the very long time relaxation behavior of breathérgected
waveguide$, and targeted energy transfer between donorr created spontaneouslgnd found profound differences in
and acceptors in biomoleculés. breather longevity in systems with and without a linear in-
Discrete nonlinear arrays in thermal equilibrium canteraction component. Herein we organize these results into a
support a variety of stationary excitations; away from equi-rather complete picture of the breather relaxation. Even more
librium stationarity may turn into finite longevity, and addi- narrowly, we focus on the nonequilibrium dynamics and de-
tional excitations may arise. The possible excitations includeay of breathers in a typical relaxation experiment where the
phonons associated with linear portions of the potentialsurface of the system is connected to a c@idually zero
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temperaturgexternal thermal reservoir. We mostilgut not  ing constant, one finds that the scaled Hamiltonidi in
exclusively study one-dimensional arrays, for which the sur-the new variables is again of the forth) but with coupling
face simply consists of the two end sites of a finite chain. Weconstantsak and k'. The results are therefore related
review and organize our previous work, and also include newthrough appropriate scaling for any choice of coupling con-
results that complement our previous ones. stantsprovided neither is zetolTo cover all possible combi-
We anticipate, and later detail, the following broad-brushnations of coupling constants it is thus sufficient to consider
description of the relaxation of a breather whose energy isnly three distinct casek’=0 (harmonig, k=0 (purely
well above that of phonon modes that may also be present ianharmoni, and k=k’ (mixed). Throughout we assume
the nonlinear array. When the array boundaries are connectdabe-end boundary conditiong{=X;, XN+ 1=Xy), and note
to a zero-temperature heat bath, the breather will of coursthat although boundary conditions do not strongly affect
eventually decay since the system must reach equilibrium aquilibrium properties, thego affect relaxation dynamics.
T=0. In other words, there isecessarilyleakage of energy The equations of motion associated with the Hamil-
out of the breather, although this process may in some casésnian (1) are
be extremely slow. A determinant limiter of breather longev- J
ity is the extreme sensitivity to collisions with long wave- Xi=— —[V(Xi—X{_1) +V(X; 51— X)]. 3
length phonons and with other localized excitations. Such 28
collisions invariably contribute to the rapid degradation orin our subsequent discussion we consider a variety of initial
breakup of breathers into lower energy excitations. Furtherconditions, and observe the relaxation of the array to zero
more, collisions with other excitations tend to set breathersemperature when the boundary sites are connected to a zero-
in motion, and motion in itself also contributes to energytemperature environment by adding dissipation termg;
leakage. While breathers tend to decay rapidly in the preso the equations of motion of these sites. In one dimension
ence of long wavelength phonons and of other nonlinear exthe boundary sites aie=1 andi=N. The equations of mo-
citations, and are in this sense fragiglatedbreathers tend  tion are integrated using a fourth-order Runge—Kutta method
to remain stationary and to decay extremely slowly and eswith time intervalAt=5x10"*. Further reduction leads to
sentially exponentially over long time regimes, indicating ano significant improvement. Stability of the integration was
single slow rate-limiting dominant contribution to the intrin- checked for isolated arrays: the energy remains constant to

sic relaxation process. However, the particular values of det0 or more significant figures for all the cases and over all
cay rates are strongly sensitive to particular conditions an@ime ranges reported herein.

parameter values. These statements will be made more quan-
titative in the following.

The organization of this paper is as follows. The model|||. LINEAR MODES
is presented in Sec. Il, and a summary of the relaxation of
phonon modes in harmonic latti¢éss presented in Sec IIl. In the absence of anharmonic interactions the excitations
In Sec. IV we discuss the relaxation behavior of a purelyof the system are phonons whose behavior is well known. It
anharmonic latticéno harmonic interactionsthat is, a re- is useful to briefly review this behavior because phonons
laxation scenario that involvamnly nonlinear excitations and May be present in the nonlinear system, and their presence
no phonons. Section V deals with breather relaxation in arstrongly affects the relaxation behavior of nonlinear excita-
rays with both linear and nonlinear interactions, that is, lattions. _ _ .
tices that support phonons as well as nonlinear excitations. There are two informative measures to characterize the

Finally, we present a summation of our findings in Sec. VI. relaxation behavior of an array initially thermaliZ&at tem-
perature T and then allowed to relax through the array

boundaries into a zero temperature heat B4tAOne is the
total array energy as a function of time, and the other is the
Our model system in one dimension is described by theime-dependent spectrum. The total enes@t) is defined as

Il. THE MODEL

Fermi—Pasta—UlanfFPU) B-Hamiltonian the sum over symmetrized site energies, e.g., in one dimen-
N g2 N sion
H=2 —+2 V—Xi-1), (1)
i=1 i=1

N
s(t>=i§1 Ei(t),

wherex; is the displacement of particlefrom its equilib-

rium position, N is the number of sitesy(z) is the FPU pi2 1 1
potential El(t): ﬁ"' EV(Xi+l_xi)+ EV(Xi_xi—l)' (4)
V(z)= EZZJF k_z4, (2)  The time-dependent spectrum is the Fourier transform of the
2 4 time-dependent correlation function,
andk andk’ are the harmonic and anharmonic force con- Tmax
stants, respectively. The generalization to higher dimensions S(w,t)=2fo C(r,t)codwr)dr, ©)

is obvious. The relative values of the two constants can be
shifted by rescaling space and time. In particular, by intro-where 7,,=27 o, and vy, IS chosen for a desired fre-
ducing new variableg; = ax; andr=t/«a, wherea is a scal- quency resolution. The choiae,,;,=0.0982(corresponding
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to Tmax=64), turns out to be numerically convenient. In one
dimension the time-dependent correlation function is

1 Noqorat
C(T't):m; Efo (Ai(t=7")A{(t— 7" —7))d7’,

(6)

whereA;=x;—X; _1 is the relative displacement and=t,

— Tmax- The correlation function is thus an average over the
interval[t—tg,t], andty is a time interval chosen to be short
enough for the correlation function not to change appreciably
but long enough for statistical purposes. In our work we take
tp=100. The generalization of these definitions to higher
dimensions is straightforward.
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If the chain is sufficiently long and the damping constant t
v at the ends sufficiently small, then the phonon dynamics ifkiG. 1. Normalized energy vs time for various one-dimensional relaxing
the array are not greatly disturbed by the damping, and therrays withN=>50. Initially each array is in thermal equilibrium at the
relaxation process is perturbative. The two principal charactemperature indicated. The normalized energy of the harmonic array is in-
L . dependent of temperature. In all cases except for the thin solid jine,
teristics of phonon relgxatlon are then tHaj phonons of =0.1. The thin solid curve is for the harmonic chain wigk 10.
each frequency relax independently of other phonons, and

(2) the relaxation times are wave vector dependent. The re-

I;txatic_)n t||me I]or pbhononsl Ofl Wa(\j/eb Viftm mlg]? sr(?_?ll ample we have included the one-dimensiofid) curve for
amping limit has been calculated by Plaztal.” for di- 14 iy Fig. 1, which is clearly qualitatively similar to the

ferent boundary conditions. For free-end boundaries they ob-

. , : , , v=0.1 curve. Although not shown, we note that the decay
tain the decay times in one dimensiofd) = 7o/cos(q/2), curves of the normalized energies for the damping param-
whereq=n=/N, n=0,1,..,N—1 are the allowed wave vec- etersy=0.01 andy= 100 are also quite similar to one an-
tors, andro=N/2y. Long wavelength phonons thus decay ,iq " Note that the relaxatiosiows downwith increasing
more rap|dI33/[r(q)~(’)(N/y)]_than do band edge phonons . ning The concept of “optimal damping” that this behav-
[7(g)~O(N°/y)]. The associated normalized chain energy;q, implies is intriguing.

E(t) as a function of time can be evaluated exactly in this

limit:

e 1 —2t/7(q)
0= g |y e e

= e_t/TOI O(t/ To)

The spectral progression of the phonon-by-phonon decay
in the weak damping case is interesting because it provides a
forum to differentiate linear from nonlinear systems in this
limit. The first panel of Fig. 2 shows the time progression of
the spectrum of an initially thermalized harmonic chain as it
relaxes. The=0 curve is the equilibrium spectrum of the

e Yo for t<rg
=1 [2mt| 12 7 —
(—) fOI’ > 70- ( ) 40 PRSI ::?00
7o 30 ---- 1500
i ifi . 20 —=—= t=1000
Herel is the modified zero-order Bessel function. The short —-— t=2000

1.0

time exponential behavior reflects the earliest decay of the oo

long wavelength phonons. The power law behavior at long
times arises from the cascade of relaxation times that con__ 1.
tribute to the process. In a finite chain at very long times the €
decay will revert to exponential when only the shortest ¥
wavelength phonons remain, with a characteristic decay time
of O(N3/). Similar arguments are immediately applicable

in higher dimensions. Note that the energy decay in the har-
monic arrays isndependent of the initial temperatur&éhe
decay curve for a one-dimensional harmonic chain with
=0.1 is shown in Fig. 1. A typical time-dependent landscape
in which energy magnitudes are represented by varying gray
scales has been presented in our earlier WorR.

It should be recognized that the above-reported resultBIG. 2. Time evolution of spectra for various relaxing 1D arrays of 50 sites
are restricted toveak damping. If the damping coefficient relaxi_ng from a thermalized in_itial condition. In all_ca_ses the_initial tempera-
becomes largey \/ﬂ=\/§), the theory of Piazzat al. no ture is T:O.S_, andy=0.1. F|rs_t panel: h_armomc |.nte_ract|onk=_€0._5);

. . . second panel: purely anharmonic interactioks<0.5); third panel: mixed
longer applies. The boundaries act more like hard walls anghteractions k=k’=0.5). The thin vertical lines indicate the harmonic fre-
the phonon decay slows down with increasipgAs an ex-  quencyw=J4k=v2.

3.0
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8.0 —w breather solutions are exact in such chains when the power of
oo 12500 the anharmonic potenti@alvhich here is 4as well asN go to

——- 1000 | infinity.?

T 2000 Consider first the relaxation of a purely anharmonic 1D
array initially thermalized at temperatufie'* Although we

do not study it here, we note that the temperature dependence
of the relaxation process is more complex than in the har-
monic array because now the frequencies of excitations de-
pend very markedly on their energy. A characteristic of the
purely anharmonic 1D array at any temperature is the essen-

6.0 |

4.0 |

20 |

0.0

1.0

S(m,1)

0.5

?_’8 [ ' X tially strictly exponential tail of the normalized energyt).
o8 | For example, the exponential decay of the purely anharmonic

06 |
0.4 |
0.2
0.0

curves shown in Fig. 1 has been ascertained in detail in Ref.
14. This behavior implies that the purely anharmonic array
AR approaches its new equilibrium much more rapidly than a
3.0 4.0 50 harmonic system, and is indicative of a single predominant
rate-limiting decay channel. Furthermore, the short time re-
FIG. 3. Time evolution of spectra for various relaxing 1D arrays initially at laxation is more rapid with increasing temperature.
Fevet o hechain o ah e e et v o 1, e Spectrl progression of the relaxaton process is I
?I(:2 gf’sc)); second ;;anel: pure?farihérmoniﬁ intéractiohs=(0.5); third lustrated in the_ _se(_:ond panel of Fig. 2. Unlike the h_armom_c
panel: mixed interactionské k' =0.5). The thin vertical lines again indi- Case, the equilibrium spectrum of the anharmonic chain
cate the harmonic frequenay= \4k=v2. broadens with increasing temperature because higher energy
excitations involve higher frequencies. The higher frequency
portions of the spectrum are observed to decay first, exactly

harmonic chain at temperatufé and can be calculated opposite to the harmonic chain. We have found that the re-

analytically’® We note that the only temperature dependencé®xation pathway is for the high frequency portions of the
of this spectrum is an overall coefficiefit The progressive SPECtrum 81}0 degrade rapidly into lower frequency
relaxation starting from the lower part of the spectrum ancEXcitations,” such a degradation pathway is possible here
moving upward is clearly evident; by tinte=2000 only the ~ SINC€ individual frequencies are not associated with normal

highest frequency phonons survive. The progression in twoM0des in the anharmonic system. In tumn, these lower fre-
dimensions(2D) is very similar. quency excitations decay into the reservoir through the ends

Although the above-mentioned analysis started fror! the chain. The high frequency components of the spectrum
thermalized arrays, similar conclusions apply no matter th&€ mainly associated with mobile localized modes that de-
initial condition (including highly localized excitationsand ~ 9rade into lower energy excitatioisften also localized and
no matter if and when additional excitations are injected inMoPil®) as they move and collide with one another, and this
the array**5Any distribution of energy consists of a super- degradation occurs relatively quickly. It is well known that

position of phonons, and each phonon relaxes independentfjjgher frequency and/or higher amplitude localized modes

H 4 1Q-12.22 :
with its own characteristic decay rate. This is consistent wittf@n move at higher velociti€S=***?|t is also known that
the spectral progression shown in the first panel of Fig. 3while in motion such modes lose energy through collisions

A, —AJ2 on three successive sites has been injected near ttfgore rapid decay oE(t) with increasing temperature. The
center of the thermalized chain &t=0. As before, the lower frequency excitations are in turn absorbed into the cold

phonons decay progressively starting from the lower portiof€Servoir, but continue to be replenished through the degra-
of the spectrum. The detailég(t) curve would of course be dation process. The decay of low frequency excitations into

modified because the distribution of energy among the phothe reservoir dominate the exponential tail in the decay
non modes is now different. curves such as those seen in Fig. 1. We stress that this dis-

cussion only covers the predominant relaxation mechanisms.
A concurrent direct but slow relaxation of high frequency
excitations through the boundary sites may also take place.
For example, when a highly mobile localized excitation
As a second “extreme” case we consider a purely anharreaches a boundary, it typically remains at the boundary for
monic array k=0). In the absence of harmonic forces the about one period of oscillatiofwhich is short for a highly
system supporteio phononsa condition that has been re- energetic excitation during which it loses a small portion of
ferred to as asonic vacuuni® This absence leads to a dy- its energy to the reservoir. The remaining excitation is re-
namic and relaxational behavior quite distinct from that ob-flected back into the chain, where it will continue to lose
served in a mixed arraySec. \j, where phonons do energy through other collisions and/or re-arrival at the
constitute part of the spectrum. The precise nature of the fulboundaries.
spectrum of excitations in this array is not known, but it The relaxation dynamics of the purely anharmonic array
certainly includes highly localized excitations. Indeed,in 2D differs from the one-dimensional case in a number of

w

IV. NONLINEAR MODES
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ways® Mainly, the energy decay is considerably slower be-realization to another. It is, however, possible to follow the
cause localized excitations in 2D are not nearly as mobile abreather until it disappears, and to characterize its motion in
in 1D; consequently, the energy loss caused by motion antérms of the mean square displacemerf(t)) of its center
by collisions is slowed down. Furthermore, the decay is ndrom its initial location. In 1D we find superdiffusive motion,
longer exponential. Indeed, whereas in one dimension théx?(t))~t5 over the entire lifetime of the excitation and
degradation process of higher frequency excitations intdor a variety of values of the coupling constadit excitation
lower frequency ones is faster than the decay of low fre-amplitude, and temperatut&!® Parameter variations seem
guency excitations into the reservoir, in two dimensions thisonly to affect the prefactor in this relation. It does not even
is no longer the case. This leads to spectral bottlenecks andatterwhenin the course of the relaxation process the local-
competing time scales. We also find that increasing the arraizged excitation is introduced: its mean squared displacement
size leads to slower degradation of the high-frequency comgrows with the same exponent, 1.5, until it is extinguished
ponents and to more pronounced spectral bottlenecks in thato the background. This corroborates the role of the persis-
midfrequency range. Still, with increasing initial temperaturetent low-frequency excitations.
the total system energy decays more rapidly, which is con- The situation is somewhat different in a purely anhar-
sistent with our assertion that mobilijow as it may bgin monic 2D array. Here we inject an excitation of amplitudle
the purely hard arrays increases with energy and hence witht a central site and-A/4 at each of the four nearest-
increasing initial temperature. We thus conclude that alnheighbor sites. It is more difficult in 2D to set a breather in
though breathers may be among the thermal excitations imotion since it is more difficult to bring about the symmetry
purely nonlinear thermalized arrays, their rapid degradatiomreaking behavior that favors such motidgaven parity
makes it difficult to identify their precise dynamics. breathers do not exist in dQDThis observation is consistent

In order to specifically focus on breather dynamics andwith our earlier comment concerning lower mobilities of
the effects of other excitations on breathers, we inject a higlbreathers that may arise spontaneously in thermalized 2D
amplitude localized excitatiofione whose energy is much arrays. Lower breather mobility of course does not preclude
greater than those of the thermal excitatjoas time t=0 collisions with other mobile excitations that lead to energy
and observe its evolution. Explicitly, we create an “odd par-loss. In any case, the breather survives for a longer time than
ity” excitation with amplitudes—A/2, A, —A/2 on three it does in 1D, and its mean square displacement is subdiffu-
successive sites away from the chain boundaries. Note thatve, (r?(t))~t%8°
this is not an exact breather for this array, so some amplitude The scenario changes dramatically when the localized
re-accommodation accompanied by some energy sheddirexcitation is injected into a purely nonlinear chahmat is
necessarily takes place. The “bottom line” of this experi- initially at zero temperatureBreathers are almost exact sta-
ment is that the resulting breather is extremely robnst tionary solutions in very long purely anharmonic chains re-
isolation, but extremely fragile when disturbed in any way. gardless of the value of the damping parameter at the ends.
To see this, consider the case of such an excitation injectelth our simulations we inject an excitation of amplitude
into a purely nonlinear array that has first been thermalized=0.5 near the chain center at time=0 in a chain ofN
to temperaturd . Although the details vary somewhat from =31 sites. For damping parameteys-0.01,1, and 100 the
one realization to another, it invariably happens very quicklyenergy remains essentially unchanged to all the controlled
that the other excitations in the medium set the breather isignificant figureg12) for the duration of our simulatior,
motion, and it loses energy mainly through its collisions with=3x10°. We can also follow the motion of the sites sur-
other excitations. A detailed observation of trajectoriesrounding the breather, and find that sites other than the three
shows that after a short time the injected excitation begins tinvolved in the breather motion are almost stationary. Of
move in one direction or the other with equal probability, andcourse therenustbe an energy leakage out of the chain since
continues moving for a period of random duration, duringequilibrium must eventually be reached, but for the chain
which it loses energy. The excitation stops moving for a ran{ength and simulation times in this particular experiment it
dom period of time, until it is again set in motion in either was not discernible, so the decay is extremely slow. How-
direction for another random period of time. While station-ever, this longevity is, as before, fragile in that it is quickly
ary, the excitation has even parity, but when it moves it al-destroyed by practically any perturbation. The source and
ternates between even and odd parity. The collision partnermsature of the perturbation does not much matter. A perturba-
in this sequence of events are principally the persistent lowtion might arise, for example, when the slowly leaking en-
frequency excitations described earlier in the thermal relaxergy reaches the chain boundaries and is partially reflected
ation proces$? Even while its amplitude and consequently back toward the breather. This finite size effect should be
its characteristic frequency are decreasing, the breather rebservable if we shorten the chain sufficiently. For a chain of
mains highly localizedover essentially three or four siles N=17 sites we still see no decay, but when we further
throughout its lifetime. The spectral progression of the relaxshorten the chain tbl= 15 sites the breather survives almost
ation process is illustrated in the second panel of Fig. 3. lrundisturbed until a time of?(1°) and then disintegrates
accordance with our description, it does not differ signifi- rapidly, over a time scale of a few thousand time units. This
cantly from that of Fig. 2. is illustrated for one realization in Fig. 4. Whéx~= 13 the

We have not measured the lifetime of the breather in thisreather survives undisturbed for only aboux Z0° time
scenario, but note that it is much shorter than lifetimes to bainits and the decay occurs over a time period of abodt 10
reported later in mixed arrays, and varies quite a bit from one  Our conclusion is thus that breathers are exceptionally
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FIG. 4. Normalized energy for a purely anharmonic arry<0.5) of 15
sites in which a breather of amplitude=0.5 has been injected into a zero
temperature chain at=0. The damping parameter=1.

FIG. 5. Energy landscape of a 30-site mixed array initially thermalized at
T=0.5. Other parametergk=k’=0.5, y=0.1. Time advances along tlye

stable in purely anharmonic arrays reIaxing into a zero temglxis untilt=1000. A gray scale is used to represent the local energy, with

. darker shading corresponding to more energetic regions.
perature heat bath through the array boundaa®dong as
there is no perturbation of any kind near the breath&ny
perturbation, including even the smallest thermal perturba-
tions or perturbations that reach the breather from the systefionic chain. Again, because initially the high-frequency

boundaries, causes a rapid degradation of the breather. modes move more rapidly at higher temperatures, the early
time decay is faster with increasing initial temperatures. That

both low and high frequency modes relax rapidly is clearly
seen in the third panel of Fig. 2, which quickly loses both
Mixed arrays, that is, arrays with both harmonic andlow (as in the first pangland high(as in the second panel
anharmonic interactions, are the most versatile because théyequency portions of the spectrum. In the energy decay
support both linear and nonlinear modes. The interplay of theurve there is then a crossing after which the mixed chain
two introduces new effects in the breather relaxation problemelaxes much morslowly than the harmonic and the purely
and a greater variability in breather dynamics. Also, theanharmonic. This occurs when the low frequency modes
mixed array is representative of a larger variety of physicalphonong have essentially all decayed, and only certain high
situations than the purely anharmonic. Furthermore, we wilfrequency spectral components remain, as clearly seen in the
see that breathers may be exceptionally stable in relaxingpectrum.
mixed arrays. Therefore, a study of the full time evolution of ~ The excitations that remain after this initial shedding in-
the system during the relaxation process requires longer timelude, with some probability that depends on temperature
histories than in the previous cases. Our discussion in thiébut not with certainty, spontaneously created quasistation-
section deals only with 1D arrays because the short timary breathers that decaxtremelyslowly. It is a noteworthy
behavior in 2D is very similar to that of the 1D systems, andreminder that short wavelength zone-boundary phonons that
because we have not carried out a long time study for the 2Pelax much more slowly than long wavelength phonons ac-
system. tually contribute to the spontaneous formation of breathers
Again we begin with the relaxation of an array initially (“modulational instability”).® The decay of the breather is
thermalized at temperatur€.* At low temperatures T  slower with increasing temperature because the spontane-
smaller than the phonon bandwidth associated with the lineasusly created breathers are more energetic. A typical realiza-
portion of the potentialthe relaxation is essentially identical tion in which a breather appears spontaneously is shown in
to that of a harmonic chain. Interesting behavior clearly re+ig. 5. In stark contrast to the purely anharmonic array, there
quires higher temperatures so that nonlinear excitations weis no sonic vacuum in the mixed array. The harmonic contri-
above the phonon band can be part of the thermal mix. Ifbution to the interaction, which provides the phonon excita-
Figs. 1 and 2 we observe the early time behavior of thdions, allows the relaxation process to “sweep” the system
energy relaxation and the spectral progression of the relaxclean of the excitations that most readily perturb the breather,
ation. The energy is at first seen to decay more rapidly thaand thus makes it possible for the breather to persist in the
in the harmonic array. This is a consequence of the presencelaxing environment.
of both low-frequency phononand high-frequency excita- Next we examine in detail the continued evolution of a
tions in the system. Energy relaxation and decay thus inspontaneously created breather in our relaxing
volves both of the mechanisms discussed earlier, namelyenvironment® going to much longer times in our simula-
that which characterizes the relaxation of the harmonic chaitions than those reported so far in order to ascertain the re-
and, concurrently, that which characterizes the purely anhataxation behavior in more detail. We distinguish the normal-

V. MIXED ARRAYS
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0.4 : ‘ ‘ boundaries. The resulting decay of the breather is then in
03 ‘ ] general much faster than in the scenario where the breather is
w 01} : created spontaneously during the relaxation pro¢ass cer-
w 0.2 I tainly much faster than that of a breather of the same ampli-
0.1 0 : ] tude injected into a zero temperature chain, cf. the follow-
0.0 75 15.0 . ) . . :
Va - - ing). We find this behavior even when the temperature is
0 0 0.05 0.1 0.15 0.2 extremely low. For example, a breather of initial amplitude
4.0 ‘ A=0.5 injected into a chain thermalized &&=10° has a
330 | decay time ofr=1.3x 1(° (the value varies from one real-
= ization to another, but not by mughwith an initial ampli-
=207 tude of A=0.55 we findr=2.1x 10°. Note that it does not
"',;' 1.0} much matter whether the injected breather is of even or odd
T 0.0 ‘ parity (here we have injected an odd 0&As we will see
0.0 7.5 15.0 in the following, although the initial temperature is ex-

tx107 tremely low, these decay times are orders of magnitude
FIG. 6. Upper panel: the smooth curve is the normalized energy as a funcsho_rter than thF’Se Qf a breathe_r injected in a zero temperature
tion of time for a chain of 30 sites initially thermalized & 05 and  chain, the crucial difference being the presence of low wave-
connected through its ends to a zero-temperature heat batid.¢). The  length phonons in the former but not in the latter. To support
initiaI_Iy jagged curve is the normalizeq energy on sites 13, 14, 15, and _16this description we have also observed a breather in a chain
The inset shov_vs the temporal evolutlpn of the energy on these fou_r S'teéonnected to a heat bath that is maintained at an extremely
over a longer time scale. Lower pangk: In E(t)] vst for the same chain. . . .
low but nonzero temperature. The breather in this case is
always fragile, continuing to move and lose energy rapidly
ized energyE(t) [cf. Eq. (7)] from the modified normalized until it degrades completely.
energyE (1), We now move on to our second scenario, namely, we
&(t) &(t) inject the excitation into a chain aero temperaturé® Al-
E(t)=—=, Ent)= . (8)  though we have not done so in detail in the cases presented
e(0) &(7m) so far, here we have carried out a more detailed analysis of
The denominator in the first contains the initial energies, andlependencies of the breather dynamics and relaxation on a
in the second the energies after the discarded low energyumber of parameters. The results are revealing and, in some
excitations(including all phonongshave dissipated, but be- cases, somewhat unexpected. In our first “experiment” we
fore the remaining breather has decayed appreciably. In owreate an odd-parity excitation of amplitudeexactly in the
simulations we take-,,=40 000. Figure 6 shows the evolu- middle of a chain oN=31 sites, and set the end-site dissi-
tion of the normalized energy in a chain of 30 sites initially pation parametety=1. The breather discards some energy
thermalized at temperatuie=0.5, as well as the energy in that travels toward the chain ends and dissipates quickly, in
only the four sitesi=13,14,15,16. After a relatively short the timer, [cf. Eq. (8)], across the ends of the chain. The
time (5000 time units in this particular realizatipalmost all ~ remaining energy stays localized in the middle of the chain,
of the energy settles in these sites and remains there. Theost of it (98% for A=0.5) on the three initially excited
excitation around the four sites turns out to be an “evensites, and decays exponentially with an extremely long decay
parity” breather, with maximum displacemenfésand —A  time 7.
alternating on sites 14 and 15, smaller but not negligible In Fig. 7 we show typical results fdg(t) for three ex-
amplitudes at sites 13 and 16, and essentially no motion afitation amplitudes over more than six decades of time. The
the other sites. The breather is coincidentally at the center ahodified normalized energy follows essentially the same be-
the chain, but may appear anywhere in different realizationdavior. If the decay of the long-lived excitation is exponen-
(cf. Fig. 9, particularly in longer chains. The frequency of tial, we expecf —In E(t)] and[ —In E,(t)] vst to be straight
the breather, initiallyw=1.633, decreases very little for the lines over appropriately long time intervals. In Fig. 8 we
duration of the simulation. We also present the modified nor¢learly see this behavior, which extends over the entire simu-
malized energy, whose decay is clearly exponential over thition time interval for the higher amplitude excitation. The
times shown, with an enormously long time constant, slope for theA=0.5 curve leads to a decay time 6f2.8
=3.5x 10", Thus this breather, even in our relatively short X 10°, a specific number reported here principally to stress
chain, is essentially stationary. its enormous magnitude compared to phonon relaxation
In order to ascertain our breather stability scenario andimes. The change in slope of the curve associated with the
the role of phonons in the stability, we explicitly inject a lower amplitude breather captures the slow change in the
breather into a chain that is in thermal equilibrium at a verydecay rate as the breather frequency edges toward the pho-
low temperatureglow in the sense that the spontaneous for-non band. Here we also see clearly that the more energetic
mation of breathers is highly unlikelyThe chain is then breather relaxes more slowly.
allowed to relax into a zero temperature heat bath third A breather of a given amplitude has a characteristic pre-
panel in Fig. 3. As expected, we find that the thermal back- dominant frequency. In Fig. 9 we show this frequency in
ground invariably sets the breather in motion, and causes thelation to the phonon band edge as a function of time for
breather to collide with other excitations and with the chainvarious cases. For 31-site chains, the frequency of the
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FIG. 7. Decay of the normalized energyt) for three different values of  F|G. 9. Breather frequency as a function of time. Curve that persists at the
the initial amplitudeA for chains ofN=31 sites connected at the ends to a highest frequency g~1.5): A=0.5, N=31. Curve that begins ab

zero-temperature bath. The odd-parity breather is injected at the center of 1 465 and decreases genthy=0.45, N=31. Curve that turns sharply

the chain. The dissipation parameter 1. The thin lines represent the total  gownward:A=0.5, N=21. Inset: associated localization parameters in the
energy remaining in the chain, and the bold lines the portion of the remaingame order.

ing energy that is localized on the three initially excited sites.

breather of initial amplitudé= 0.5 decreases very little over The above-mentioned results are typical of one particu-

the entire simulation, while that of initial amplituda lar set of conditions: a breather created exactly in the middle

=0.45 decreases more markedly. Consistent with the fact’ @ chain ofN sites whose ends are connected to a zero-
that the breather does not disappear entirely in the time rand§mpPerature bath with dissipation parameger1. It is inter-
shown, its frequency never reaches the phonon band edge.§pting o explore the consequences of changing some of
the initial amplitude of the excitation is sufficiently low, or these conditions. We find that the dependence of the chain
the simulation time sufficiently long, or the chain sufficiently N€rdy relaxation times on the initial amplitude of the
short, the breather is seen to disappear. This last case is [fréather is monotonic and decreases sharply with decreasing
lustrated in the figure for a breather of initial amplitude Préather amplitude. Over a simulation time ok 30° we

=0.5 in a 21-site chain. The breather disintegrates entirelyind that a breather of initial amplitudé—0.6 decays expo-

. . B _ 4 .
when its frequency reaches the phonon band edge. The inddgntially with a time constant=2.8x 10", For amplitude

showsL, the ratio of the energy of the five sites centered orf*— 0-5 We findr=2.8x 199' and forA=0.45 the decay is no
the breather to the total enerdyis of order unity when most IongYer strictly e7xp0nent|al, decreasing slightly from 3.0
of the energy is localized on a small number of sites. Note 10 t0 1.5< 10" over the course of the simulation. _
that the lifetime of this breather, which is Gf(5% 10°), is The evolution of the breather depends in an interesting

still much longer than the longest phonon lifetime, which isW& On its initia! Iogation and on the damping para_meﬁer
of O(10). when the latter is either very small or very large. Figure 10

shows the early evolutioiup to t=2000) of an initially
slightly off-center breathe(site 15 of a 31-site chajnfor
three values of the damping parameter. The middle panel is
for y=1, the damping we have considered so far. The be-
havior of the excitation in this panel starts out as we have
described it, that is, it sheds some eneigyedium-gray
scalg that dissipates quickly. Although a small fraction of

0.0015 w ‘ 0.1

0.001 the energy that has been shed returns toward the breather, it
wf is neither sufficient nor of the long wavelength variety to set
= it in motion; most of the shed energy simply dissipates into

0.0005 | the zero-temperature bath. The evolution of the breather pro-

ceeds much like that of a breather initially centered in the

middle of the chair(site 16, with only a small modification

of its decay time. This behavior is fairly robust for values of

v within an order of magnitude on either side #1 and

for breathers that are excited not too near the chain ends.
tx107 The situation is rather different i is either very small

FIG. 8.[—In E(t)] vst for two initial amplitudes A= 0.5 (solid curve, left (flr_St pane] or very large(third panel. The_quahtatlve simi-

scalé andA=0.45 (dashed curve, right scalefor a chain of 31 sites with  1arity between these two extreme cases is apparent, and con-

an odd-parity breather at the center apd 1. sistent with our discussion of high and low damping simi-
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larities in a purely harmonic chain; the chain ends no longer
effectively dissipate the energy that has been shed by the
breather, and so it returns to perturb the breather and set it in
motion. In turn, this causes the breather to decay more rap-
idly into more rapidly dissipated lower-energy excitatidfs.

In the very low damping case, energy that arrives at the chain
ends cannot go anywhere except back, much like a whip. In
the very highy case the end sites are so damped that they
can absorb very little energy from the rest of the chain, much
like a wall. Indeed, the very lowy case is very similar to a
dissipationless chain with periodic boundary conditions,
while the very highy case is akin to a dissipationless chain
with fixed boundary conditions. The former has been studied
in detail in Refs. 10 and 11 and the latter in Ref. 12. These
papers study the formation and evolution of breathers in the
process of relaxation to thermal equilibriugequipartition

in dissipationless chains with nonequilibrium initial condi-
tions, and particularly focus on the interesting emergence of
chaotic breathers in this relaxation process. The point of in-
terest here is that the dynamics toward equipatrtition in these
systems is rather insensitive to the boundary conditions, an
observation consistent with the similarity of our very low
and very highy results.

We have followed these particular histories over our
usual time span of 3 million time units and find the decay
times 7=0(10%) for y=1, O(10°) for y=0.01, andO(3
X 10°) for y=100. The specific values change depending on
the initial location of the breather and the values of the other
parameters of the system, but the trend is clear.

An odd parity breather initially centeregkactlyin the
middle of the chain constitutes a singular case when damping
is very low or very high, with relative decay rateppositeto
those reported earlier. While the~1 results are not much
affected by the initial location of the excitatidprovided it is
far from the chain endsin this peculiar case the extreme-
cases lead tslower decay than fory~1. In this uniquely
symmetric case, the breather is perturbed from both sides by
identicalenergy pulses that return from the ends of the chain.
In the absence of symmetry breaking, the breather is there-
fore not set in motion, and instead simply re-absorbs this
energy(and re-emits and re-absorbs energy in increasingly
smaller amounis Since the energy that returns from the
chain ends is greater in the extrenyecases than it is for
intermediatey, the chain energy remains higher, and the de-
cay is thus slower.

Breather decay times are strongly dependent on chain
length: the decay times increase markedly, as does the total
lifetime of the breather, with increasing because finite size
effects and disturbances scattered back from chain bound-
aries are reduced. This is already apparent when one com-
pares theN=31 andN=21 results in Fig. 9. Whereas a
breather of initial amplitudé = 0.5 created at the center of a
31-site chain has barely decayed over 3 million time units, a
breather of the same initial amplitude in a 21-site chain has
disintegrated completely well before that. Wigh=0.5 and

FIG. 10. Energy landscapes of 31-site arrays. The injected odd-parity,=1 for the centered breather we fing=2.8X 10° for N

breather of amplitud&=0.5 is initially centered at site 15. Time advances
along they axis untilt=2000. A gray scale is used to represent the local
energy, with darker shading corresponding to more energetic regions. First
panel:y=0.01. Second panefy=1. Third panel:y=100.

=31 (as reported earligr r=3.2x10* for N=41, andr
3.6x 10" for N=51.
Exponential decay points to a single rate-limiting decay
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channel for the energy. This channel is the shedding of enlong wavelength phonons and of other nonlinear excitations,
ergy in the form of phonons and/or lower energy localizedbut are rapidly degraded in the presence of either. To arrive
excitations by the breather. The degradation of lower-energgt these conclusions, and to investigate them more quantita-
localized excitations, and the dissipation of energy into theively (at least numerically we have performed a number of
zero-temperature bath, are much faster processes. Howevaymerical experiments involving the spontaneous and the
the relaxation rate associated with the shedding process faanual creation of breathers in arrays initially at finite tem-
strongly dependent on chain length, breather location, angeratures and at zero temperature.
other system parameters. Breather decay brought about by collisions with long
To tie together all the scenarios that we have presentedavelength phonons and with other nonlinear excitations,
in support of our picture of breather dynamics in mixed ar-and by the associated breather motion, is rapid, even more
rays, we add one more “experiment:” we follow the dynam- rapid than typical relaxation times of high frequency
ics of a breather injected into a relaxing chaiter the long  phonons. The actual process of breather disintegration
wavelength phonons have decayed, but before the thermghused by collisions and associated motion is one whereby
relaxation process is complete. If our picture is correct, thehe breather breaks up rapidly into lower energy excitations.
breather lifetime should be much longer than that of oneThese mechanisms of breather decay cause their lifetimes to
injected at timet=0 (albeit perhaps shorter than that of the be short in systems that contain such excitations. Examples
same breather injected in a zero temperature ¢ghdle do  include thermalized purely anharmonic arrays that have no
indeed find that the breather stability improves dramaticallyefficient way to eliminate their thermal excitations. Even at
For example, for a zero-temperature injected breather of inizero temperature, a manually injected localized mode in a
tial amplitude A=0.6 in a chain of 31 sites we reported purely anharmonic array willperhaps after a prolonged pe-
earlier that over 3 million time units the relaxation time of riod of stability eventually succumb rather suddenly and
the breather is=2.8%X 1014 In a chain Inltla”y thermalized rap|d|y to the very perturba’[ions produced during the relax-
at T=10"° and then allowed to relax, if we wait untl  ation process as the localized mode re-accommodates itself
=15000 before injecting the same breather we find a somegnd/or the energy it sheds is reflected back by the system
what shortened but still very long decay time o£5.9  poundariegfinite size effects Breather decay is also rapid if
X 10*, in any case much longer than it would be if injected 5 breather is manually injected in a thermalized mixed array,
att=0. mainly due to the effects of long wavelength phonons. Since
We end this section with a caveat: all the exponentiakhese phonons are highly destructive of breathers, breather
and quasiexponential slow decays reported for the variougegradation is observed even when the temperatures in-
scenarios are fainglerealizations. In thermalized scenarios yglyed are extremely low.
where breathers are created spontaneafllynot necessar- On the other hand, breathers that are isolated from the
ily in every realization, an ensemble average could lead to agffects of long wavelength phonons and of other nonlinear
time dependence of the array energy that may be complisycitations persist for extremely long times. Examples are
cated by the occurrence of a broad range of relaxation timegysontaneous breathers that arise during thermal relaxation of
In the other scenarios, e.g., Wh_ere bre_athers are inje_ct mixed array. Long wavelength phonons as well as other
‘manually,” a range of relaxation times might also occur in popjinear excitations that themselves decay into phonons are
an ensemble if the location of the breather varies from ongne first to relax, and spontaneous breathers make their ap-
realization to another. pearance when the system has already been swept clean of
these particular excitations. Short wavelength phonons do
not destroy breathers; on the contrary, they tend to be ab-
sorbed by them and thus to contribute to their stability. The
We have studied the dynamics and relaxation of breatherucial importance of phonons and their ability to relax into
ers in Fermi—Pasta—Ulam arrays whose boundaries are cothe cold temperature heat batbspecially the long wave-
nected through damping terms to a zero temperature he&ngth phonons is thus evident: spontaneously created
bath. We find that breather dynamics and relaxation in thesbreathers in mixed arrays can persist because of the phonon
nonlinear arrays with quartic inter-particle interactions pro-dynamics, whereas the absence of phon@agic vacuum
ceed along energetic pathways that are highly sensitive to thend the consequent difficulty of purely anharmonic arrays to
presence or absence of quadratic contributions to the inteeliminate “offending” excitations leads to the inability of
actions. spontaneously created breathers to persist. For the same rea-
To understand the role of quadratic interactions we havesons, manually injected breathers in mixed arrays can persist
recalled that phonons in these arrays relax independently débr a very long time if inserted in a zero temperature array, or
one anothelprovided the damping at the boundaries is notin an array in which long wavelength phonons and other
too strong, that the phonon relaxation time is wave vector nonlinear excitations have already relaxed, but breathers will
dependent, and that phonons therefore relax sequentiallgot survive if injected in a thermalized mixed chain, or even
starting with the longest wavelengths for the free-end boundin a chain that is allowed to cool down to a very low but
ary conditions used in our work. We have also pointed ounhonzero temperature, no matter how low the temperature.
that breathers are fragile against collisions with long wave-  Having established conditions that favor breather lon-
length phonons and also with other localized nonlinear excigevity (mixed anharmonic chains at zero temperature or par-
tations. Breathers are therefore quite robust in the absence télly relaxed to zero temperatyreve have noted that even

VI. CONCLUSIONS
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