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Asymptotic dynamics of breathers in Fermi-Pasta-Ulam chains
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We carry out a numerical study of the asymptotic dynamics of breathers in finite Fermi-Pasta-Ulam chains
at zero and nonzero temperatures. While at zero temperature such breathers remain essentially stationary and
decay extremely slowly over wide parameter ranges, thermal fluctuations tend to lead to breather motion and
more rapid decay. In both cases the decay is essentially exponential over long time intervals.
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I. INTRODUCTION

Energy localization in the form of breathers has been
tensely investigated over the past several years@1#. These
highly localized long-lived excitations in translationally in
variant nonlinear arrays are of great interest because
provide a mechanism for energy storage that does not rel
defects. The fact that these excitations are often mo
makes them particularly interesting in the context of efficie
transport of vibrational energy@2#.

Breather excitations that persist forever can be confirm
analytically and constructed numerically for certain nonl
ear arrays, among them infinite arrays of masses with in
actions between neighboring sites that vary as (xi2xj )

n with
n→` @3#. The x’s denote displacements of the masses
sites i and j. When the interactions are not precisely of th
form, or when the array is finite, or when other excitatio
~for example, phonons or other localized excitations! are
present, it is no longer possible to prove exact breather s
tions. Nevertheless, it is possible to explore the problem
merically. In this report we study the asymptotic dynamics
breathers in the one-dimensional Fermi-Pasta-Ulam~FPU! b
model at zero temperature and during thermal relaxation

We corroborate that long-wavelength thermal excitatio
have a profound effect on breather stability. In particular,
work supports three main conclusions concerning the
namics of breathers whose frequencies are initially m
higher than phonon frequencies in FPUb-chains:~1! At zero
temperature in finite chains, breather excitations remain
calized, and their energy~and that of the entire chain! decays
essentiallyexponentiallyuntil their frequency approache
that of the phonon band, whereupon the final decay is v
rapid. ~2! The exponential decay timet at zero temperature
is extremely long compared to phonon decay times.~3! Ther-
mal background, especially long wavelength backgrou
keeps the breather in motion, which in turn leads to its m
rapid decay. These results extend our earlier work to m
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longer time regimes@4#, and agree with and complemen
those of Piazzaet al. @5#.

The paper is organized as follows. In Sec. II we pres
numerical results for chains initially at zero temperature, a
explore the dependence of the dynamics on various sys
parameters. In Sec. III we discuss breather decay in ch
initially at a finite temperature. We end with a summation
Sec. IV.

II. BREATHERS AT ZERO TEMPERATURE

The Hamiltonian for the FPUb model is

H5(
i 51

N ẋi
2

2
1

k

2 (
i 51

N

~xi2xi 21!21
k8

4 (
i 51

N

~xi2xi 21!4,

~1!

whereN is the number of sites, andk and k8 are the har-
monic and anharmonic force constants, respectively. We
k5k850.5 throughout. The relative values of the two co
stants can be shifted by rescaling space and time. In par
lar, by introducing new variablesyi5axi andt5t/a, where
a is a scaling constant, one finds that the scaled Hamilton
a4H in the new variables is again of the form~1! but with
coupling constantsak and k8. The results are therefore re
lated through appropriate scaling for any choice of coupl
constantsprovided neither is zero@4#. The equations of mo-
tion with free-end boundary conditions are integrated usin
fourth order Runge-Kutta method with time intervalDt55
31024 ~further reduction leads to no significant improv
ment! @6#. The total energy«(t) of the array is the sum ove
individual symmetrized site energiesEi(t) @4#. A zero tem-
perature environment with the least disturbance to the
namics in the chain is achieved by connecting the chain e
to such an environment via a dissipation term, that is,
adding2g ẋi to the equations of motion for sitesi 51 and
i 5N @4,5#.

In order to observe breather decay, we begin by crea
an ‘‘odd parity’’ excitation with amplitudes2A/2, A, and
A/2 on three successive sites, zero amplitude on the o
sites, and zero velocity at each site. We identify this exc
tion as the breather and thereby distinguish it from oth
excitations that emerge during the relaxation process.
predominant frequency of the breather is higher for higheA,
which must be chosen so that this frequency is well ab
©2002 The American Physical Society07-1
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E66, 046607 ~2002!
the phonon band edge atv5A4k5A2 in order to avoid
rapid decay by phonon radiation. This excitation is not
exact stationary solution of the equations of motion, so
typically sheds some energy~thereby ‘‘warming’’ the chain!
while reaccommodating amplitudes and lowering its f
quency@4#, and settles into a very long-lived excited co
figuration which continues to discard energy until it even
ally disintegrates. A measure of the magnitude of the ch
relaxation times reported below is obtained by recalling t
phonons of a given wave vectorq decay exponentially with a
decay time that depends onq, and that the shortest
wavelength phonons have the longest decay tim
tph;N3/g @5#.

The discarded energy appears in the form of lower-ene
localized excitations and/or phonons. The precise subseq
evolution depends on a number of parameters: the in
amplitudeA, the chain lengthN, the damping parameterg,
and the location of the center of the initial excitation. Befo
pursuing some specific parameter dependence trends in
detail, we note the following. As mentioned above, we est
lish numerically that the decay of the breather is essenti
exponential over long time intervals. However, the act
decay time depends~among other factors! on the breather
amplitude, being larger for larger amplitudes~see below!.
Therefore, even as the breather slowly loses energy, its
plitude decreases and consequently its decay rate slowl
creases, that is, the ‘‘decay time’’t is itself mildly time de-
pendent, until the breather frequency approaches the pho
band edge and the breather disintegrates rapidly
phonons. Thus the time dependence oft is slower for more
energetic excitations. The total lifetime of the breather
bounded above by the very slow decay time at its high
amplitude and the phonon lifetimes into which it eventua
disintegrates.

Consider the following specific scenario, which serves
establish the way in which we extract relevant relaxat
times from our numerical results. We create an odd-pa
excitation of amplitudeA exactly in the middle of the chain
of N531 sites, and set the end-site dissipation parametg
51. The breather discards some energy that travels tow
the chain ends and dissipates quickly, in a timetm , across
the ends of the chain. The remaining energy stays local
in the middle of the chain, most of it (98% forA50.5) on
the three initially excited sites, and decays exponentia
with an extremely long characteristic timet ~for a discussion
of the relative stability of breathers of different configur
tions see@7#!.

To extract exponents and characteristic times, it is imp
tant to gather data that covers both time scales, and to
malize the data in such a way that one behavior does
mask or distort the other@8#. We introduce thenormalized
energy E(t) and themodified normalized energy Em(t) as
follows:

E~ t !5
«~ t !

«~0!
, Em~ t !5

«~ t !

«~tm!
. ~2!

The denominator in the first contains the initial energies, a
in the second the energies after the discarded low en
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excitations have dissipated~but before the remaining
breather has decayed appreciably!. In this illustration we take
tm540,000*tph .

In Fig. 1 we show typical results forE(t) for three exci-
tation amplitudes over more than six decades of time. T
modified normalized energy follows essentially the same
havior. If the decay of the long-lived excitation is expone
tial, we expect@2 ln E(t)# and@2 ln Em(t)# vs t to be straight
lines over appropriately long time intervals. In Fig. 2 w
clearly see this behavior, which extends over the entire t
interval for the higher amplitude excitation. The slope for t
A50.5 curve leads to a decay time oft52.803109, a spe-
cific number reported here principally to stress its enorm
magnitude compared totph . The change in slope of the
curve associated with the lower amplitude breather captu
the slow change in the decay rate as the breather frequ
edges toward the phonon band. Here we also see clearly
the more energetic breather relaxes more slowly.

FIG. 1. Decay of the normalized energyE(t) for three different
values of the initial amplitudeA for chains ofN531 sites con-
nected at the ends to a zero-temperature bath. The breather
cated at the center of the chain. The dissipation parameterg51.
The thin lines represent the total energy remaining in the chain,
the bold lines the portion of the remaining energy that is localiz
on the three initially excited sites.

FIG. 2. @2 ln Em(t)# vs t for two initial amplitudes,A50.5 ~solid
curve, left scale! and A50.45 ~dashed curve, right scale!, for a
chain of 31 sites with a breather at the center andg51.
7-2



F

th

.
re
in
th
cy

fa
n
e
o

the
llus-
its

the
is
of

: a

with
-
nges
lax-
o-
y

ite
ves
li-
ain

nger

an
-
e
-
f

the
de-
the
e-
e
de-

ing

5

tly

r.

ha

ext
tes
ain.

ASYMPTOTIC DYNAMICS OF BREATHERS IN FERMI- . . . PHYSICAL REVIEW E 66, 046607 ~2002!
Figure 3 confirms the exponential decay@5,8#. For two
initial amplitudes, the figure shows@ ln„2 ln Em(t)…# vs lnt,
which yields a straight line of slopeb if Em(t)}e(2t/t)b

. The
inset shows the values of the slopes as a function of time.
A50.5, pure exponential behaviorb51 is confirmed
throughout the time range presented. Approach of
breather frequency to the phonon band edge increases
decay rate, an effect clearly seen for the lower amplitude

A breather of a given amplitude has a characteristic p
dominant frequency. In Fig. 4 we show this frequency
relation to the phonon band edge as a function of time for
cases discussed above. For 31-site chains, the frequen
the breather of initial amplitudeA50.5 decreases very little
over the entire simulation, while that of initial amplitudeA
50.45 decreases more markedly. Consistent with the
that the breather does not disappear entirely in the time ra
shown, its frequency never reaches the phonon band edg
the initial amplitude of the excitation were even smaller,

FIG. 3. @ ln„2 ln Em(t)…# vs ln t for two initial amplitudes,A
50.5 ~lower curve! and A50.45 ~upper curve!, for a chain of 31
sites. The inset shows the associated slopes in the same orde

FIG. 4. Breather frequency as a function of time. Curve t
persists at the highest frequency (v;1.5): A50.5, N531. Curve
that begins atv;1.465 and decreases gently:A50.45, N531.
Curve that turns sharply downward:A50.5, N521. Inset: associ-
ated localization parameters in the same order.
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the simulation time much longer, or the chain shorter,
breather would be seen to disappear. This last case is i
trated in Fig. 4. The breather disintegrates entirely when
frequency reaches the band edge. The inset showsL, the ratio
of the energy of the five sites centered on the breather, to
total energy.L is of order unity when most of the energy
localized on a small number of sites. Note that the lifetime
this breather, which is ofO(53105), is still much longer
than the longest phonon lifetime, which is ofO(104).

The above results are typical of one particular scenario
breather created exactly in the middle of a chain ofN sites
whose ends are connected to the zero-temperature bath
dissipation parameterg51. It is interesting to explore quali
tative and even quantitative dependences as one cha
these conditions. The dependence of the chain energy re
ation times on the initial amplitude of the breather is mon
tonic. In Table I we exhibit illustrative results for the deca
times for breathers of different initial amplitudes in 31-s
chains, including those associated with the decay cur
shown in Figs. 1–4. The first column gives the initial amp
tude of the breather constructed in the middle of the ch
with end-site dissipation parameterg51, as before. We
stress that the lifetimes of all these breathers are much lo
than our total simulation timest533106. The second col-
umn shows the decay time, denoted byt1, obtained from a
fit of the slopes such as shown in Fig. 2 over the time sp
from t5106 to t523106. The third column shows the de
cay time, denoted byt2, obtained from the slope over th
range (23106) –(33106). For the lower amplitude breath
erst1 is slightly longer thant2, indicative of the increase o
the breather decay rate as its frequency edges toward
phonon band. For the higher amplitude breathers the
crease is not discernible over our simulation times and
decay is essentially strictly exponential. Eventually their d
cay will also speed up, but it will occur well beyond th
times included in our studies. Clearly, the decay rate
creases sharply with increasing breather amplitude.

The evolution of the breather depends in an interest
way on its initial location and on the damping parameterg
when the latter is either very small or very large. Figure
shows the very early evolution~up to t52000) of a breather
initially centered on site 15 of a 31-site chain, that is, sligh

t

TABLE I. Relaxation times calculated as described in the t
for breathers of increasing initial amplitude for a chain of 31 si
andg51. The breather is located exactly at the center of the ch

A t1 t2

0.45 2.963107 1.533107

0.46 8.323107 6.813107

0.47 3.123108 2.533108

0.48 4.833108 4.613108

0.49 1.193109 1.183109

0.50 2.793109 2.783109

0.51 7.043109 7.043109

0.53 3.1231010 3.1231010

0.55 1.4331011 1.4331011

0.60 2.8131014 2.8131014
7-3



h
d

ou
r

a
te
o
ai
e
r

t

hain
y the
the
ther
r-
y
cept
s
om

ed
il-

le to
and

ni-
a
gh,
.
al

-
om
e
the
ply
in
s

d

hain
total

over
de
ore
e

ce
the
the
ites.
ger
to
a

r
es
he
e

REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E66, 046607 ~2002!
off-center, for three values of the damping parameter. T
middle panel is forg51, the damping we have considere
so far. The behavior of the excitation in this panel starts
as we have described it, that is, it sheds some ene
~medium-gray scale! that dissipates quickly. Although
small fraction of the energy that has been shed oscilla
back toward the breather, it is not sufficient to set it in m
tion; most of the energy simply moves towards the ch
ends and dissipates into the zero-temperature bath. The
lution of the breather proceeds as described earlier fo
breather initially centered in the middle of the chain~site 16!
with only a small modification of its decay time~see below!.

FIG. 5. Energy landscapes of 31-site arrays. The breathe
amplitudeA50.5 is initially centered at site 15. Time advanc
along they axis until t52000. A gray scale is used to represent t
local energy, with darker shading corresponding to more energ
regions. First panel:g50.01. Second panel:g51. Third panel:g
5100.
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This behavior is fairly robust for values ofg within an order
of magnitude on either side ofg51 and for breathers tha
are excited not too near the chain ends.

The situation is rather different ifg is either very small
~first panel! or very large~third panel!. The qualitative simi-
larity between these two extreme cases is apparent: the c
ends no longer dissipate the energy that has been shed b
breather as effectively, and so it returns to perturb
breather and set it in motion. In turn, this causes the brea
to decay more rapidly into more rapidly dissipated lowe
energy excitations@4#. In the very low damping case energ
that arrives at the chain ends cannot go anywhere ex
back, much like a whip. In the very highg case the end site
are so damped that they can absorb very little energy fr
the rest of the chain, much like a wall. We have follow
these particular histories over our usual time span of 3 m
lion time units and find the decay timest1't251.563109

for g51, t151.903106 and t251.223106 for g50.01,
andt153.453107 andt253.123107 for g5100. The trend
is thus as described; the particular values are susceptib
change depending on the initial location of the breather
the values of the other parameters of the system.

It should be pointed out that an odd parity breather i
tially centeredexactlyin the middle of the chain constitutes
rather singular case when damping is very low or very hi
with relative decay ratesoppositeto those reported above
While the g;1 results are not much affected by the initi
location of the excitation~provided it is far from the chain
ends!, in this peculiar case the extreme-g cases lead to
slowerdecay than forg;1. In this unique case, the symme
try of the problem leads to the breather being buffeted fr
both sides byidentical energy pulses that return from th
ends of the chain. In the absence of symmetry breaking,
breather is therefore not set in motion, and instead sim
re-absorbs this energy~and reemits and reabsorbs energy
increasingly smaller amounts! . Since the energy that return
from the chain ends is greater in the extremeg cases than it
is for intermediateg, the chain energy remains higher, an
the decay is thus slower.

Breather decay times are strongly dependent on the c
length: the decay times increase markedly, as does the
lifetime of the breather, with increasingN. This is already
apparent when one compares theN531 andN521 results in
Fig. 4. Whereas a breather of initial amplitudeA50.5 cre-
ated at the center of a 31-site chain has barely decayed
3 million time units, a breather of the same initial amplitu
in a 21-site chain has disintegrated completely well bef
that. With A50.5 andg51 for the centered breather w
find, with t5t15t2 the valuest52.803109 for N531 ~as
reported above!, t53.2131012 for N541, and t53.60
31015 for N551. This behavior is entirely reasonable sin
the decay of the breather is intimately connected with
presence of a background of other excitations disturbing
breather and the effects of the damped chain boundary s
All else being the same, both of these are reduced in lon
chains. Extremely long simulations runs are necessary
quantify theN dependence for even longer chains; such
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ASYMPTOTIC DYNAMICS OF BREATHERS IN FERMI- . . . PHYSICAL REVIEW E 66, 046607 ~2002!
study, together with an analysis of the effects of differe
boundary conditions, will be pursued in more detail els
where@9#.

Pure exponential decay indicates that there is a sin
rate-limiting decay channel for the energy@4#. This channel
is the shedding of energy in the form of phonons and
lower energy localized excitations by the breather. The d
radation of lower-energy localized excitations, and the dis
pation of energy into the zero-temperature bath, are m
faster processes. The shedding process is slower for lo
chains and more energetic breathers of frequencies fa
from the phonon band, since the localized excitation is th
closer to an exact stationary solution.

III. BREATHERS AT FINITE TEMPERATURES

When a localized excitation evolves in a thermal enviro
ment, other excitations in the medium perturb the breat
and its eventual fate varies from one realization to anot
To illustrate the complexity of the situation, we present tw
scenarios.

We begin with a chain that is initially in thermal equilib
rium at a nonzero temperature@4#. At time t50, the end sites
of the thermalized chain are connected to a zero tempera
bath via purely dissipative terms@4,5,10#. We follow the
thermal relaxation of the chain and, in particular, the dyna
ics of breathers that are likely to appear anywhere dur
relaxation if the initial temperature is sufficiently high. Fig
ure 6 shows the evolution of the normalized energy in
chain of 30 sites initially thermalized at temperatureT
50.5, as well as the energy in only the four sitesi
513,14,15,16. After a relatively short time (5000 time un
in this particular realization! almost all of the energy settle
in these sites and remains there. The excitation around
four sites turns out to be an ‘‘even parity’’ breather, wi
maximum displacementsA and 2A alternating on sites 14

FIG. 6. Upper panel: the smooth curve is the normalized ene
as a function of time for a chain of 30 sites initially thermalized
T50.5 and connected through its ends to a zero-temperature
bath (g50.1). The initially jagged curve is the normalized ener
on sites 13, 14, 15, and 16. The inset shows the temporal evolu
of the energy on these four sites over a longer time scale. Lo
panel:@2 ln Em(t)# vs t for the same chain.
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and 15, smaller but not negligible amplitudes at sites 13
16, and essentially no motion of the other sites. The brea
is coincidentally at the center of the chain, but may app
anywhere in different realizations, particularly in long
chains. The frequency of the breather, initiallyv51.633,
decreases very little for the duration of the simulation. W
also present the modified normalized energy, whose deca
clearly exponential, with an enormously long time consta
t53.531013. Thus this breather, even in our relatively sho
chain, is essentially stationary. This decay time is mu
longer than that reported in the previous section, consis
with the fact that the amplitude of the breather that h
emerged spontaneously is larger. The thermal relaxation
cess has swept the lattice clean of all other excitations,
lowing the breather to survive undisturbed@4#. In our earlier
work we reported a stretched exponential rather than a pu
exponential decay, a conclusion that relied on the normali
rather than the modified normalized energy@8#, on a time
history that was not sufficiently long, on a statistical avera
over a thermal ensemble that included realizations wh
breathers appeared at different locations~which, as we have
seen, might affect decay rates!, and also realizations wher
no breather appeared during the thermal relaxation pro
~and where the energy dissipation was consequently m
more rapid!.

In our second scenario, att50 a breather of the sam
amplitudeA as in the first scenario is explicitly injected int
a chain that is in thermal equilibrium at a very low tempe
ture ~low in the sense that the spontaneous formation
breathers is highly unlikely!. The chain is then allowed to
relax into a zero temperature heat bath. We find that
thermal background invariably sets the breather in moti
and causes the breather to collide with other excitations
with the chain boundaries. Collision events not only cau
the breather to keep moving, but also lead to breather de
dation through loss of energy upon collision@4#. The result-
ing decay of the breather is then in general much faster t
in the first scenario. The decay time is also much sma
than that of a breather of the same amplitude injected in
zero temperature chain. We find this behavior even when
temperature is extremely low~all the way down toT
51027). As a quantitative check we have explicitly injecte
a breather of initial amplitudeA50.5 into a chain thermali-
zed atT51026, that is then allowed to relax into a zer
temperature bath. Compared to the zero temperature case
decay time of the breather is now much reduced,t51.32
3106. A similar comparison withA50.55 again leads to
dramatically different decay times,t51.4331011 (T50)
and t52.123106 (T51026). Note that it does not much
matter whether the injected breather is of even or odd pa
~here we have injected an odd one!.

Why is a breather created spontaneously during ther
relaxation more stable than one explicitly injected into
thermalized chain, even at extremely low temperatures?
answer lies in the effect of different phonons on breat
dynamics @4,5#. Whereas short wavelength zone-bounda
phonons contribute to spontaneous breather forma
~‘‘modulational instability’’!, breathers are most strongly pe
turbed and degraded by the longest wavelength phon
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REIGADA, SARMIENTO, AND LINDENBERG PHYSICAL REVIEW E66, 046607 ~2002!
These are also the phonons that dissipate most rapidly o
a chain with free-end boundaries into a zero-tempera
bath@5#. In the higher temperature system, when the brea
is created spontaneously the long wavelength phonons
already dissipated and, as dissipation continues up the
non spectrum, the breather is increasingly less disturbed
it reaches a spatially stationary very long-lived configurat
@4#. On the other hand, if the breather is injected into a th
malized system, the breather is subject to strong disturba
by long wavelength phonons even at the very lowest te
peratures until these phonons dissipate. In chains underg
thermal relaxation, an injected breather in the thermali
scenario is therefore a more fragile excitation than a spo
neously created breather of the same amplitude. To con
this description we have followed the dynamics of a breat
injected into a relaxing chainafter the long wavelength
phonons have decayed, and find the breather to be almo
stable as one in a zero-temperature simulation. For exam
for a zero-temperature injected breather of initial amplitu
A50.6 in a chain of 31 sites (v51.65), we findt52.81
31014. In a chain initially thermalized atT51025 and then
allowed to relax, if we wait untilt515 000 before injecting
the same breather we find a somewhat shortened but
very long decay time oft55.9231013, in any case much
longer than it would be if injected att50. We have also
observed a breather in a chain whose temperature is m
tained at an extremely low but nonzero value. The brea
in this case is always fragile, continuing to move and lo
energy until it degrades completely. The zero tempera
stability of the breather is therefore a somewhat singu
result.

IV. SUMMATION

Our work supports the assertions concerning the dyn
ics of breathers in FPUb chains stated in our Introduction
which indicate that breathers in a zero-temperature envi
ment relax very slowly compared to phonon dissipat
-
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times, that effects of thermal fluctuations must be taken i
account even at extremely low temperatures, and that z
temperature results are in some ways fragile. We have c
firmed that breather decay for any particular realization
essentially exponential@5#, with a slowly varying decay rate
until the breather frequency closely approaches the pho
band edge, whereupon the breather quickly disintegrates
have uncovered a number of trends and dependences o
breather decay rate. Among them, we have noted the eff
on breather decay times of breather amplitude/freque
damping coefficient at the ends of the chain, initial locati
of the breather, and chain length. We have confirmed that
drastic increase in the breather decay rate caused by a
mal background is overwhelmingly due to long-waveleng
phonons. Absent these phonons, the presence of sh
wavelength excitations leads to only a mild reduction in t
breather decay time. We have noted that exponential de
indicates a single rate-limiting decay channel@4#, which we
have identified as the shedding of energy by the breathe
the form of phonons and/or lower energy localized exci
tions. However, an ensemble averaged decay would re
the variations of the characteristic exponential decay time
each realization and might in general not even be of pur
exponential form. Finally, it would be interesting to exten
earlier work on arrays with nonlinearon-sitepotentials@10#
to consider some of the detailed issues examined herein
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