Characteristic classes of singular varieties
Hirzebruch theory and motivic theory

Jean-Paul Brasselet (Marseille)
join work with Jörg Schürmann (Münster)
and Shoji Yokura (Kagoshima)

Merida, December 2014
Workshop on Singularities
Pepe-fest
Definition (Poincaré)

Let X be a triangulated compact (smooth or singular) variety, the Euler-Poincaré characteristic of X is defined as

$$e(X) = \sum_{i=0}^{m} (-1)^i k_i$$

where $m = \dim_{\mathbb{R}} X$ and k_i is the number of i-dimensional simplices.
Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles.

The Euler - Poincaré characteristic of X is

$$e(X) = 2 - 2g.$$

Example 2

Euler - Poincaré characteristic of the pinched torus is $e(X) = 1$.

Theorem (Poincaré-Hopf)

Let X be a compact manifold and let v be a (continuous) vector field with (finitely many) isolated singularities $(a_j)_{j \in J}$ of index $I(v, a_j)$, then

$$e(X) = \sum_{j \in J} I(v, a_j).$$
Preamble : 2. The arithmetic genus

Let X be a complex algebraic manifold, $n = \dim_{\mathbb{C}} X$. Let g_i be the number of \mathbb{C}-linearly independent holomorphic differential i-forms on X.

- g_0 is the number of linearly independent holomorphic functions, i.e. the number of connected components of X,
- g_n is called geometric genus of X,
- g_1 is called irregularity of X,

Definition (Arithmetic Genus)

The *arithmetic genus* of X is defined as :

$$\chi(X) := \sum_{i=0}^{n} (-1)^i g_i$$
Example

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles. Then $g_0 = 1$ and $g_1 = g_n = g$.

The arithmetic genus of X is:

$$
\chi(X) = 1 - g
$$
The **Todd genus** $T(X)$ has been defined (by Todd) in terms of Eger-Todd fundamental classes (polar varieties), using Severi results. The Eger-Todd classes are homological Chern classes of X.

Todd “proved” that

$$T(X) = \chi(X).$$

In fact, the Todd proof uses a Severi Lemma which has never been completely proved. The result has been proved by Hirzebruch.
Definition (Thom-Hirzebruch)

Let M be a (real) compact oriented $4k$-dimensional manifold. Let x and y two elements of $H^{2k}(M; \mathbb{R})$, then

$$\langle x \cup y, [M] \rangle \in \mathbb{R}$$

defines a bilinear form on the vector space $H^{2k}(M; \mathbb{R})$.

The index (or signature) of M, denoted by $\text{sign}(M)$, is defined as the index of this form, i.e. the number of positive eigenvalues minus the number of negative eigenvalues.
What shall we do?

<table>
<thead>
<tr>
<th>X manifold number</th>
<th>X manifold cohomology classes</th>
<th>X singular variety homology classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e(X)$</td>
<td>Chern</td>
<td>Schwartz-MacPherson</td>
</tr>
<tr>
<td></td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>$\chi(X)$</td>
<td>Todd</td>
<td>Baum-Fulton-MacPherson</td>
</tr>
<tr>
<td></td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>sign(X)</td>
<td>Thom-Hirzebruch</td>
<td>Cappell-Shaneson</td>
</tr>
</tbody>
</table>

Hirzebruch Theory Motivic Theory (BSY)
Hirzebruch Series

\[Q_y(\alpha) := \frac{\alpha (1 + y)}{1 - e^{-\alpha (1+y)}} - \alpha y \in \mathbb{Q}[y][[\alpha]] \]

- \[Q_{-1}(\alpha) = 1 + \alpha \quad y = -1 \]
- \[Q_0(\alpha) = \frac{\alpha}{1 - e^{-\alpha}} \quad y = 0 \]
- \[Q_1(\alpha) = \frac{\alpha}{\tanh \alpha} \quad y = 1 \]
Characteristic Classes of Manifolds.

Let X be a complex manifold with dimension $\dim_{\mathbb{C}} X = n$, let us denote by

$$c^*(TX) = \sum_{j=0}^{n} c^j(TX), \quad c^j(TX) \in H^{2j}(X; \mathbb{Z})$$

the total Chern class of the (complex) tangent bundle TX.

Definition

The *Chern roots* α_i of TX are defined by:

$$\sum_{j=0}^{n} c^j(TX) \, t^j = \prod_{i=1}^{n} (1 + \alpha_i t)$$

$\alpha_i \in H^2(X; \mathbb{Z})$.

One defines the Todd-Hirzebruch class: $\widetilde{td}(y)(TX) := \prod_{i=1}^{n} Q_y(\alpha_i)$

\[
\begin{cases}
 c^*(TX) = \prod_{i=1}^{n} (1 + \alpha_i) & y = -1 \\
 td^*(TX) = \prod_{i=1}^{n} \left(\frac{\alpha_i}{1-e^{-\alpha_i}} \right) & y = 0 \\
 L^*(TX) = \prod_{i=1}^{n} \left(\frac{\alpha_i}{\tanh \alpha_i} \right) & y = 1
\end{cases}
\]

Chern class, Todd class, Thom-Hirzebruch L-class.
The χ_y-characteristic

Let X be a complex projective manifold.

Definition

One defines the χ_y-characteristic of X by

$$
\chi_y(X) := \sum_{p=0}^{\infty} \left(\sum_{i=0}^{\infty} (-1)^i \dim_\mathbb{C} H^i(X, \wedge^p T^* X) \right) \cdot y^p
$$

- $y = -1$ \quad $\chi_{-1}(X) = e(X)$, Euler - Poincaré characteristic of X (Hodge)
- $y = 0$ \quad $\chi_0(X) = \chi(X)$, arithmetic genus of X (definition)
- $y = 1$ \quad $\chi_1(X) = \text{sign}(X)$, signature of X (Hodge)
\[\chi_y(X) := \sum_{p=0}^{\infty} \left(\sum_{i=0}^{\infty} (-1)^i \dim_{\mathbb{C}} H^i(X, \wedge^p T^* X) \right) \cdot y^p \]

- \[y = -1 \quad e(X) \]
- \[y = 0 \quad \chi(X) \]
- \[y = 1 \quad \text{sign}(X) \]

\[\widetilde{td}_y(TX) := \prod_{i=1}^{n} Q_y(\alpha_i) \]

Hirzebruch Riemann-Roch Theorem

One has:

\[\chi_y(X) = \int_X \widetilde{td}_y(TX) \cap [X] \quad \in \mathbb{Q}[y]. \]
The three particular cases

- \(e(X) = \int_X c^*(TX) \cap [X] \)
 Euler - Poincaré characteristic of \(X \)
 \(Poincaré-Hopf \) Theorem

- \(\chi(X) = \int_X td^*(TX) \cap [X] \)
 arithmetic genus of \(X \)
 \(Hirzebruch-Riemann-Roch \) Theorem

- \(\text{sign}(X) = \int_X L^*(TX) \cap [X] \)
 signature of \(X \)
 \(Hirzebruch \, signature \) Theorem
Question

What can we do for singular varieties?
Three generalisations in the case of singular varieties.

Chern Transformation (MacPherson)

\[\mathbb{F}(X) : \text{Group of constructible functions (ex. } 1_X) \]

\[c_* : \mathbb{F}(X) \to H_*(X) \]

One defines \(c_*(X) := c_*(1_X) : \) Schwartz-MacPherson class of \(X \).

Todd Transformation (Baum-Fulton-MacPherson)

\[G_0(X) : \text{Grothendieck Group of coherent sheaves (ex. } \mathcal{O}_X) \]

\[td_* : G_0(X) \to H_*(X) \otimes \mathbb{Q} \]

One defines \(td_*(X) := td_*([\mathcal{O}_X]) \).

L-Transformation (Cappell-Shaneson)

\[\Omega(X) : \text{Group of constructible self-dual sheaves (ex. } \mathcal{IC}_X) \]

\[L_* : \Omega(X) \to H_{2*}(X; \mathbb{Q}) \]

One defines \(L_*(X) := L_*([\mathcal{IC}_X]) \).
Problem:

The three transformations are defined on different spaces:

\[F(X), \quad G_0(X) \quad \text{and} \quad \Omega(X) \]
Where the “motivic” arrives...

Definition

The Grothendieck relative group of algebraic varieties over X

$$K_0(var/X)$$

is the quotient of the free abelian group of isomorphy classes of algebraic maps $Y \rightarrow X$, modulo the “additivy relation”:

$$[Y \rightarrow X] = [Z \rightarrow Y \rightarrow X] + [Y \setminus Z \rightarrow Y \rightarrow X]$$

for closed algebraic sub-spaces Z in Y.
Theorem

The map $e : K_0(var/X) \longrightarrow \mathbb{F}(X)$ defined by $e([f : Y \to X]) := f_! \mathbf{1}_Y$ is the unique group morphism which commutes with direct images for proper maps and such that $e([id_X]) = 1_X$ for X smooth and pure dimensional.

Theorem

There is an unique group morphism $m_C : K_0(var/X) \longrightarrow G_0(X)$ which commutes with direct images for proper maps and such that $m_C([id_X]) = [\mathcal{O}_X]$ for X smooth and pure dimensional.

Theorem

The morphism $sd : K_0(var/X) \longrightarrow \Omega(X)$ defined by

$$sd([f : Y \to X]) := [Rf_* \mathcal{O}_Y \dim_\mathbb{C}(Y) + \dim_\mathbb{C}(X)]$$

is the unique group morphism which commutes with direct images for proper maps and such that $sd([id_X]) = [\mathcal{O}_X[2 \dim_\mathbb{C}(X)]] = [\mathcal{IC}_X]$ for X smooth and pure dimensional.
Theorem

There is an unique group morphism

\[T_y : K_0(\text{var}/X) \longrightarrow H_\ast(X) \otimes \mathbb{Q}[y] \]

which commutes with direct images for proper maps and such that

\[T_y([id_X]) = \widetilde{td}_y(TX) \cap [X] \text{ for } X \text{ smooth and pure dimensional.} \]

In particular, one has: \(T_{-1}([id_X]) = c_\ast(X) \)

Remark

If a complex algebraic variety \(X \) has only rational singularities (for example if \(X \) is a toric variety), then:

\[mC([id_X]) = [\mathcal{O}_X] \in G_0(X) \text{ and in this case } T_0([id_X]) = td_\ast(X). \]

That is not true in general!
The main result

Theorem

The following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{F}(X) & \xleftarrow{e} & K_0(\text{var}/X) \\
\downarrow c_* & & \downarrow T_y \\
H_*(X) \otimes \mathbb{Q} & \xleftarrow{y = -1} & H_*(X) \otimes \mathbb{Q}[y]
\end{array}
\]
The main result

Theorem

The following diagram commutes:

\[\begin{array}{ccc}
K_0(\text{var}/X) & \xrightarrow{mC} & G_0(X) \\
T_y \downarrow & & \downarrow td_* \\
H_*(X) \otimes \mathbb{Q}[y] & \xrightarrow{y=0} & H_*(X) \otimes \mathbb{Q}
\end{array} \]
The main result

Theorem

The following diagram commutes:

\[
\begin{array}{cccc}
K_0(\text{var}/X) & & & \\
& \downarrow^{sd} & & \\
T_y & \downarrow & \Omega(X) & \\
& & & \\
H_\ast(X) \otimes \mathbb{Q}[y] & & & L_\ast \downarrow \\
& & & \\
y=1 & \downarrow & \Rightarrow & \\
& & & \\
H_\ast(X) \otimes \mathbb{Q} & & & \\
\end{array}
\]
The main result

Theorem

The following tripod diagram commute:

\[\begin{array}{ccc}
F(X) & \xleftarrow{e} & K_0(\text{var}/X) & \xrightarrow{mc} & G_0(X) \\
F(X) \otimes \mathbb{Q} & \xleftarrow{y=-1} & H_*(X) \otimes \mathbb{Q}[y] & \xrightarrow{L_*} & H_*(X) \otimes \mathbb{Q} \\
H_*(X) \otimes \mathbb{Q} & \xleftarrow{y=1} & H_*(X) \otimes \mathbb{Q} \\
\end{array} \]
Thanks for your attention
Joyeux anniversaire

Pepe