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Asymptotic dynamics of breathers in Fermi-Pasta-Ulam chains
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We carry out a numerical study of the asymptotic dynamics of breathers in finite Fermi-Pasta-Ulam chains
at zero and nonzero temperatures. While at zero temperature such breathers remain essentially stationary and
decay extremely slowly over wide parameter ranges, thermal fluctuations tend to lead to breather motion and
more rapid decay. In both cases the decay is essentially exponential over long time intervals.
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[. INTRODUCTION longer time regimeg4], and agree with and complement
those of Piazzat al. [5].

Energy localization in the form of breathers has been in- The paper is organized as follows. In Sec. Il we present
tensely investigated over the past several yé¢ats These numerical results for chains initially at zero temperature, and
highly localized long-lived excitations in translationally in- €xplore the dependence of the dynamics on various system
variant nonlinear arrays are of great interest because thgj@rameters. In Sec. lll we discuss breather decay in chains
provide a mechanism for energy storage that does not rely diitially at a finite temperature. We end with a summation in
defects. The fact that these excitations are often mobil&€C: V-
makes them particularly interesting in the context of efficient
transport of vibrational energi2]. Il. BREATHERS AT ZERO TEMPERATURE

Bregther excitations that persist forever can be_confirr_ned The Hamiltonian for the FPWB model is
analytically and constructed numerically for certain nonlin-
ear arrays, among them infinite arrays of masses with inter- X2 k& r N
actions between neighboring sites that varyxs-;)" with H =Z >t3 Z (Xi—Xi—1)?+ T Z (Xi—%i—1)%

n—o [3]. The x’s denote displacements of the masses at =t =t =t i
sitesi andj. When the interactions are not precisely of this

form, or when the array is finite, or when other excitationswhere N is the number of sites, anklandk’ are the har-

(for example, phonons or other localized excitatiomse  monic and anharmonic force constants, respectively. We set
present, it is no longer possible to prove exact breather sollk=k’=0.5 throughout. The relative values of the two con-
tions. Nevertheless, it is possible to explore the problem nustants can be shifted by rescaling space and time. In particu-
merically. In this report we study the asymptotic dynamics oflar, by introducing new variableg = ax; andr=t/a, where
breathers in the one-dimensional Fermi-Pasta-UlBRL) 3  « is a scaling constant, one finds that the scaled Hamiltonian
model at zero temperature and during thermal relaxation. @*H in the new variables is again of the forfh) but with

We corroborate that long-wavelength thermal excitationscoupling constantstk andk’. The results are therefore re-
have a profound effect on breather stability. In particular, oufated through appropriate scaling for any choice of coupling
work supports three main conclusions concerning the dyconstantprovided neither is zerp4]. The equations of mo-
namics of breathers whose frequencies are initially muction with free-end boundary conditions are integrated using a
higher than phonon frequencies in FBthains:(1) At zero  fourth order Runge-Kutta method with time intervat=>5
temperature in finite chains, breather excitations remain loX 10~ (further reduction leads to no significant improve-
calized, and their energiand that of the entire chainlecays ~mend [6]. The total energy(t) of the array is the sum over
essentially exponentially until their frequency approaches individual symmetrized site energi€s(t) [4]. A zero tem-
that of the phonon band’ Whereupon the final decay is Verperature environment with the least disturbance to the dy-
rapid. (2) The exponential decay time at zero temperature namics in the chain is achieved by connecting the chain ends
is extremely long compared to phonon decay tint@sTher-  to such an environment via a dissipation term, that is, by
mal background, especially long wavelength backgroundadding — yx; to the equations of motion for sités=1 and
keeps the breather in motion, which in turn leads to its moré=N [4,5].
rapid decay. These results extend our earlier work to much In order to observe breather decay, we begin by creating

an “odd parity” excitation with amplitudes-A/2, A, and
A/2 on three successive sites, zero amplitude on the other
*Permanent address: Departament dén@ea Fsica, Universitat ~ sites, and zero velocity at each site. We identify this excita-
de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain. tion asthe breather and thereby distinguish it from other
"Permanent address: Instituto de Matéio®s, Universidad Nacio-  excitations that emerge during the relaxation process. The
nal Autonoma de Mgico, Ave. Universidad s/n, 62200 Chamilpa, predominant frequency of the breather is higher for higher
Morelos, Mexico. which must be chosen so that this frequency is well above
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the phonon band edge at=\4k=\2 in order to avoid 0.9

rapid decay by phonon radiation. This excitation is not an A=0.55
exact stationary solution of the equations of motion, so it L_' -

typically sheds some enerdthereby “warming” the chain 0.8 A=05

while reaccommodating amplitudes and lowering its fre-
quency[4], and settles into a very long-lived excited con-
figuration which continues to discard energy until it eventu- w
ally disintegrates. A measure of the magnitude of the chain
relaxation times reported below is obtained by recalling that
phonons of a given wave vectqrdecay exponentially with a

decay time that depends oq, and that the shortest-
wavelength phonons have the longest decay times,
Toh™ N3/ [5]. 0.5 : .

The discarded energy appears in the form of lower-energy 0 1 L 2 3
localized excitations and/or phonons. The precise subsequent tx10
evolution depends on a number of parameters: the initial g1 1 pecay of the normalized energyt) for three different
amplitudeA, the chain lengtiN, the damping parametey,  yajues of the initial amplituded for chains of N=31 sites con-
and the location of the center of the initial excitation. Beforenected at the ends to a zero-temperature bath. The breather is lo-
pursuing some specific parameter dependence trends in Maggted at the center of the chain. The dissipation parametet.
detail, we note the following. As mentioned above, we estabThe thin lines represent the total energy remaining in the chain, and
lish numerically that the decay of the breather is essentiallyhe bold lines the portion of the remaining energy that is localized
exponential over long time intervals. However, the actualn the three initially excited sites.
decay time depend&@mong other factojson the breather
amp”tude, being |arger for |arger amp"tud@e be|ov)/_ excitations have dissipatecﬂbut before the remaining
Therefore, even as the breather slowly loses energy, its anfreather has decayed appreciably this illustration we take
plitude decreases and consequently its decay rate slowly irfm=40,000= 7pp,.
creases, that is, the “decay time”is itself mildly time de- In Fig. 1 we show typical results fd(t) for three exci-
pendent, until the breather frequency approaches the phonéﬂtion amplitudes over more than six decades of time. The
band edge and the breather disintegrates rapidly intghodified normalized energy follows essentially the same be-
phonons_ Thus the time dependenca—(jﬁ slower for more havior. If the decay of the Iong—Iived excitation is exponen-
energetic excitations. The total lifetime of the breather istial, we expecf —InE(t)] and[ —In E,(t)] vst to be straight
bounded above by the very slow decay time at its highesines over appropriately long time intervals. In Fig. 2 we
amplitude and the phonon lifetimes into which it eventuallyclearly see this behavior, which extends over the entire time
disintegrates. interval for the higher amplitude excitation. The slope for the

Consider the following specific scenario, which serves toA=0.5 curve leads to a decay time of2.80x 10°, a spe-
establish the way in which we extract relevant relaxationcific number reported here principally to stress its enormous
times from our numerical results. We create an odd-paritynagnitude compared ta,,. The change in slope of the
excitation of amplitudeA exactly in the middle of the chain curve associated with the lower amplitude breather captures
of N=231 sites, and set the end-site dissipation parameter the slow change in the decay rate as the breather frequency
=1. The breather discards some energy that travels towar@dges toward the phonon band. Here we also see clearly that
the chain ends and dissipates quickly, in a time across the more energetic breather relaxes more slowly.
the ends of the chain. The remaining energy stays localized
in the middle of the chain, most of it (98% fdr=0.5) on
the three initially excited sites, and decays exponentially
with an extremely long characteristic timgfor a discussion
of the relative stability of breathers of different configura- 0.001 |
tions sed7)).

To extract exponents and characteristic times, it is impor-  w
tant to gather data that covers both time scales, and to nor- 5
malize the data in such a way that one behavior does not 0.0005 |
mask or distort the othdi8]. We introduce thenormalized
energy Kt) and themodified normalized energyftt) as
follows:

0.0015 T T 0.1

101

10.0

E(t)= L) Em(t)= EiUR 2 tx10°

e(0)’ &(Tm)
FIG. 2.[ —In E,(t)] vst for two initial amplitudesA= 0.5 (solid
The denominator in the first contains the initial energies, an@urve, left scalg and A=0.45 (dashed curve, right scalefor a
in the second the energies after the discarded low energshain of 31 sites with a breather at the center gl
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ol 2 - — ‘ i ] TABLE |. Relaxation times calculated as described in the text

15| i for breathers of increasing initial amplitude for a chain of 31 sites

2| andy=1. The breather is located exactly at the center of the chain.

N -4 A T T

uf -6y 0.45 2.96¢ 107 1.53x 107
I sl 0.46 8.3% 10 6.81x 10’
c 0.47 3110 2.53x10°
-0 0.48 4.8%10° 4,61 10P
-2t . 0.49 1.1%10° 1.18x10°
il 0.50 2.7%10° 2.78x10°
. ‘ . ‘ . 0.51 7.0410° 7.04x10°
6 8 10 12 14 0.53 3.1x10% 3.12x 10%°
Int 0.55 1.4% 101 1.43< 10
FIG. 3. [In(—InEy(t))] vs Int for two initial amplitudes,A 0.60 2810 2.81x 104

=0.5 (lower curve and A=0.45 (upper curvg for a chain of 31

sites. The inset shows the associated slopes in the same order. the simulation time much longer, or the chain shorter, the
breather would be seen to disappear. This last case is illus-
Figure 3 confirms the exponential decgy,8]. For two trated in Fig. 4. The breather disintegrates entirely when its
initial amplitudes, the figure shows$n(—InE.(t))] vs Int,  frequency reaches the band edge. The inset shoti ratio
which yields a straight line of slop if Em(t)oce(‘“f)ﬁ. The Of the energy Qf the five site; centered on the breather, to the
inset shows the values of the slopes as a function of time. FdPtal energyL is of order unity when most of the energy is
A=0.5, pure exponential behavioB=1 is confirmed Iogahzed ona smfall n_umber of sites. l_\lote.that the lifetime of
throughout the time range presented. Approach of thdhis breather, which is 0O(5x 10°), is still much longer
breather frequency to the phonon band edge increases tHaan the longest phonon lifetime, which is ©{10%). _
decay rate, an effect clearly seen for the lower amplitude. ~ The above results are typical of one particular scenario: a
A breather of a given amplitude has a characteristic prebreather created exactly in the middle of a chairNo$ites _
dominant frequency. In Fig. 4 we show this frequency inWhose ends are connected to the zero-temperature bath with
relation to the phonon band edge as a function of time for thélissipation parametey=1. Itis interesting to explore quali-
cases discussed above. For 31-site chains, the frequency '@five and even quantitative dependences as one changes
the breather of initial amplitud&=0.5 decreases very little these conditions. The dependence of the chain energy relax-
over the entire simulation, while that of initial amplituge ~ ation times on the initial amplitude of the breather is mono-
—0.45 decreases more markedly. Consistent with the fad@nic. In Table I we exhibit illustrative results for the decay
that the breather does not disappear entirely in the time rangémes for breathers of different initial amplitudes in 31-site
shown, its frequency never reaches the phonon band edge.qf@ins, including those associated with the decay curves

the initial amplitude of the excitation were even smaller, orSNOWn in Figs. 1—4. The first column gives the initial ampli-
tude of the breather constructed in the middle of the chain

with end-site dissipation parameter=1, as before. We
stress that the lifetimes of all these breathers are much longer
than our total simulation times=3x10°. The second col-
umn shows the decay time, denoted 3y obtained from a

fit of the slopes such as shown in Fig. 2 over the time span
from t=10° to t=2x10°. The third column shows the de-
cay time, denoted by,, obtained from the slope over the

< range (2<10P)—(3x10°). For the lower amplitude breath-

1.45 | ] ers, is slightly longer thanr,, indicative of the increase of
the breather decay rate as its frequency edges toward the
phonon band. For the higher amplitude breathers the de-
crease is not discernible over our simulation times and the
phonon band decay is essentially strictly exponential. Eventually their de-

‘ cay will also speed up, but it will occur well beyond the
times included in our studies. Clearly, the decay rate de-
creases sharply with increasing breather amplitude.

FIG. 4. Breather frequency as a function of time. Curve that The evolution of the breather depends in an interesting
persists at the highest frequenay+£1.5): A=0.5, N=31. Curve Way on its initial location and on the damping parameger
that begins atw~1.465 and decreases gentk=0.45, N=31.  when the latter is either very small or very large. Figure 5
Curve that turns sharply downward=0.5, N=21. Inset: associ- shows the very early evolutiofup tot=2000) of a breather
ated localization parameters in the same order. initially centered on site 15 of a 31-site chain, that is, slightly

1.6

1.55 |

1.5

14

1.35 :
0 1 2 3
tx107°
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This behavior is fairly robust for values of within an order
of magnitude on either side of=1 and for breathers that
are excited not too near the chain ends.

The situation is rather different i is either very small
(first panel or very large(third pane). The qualitative simi-
larity between these two extreme cases is apparent: the chain
ends no longer dissipate the energy that has been shed by the
breather as effectively, and so it returns to perturb the
breather and set it in motion. In turn, this causes the breather
to decay more rapidly into more rapidly dissipated lower-
energy excitation§4]. In the very low damping case energy
that arrives at the chain ends cannot go anywhere except
back, much like a whip. In the very higph case the end sites
are so damped that they can absorb very little energy from
the rest of the chain, much like a wall. We have followed
these particular histories over our usual time span of 3 mil-
lion time units and find the decay times~ r,=1.56x 10°
for y=1, 7,=1.90x10¢° and 7,=1.22x10° for y=0.01,
andr;=3.45< 10" andr,=3.12x 10’ for y=100. The trend
is thus as described; the particular values are susceptible to
change depending on the initial location of the breather and
the values of the other parameters of the system.

It should be pointed out that an odd parity breather ini-
tially centeredexactlyin the middle of the chain constitutes a
rather singular case when damping is very low or very high,
with relative decay ratesppositeto those reported above.
While the y~1 results are not much affected by the initial
location of the excitatior{provided it is far from the chain
ends, in this peculiar case the extreme<cases lead to
slowerdecay than fory~ 1. In this unique case, the symme-
try of the problem leads to the breather being buffeted from
both sides byidentical energy pulses that return from the
ends of the chain. In the absence of symmetry breaking, the
breather is therefore not set in motion, and instead simply
re-absorbs this energand reemits and reabsorbs energy in
increasingly smaller amounts Since the energy that returns
from the chain ends is greater in the extremeases than it
is for intermediatey, the chain energy remains higher, and
e decay is thus slower.

FIG. 5. Energy landscapes of 31-site arrays. The breather otfh . .
amplitude A=0.5 is initially centered at site 15. Time advances Breather decay times are strongly dependent on the chain

along they axis untilt=2000. A gray scale is used to represent thel_ength: the decay times m(_:rez_ise markedly, ,as.does the total
local energy, with darker shading corresponding to more energetilif€time of the breather, with increasiny. This is already
regions. First panely=0.01. Second panel=1. Third panel:y apparent when one compares e 31 andN =21 results in
=100. Fig. 4. Whereas a breather of initial amplitude=0.5 cre-
ated at the center of a 31-site chain has barely decayed over
off-center, for three values of the damping parameter. Thé million time units, a breather of the same initial amplitude
middle panel is fory=1, the damping we have considered in a 21-site chain has disintegrated completely well before
so far. The behavior of the excitation in this panel starts outhat. With A=0.5 andy=1 for the centered breather we
as we have described it, that is, it sheds some energfind, with r=7,= 7, the valuesr=2.80x 10° for N=31 (as
(medium-gray scalethat dissipates quickly. Although a reported above 7=3.21x10 for N=41, and 7=3.60
small fraction of the energy that has been shed oscillatex 10'° for N=51. This behavior is entirely reasonable since
back toward the breather, it is not sufficient to set it in mo-the decay of the breather is intimately connected with the
tion; most of the energy simply moves towards the chainpresence of a background of other excitations disturbing the
ends and dissipates into the zero-temperature bath. The evioreather and the effects of the damped chain boundary sites.
lution of the breather proceeds as described earlier for all else being the same, both of these are reduced in longer
breather initially centered in the middle of the chésite 16 chains. Extremely long simulations runs are necessary to
with only a small modification of its decay timeee below. ~ quantify theN dependence for even longer chains; such a
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04 ‘ ‘ — and 15, smaller but not negligible amplitudes at sites 13 and
0.3 ] 16, and essentially no motion of the other sites. The breather
w01y 1 is coincidentally at the center of the chain, but may appear
w02 ] anywhere in different realizations, particularly in longer
0.1 %0 75 150 chains. The frequency of the breather, initiath=1.633,
0 ‘ ‘ ‘ decreases very little for the duration of the simulation. We
0 0.05 0.1 0.15 0.2 also present the modified normalized energy, whose decay is
4.0 ‘ clearly exponential, with an enormously long time constant,
<5 3.0 | 7=3.5x 10" Thus this breather, even in our relatively short
x> 50 | chain, is essentially stationary. This decay time is much
uf longer than that reported in the previous section, consistent
= 1.0 | with the fact that the amplitude of the breather that has
0.00 5 — =0 emerged spontaneously is larger. The thermal relaxation pro-

cess has swept the lattice clean of all other excitations, al-
lowing the breather to survive undisturbet]. In our earlier

FIG. 6. Upper panel: the smooth curve is the normalized energyvork we reported a stretched exponential rather than a purely
as a function of time for a chain of 30 sites initially thermalized at €xponential decay, a conclusion that relied on the normalized
T=0.5 and connected through its ends to a zero-temperature hegdther than the modified normalized enef@j, on a time
bath (y=0.1). The initially jagged curve is the normalized energy history that was not sufficiently long, on a statistical average
on sites 13, 14, 15, and 16. The inset shows the temporal evolutioaver a thermal ensemble that included realizations where
of the energy on these four sites over a longer time scale. Lowebreathers appeared at different locatiowkich, as we have
panel:[ —In E,(t)] vs t for the same chain. seen, might affect decay rajesnd also realizations where

no breather appeared during the thermal relaxation process

study, together with an analysis of the effects of different(and where the energy dissipation was consequently much
boundary conditions, will be pursued in more detail else-more rapidl.
where[9]. In our second scenario, &&=0 a breather of the same

Pure exponential decay indicates that there is a singlamplitudeA as in the first scenario is explicitly injected into
rate-limiting decay channel for the enerff§]. This channel a chain that is in thermal equilibrium at a very low tempera-
is the shedding of energy in the form of phonons and/oiture (low in the sense that the spontaneous formation of
lower energy localized excitations by the breather. The degbreathers is highly unlike)y The chain is then allowed to
radation of lower-energy localized excitations, and the dissirelax into a zero temperature heat bath. We find that the
pation of energy into the zero-temperature bath, are mucthermal background invariably sets the breather in motion,
faster processes. The shedding process is slower for longand causes the breather to collide with other excitations and
chains and more energetic breathers of frequencies farthevith the chain boundaries. Collision events not only cause
from the phonon band, since the localized excitation is thethe breather to keep moving, but also lead to breather degra-

tx10”

closer to an exact stationary solution. dation through loss of energy upon collisipf]. The result-
ing decay of the breather is then in general much faster than
IIl. BREATHERS AT FINITE TEMPERATURES in the first scenario. The decay time is also much smaller

than that of a breather of the same amplitude injected into a

When a localized excitation evolves in a thermal environ-zero temperature chain. We find this behavior even when the
ment, other excitations in the medium perturb the breathetemperature is extremely lowall the way down toT
and its eventual fate varies from one realization to another=10 /). As a quantitative check we have explicitly injected
To illustrate the complexity of the situation, we present twoa breather of initial amplitud&= 0.5 into a chain thermali-
scenarios. zed atT=10 %, that is then allowed to relax into a zero

We begin with a chain that is initially in thermal equilib- temperature bath. Compared to the zero temperature case, the
rium at a nonzero temperatur]. At timet=0, the end sites decay time of the breather is now much reducee,1.32
of the thermalized chain are connected to a zero temperature10°. A similar comparison withA=0.55 again leads to
bath via purely dissipative termigt,5,10. We follow the  dramatically different decay times;=1.43<10' (T=0)
thermal relaxation of the chain and, in particular, the dynamand r=2.12<10° (T=10 °). Note that it does not much
ics of breathers that are likely to appear anywhere duringnatter whether the injected breather is of even or odd parity
relaxation if the initial temperature is sufficiently high. Fig- (here we have injected an odd one
ure 6 shows the evolution of the normalized energy in a Why is a breather created spontaneously during thermal
chain of 30 sites initially thermalized at temperatufe relaxation more stable than one explicitly injected into a
=0.5, as well as the energy in only the four sites thermalized chain, even at extremely low temperatures? The
=13,14,15,16. After a relatively short time (5000 time unitsanswer lies in the effect of different phonons on breather
in this particular realizationalmost all of the energy settles dynamics[4,5]. Whereas short wavelength zone-boundary
in these sites and remains there. The excitation around theghonons contribute to spontaneous breather formation
four sites turns out to be an “even parity” breather, with (“modulational instability”), breathers are most strongly per-
maximum displacementd and —A alternating on sites 14 turbed and degraded by the longest wavelength phonons.
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These are also the phonons that dissipate most rapidly out eimes, that effects of thermal fluctuations must be taken into
a chain with free-end boundaries into a zero-temperaturaccount even at extremely low temperatures, and that zero-
bath[5]. In the higher temperature system, when the breathelemperature results are in some ways fragile. We have con-
is created spontaneously the long wavelength phonons ha¥emed that breather decay for any particular realization is
already dissipated and, as dissipation continues up the phessentially exponentidb], with a slowly varying decay rate
non spectrum, the breather is increasingly less disturbed untiintil the breather frequency closely approaches the phonon
it reaches a spatially stationary very long-lived configurationband edge, whereupon the breather quickly disintegrates. We
[4]. On the other hand, if the breather is injected into a therhave uncovered a number of trends and dependences of the
malized system, the breather is subject to strong disturband@eather decay rate. Among them, we have noted the effects
by long wavelength phonons even at the very lowest temen breather decay times of breather amplitude/frequency,
peratures until these phonons dissipate. In chains undergoirdtamping coefficient at the ends of the chain, initial location
thermal relaxation, an injected breather in the thermalizeaf the breather, and chain length. We have confirmed that the
scenario is therefore a more fragile excitation than a spontadrastic increase in the breather decay rate caused by a ther-
neously created breather of the same amplitude. To confirrmal background is overwhelmingly due to long-wavelength
this description we have followed the dynamics of a breathephonons. Absent these phonons, the presence of shorter
injected into a relaxing chairafter the long wavelength wavelength excitations leads to only a mild reduction in the
phonons have decayed, and find the breather to be almost beeather decay time. We have noted that exponential decay
stable as one in a zero-temperature simulation. For exampl@dicates a single rate-limiting decay chanfw], which we

for a zero-temperature injected breather of initial amplitudehave identified as the shedding of energy by the breather in
A=0.6 in a chain of 31 sitesa{=1.65), we find7=2.81 the form of phonons and/or lower energy localized excita-
X 10" In a chain initially thermalized af=10"° and then tions. However, an ensemble averaged decay would reflect
allowed to relax, if we wait untit=15000 before injecting the variations of the characteristic exponential decay time of
the same breather we find a somewhat shortened but sté#lach realization and might in general not even be of purely
very long decay time of=5.92<10'% in any case much exponential form. Finally, it would be interesting to extend
longer than it would be if injected at=0. We have also earlier work on arrays with nonlinean-site potentials[ 10]
observed a breather in a chain whose temperature is maite consider some of the detailed issues examined herein.
tained at an extremely low but nonzero value. The breather

in this case is always fragile, continuing to move and lose

energy until it degrades completely. The zero temperature ACKNOWLEDGMENTS
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