Lipschitz geometry of minimal surface singularities

Anne Pichon
Joint work with Walter Neumann and Helge Pedersen

Pepe Fest, 15 december 2014
Theorem. (Neumann, Pedersen, -, 2014)
Minimal surface singularities are normally embedded.
Conversely, any rational singularity which is normally embedded is minimal.

1. Lipschitz geometry, motivation 1
2. Minimal singularities, motivation 2
3. Lipschitz geometry of curves and normal surfaces
4. Ingredients of the proof
Topology of complex singularities

$X \subset \mathbb{C}^n$ complex algebraic variety, $0 \in X$.

Question: how looks X in a neighborhood of 0?

Topological point of view:
Link $X : X^{(\epsilon)} = X \cap S^{2n-1}_\epsilon \epsilon << 1$.

Theorem. (Conical structure theorem)
For all $0 < \epsilon, \epsilon' << 1$,
$X^{(\epsilon)}$ is homeomorphic to $X^{(\epsilon')}$, and

$$(X \cap B_\epsilon, 0) \xrightarrow{\text{homeo}} (\text{Cone } (X^{(\epsilon)}), 0)$$

Geometrical point of view:
how changes $X^{(\epsilon)}$ metrically when $\epsilon \to 0$?
Topology of complex singularities

$X \subset \mathbb{C}^n$ complex algebraic variety, $0 \in X$.

Question: how looks X in a neighborhood of 0?

Topological point of view:
Link $X: X^{(\epsilon)} = X \cap S^{2n-1}_\epsilon \qquad \epsilon \ll 1$.

Theorem. (Conical structure theorem)
For all $0 < \epsilon, \epsilon' \ll 1$,
$X^{(\epsilon)}$ is homeomorphic to $X^{(\epsilon')}$, and

$$(X \cap B_\epsilon, 0) \xrightarrow{\sim \text{ homeo}} (\text{Cone } (X^{(\epsilon)}), 0)$$

Geometrical point of view:
how changes $X^{(\epsilon)}$ metrically when $\epsilon \to 0$?
Topology of complex singularities

$X \subset \mathbb{C}^n$ complex algebraic variety, $0 \in X$.

Question: how looks X in a neighborhood of 0?

Topological point of view:
Link $X: X^{(\epsilon)} = X \cap S^{2^n-1}_\epsilon \ \epsilon << 1$.

Theorem. (Conical structure theorem)
For all $0 < \epsilon, \epsilon' << 1$,
$X^{(\epsilon)}$ is homeomorphic to $X^{(\epsilon')}$, and

$$(X \cap \mathbb{B}_\epsilon, 0) \xrightarrow{\sim\text{ homeo}} (\text{Cone } (X^{(\epsilon)}), 0)$$

Geometrical point of view:
how changes $X^{(\epsilon)}$ metrically when $\epsilon \to 0$?
Lipschitz geometry

\((X, 0) \subset (\mathbb{C}^n, 0)\) a complex analytic germ.

- outer distance \(d_{\text{out}}(x, y) := \|x - y\|_{\mathbb{C}^n}\)
- inner distance \(d_{\text{inn}} := \text{infimum of length of rectifiable arcs from } x \text{ to } y \text{ on } X\)

Lipschitz category

Objects: complex germs \((X, 0)\)
Morphisms: local bilipschitz homeomorphisms \((X, 0) \to (X', 0)\)

Analytical type \(\to\) outer lipschitz geometry \(\to\) inner lipschitz geometry

Definition. \((X, 0)\) is *normally embedded* if inner and outer metrics on \((X, 0)\) are bilipschitz equivalent, i.e., exists \(K \geq 1\),

\[d_{\text{inn}}(x, y) \leq K \ d_{\text{out}}(x, y)\]
Lipschitz geometry

\((X, 0) \subset (\mathbb{C}^n, 0)\) a complex analytic germ.

- outer distance \(d_{out}(x, y) := \|x - y\|_{\mathbb{C}^n}\)
- inner distance \(d_{inn} := \text{infimum of length of rectifiable arcs from } x \text{ to } y \text{ on } X\)

Lipschitz category

Objects: complex germs \((X, 0)\)
Morphisms: local bilipschitz homeomorphisms \((X, 0) \to (X', 0)\)

Analytical type \(\to\) outer lipschitz geometry \(\to\) inner lipschitz geometry

Definition. \((X, 0)\) is *normally embedded* if inner and outer metrics on \((X, 0)\) are bilipschitz equivalent, i.e., exists \(K \geq 1\),

\[d_{inn}(x, y) \leq K \cdot d_{out}(x, y) \]
Lipschitz geometry

\((X, 0) \subset (\mathbb{C}^n, 0)\) a complex analytic germ.

- outer distance \(d_{out}(x, y) := \|x - y\|_{\mathbb{C}^n}\)
- inner distance \(d_{inn} := \text{infimum of length of rectifiable arcs from } x \text{ to } y \text{ on } X\)

Lipschitz category
Objects : complex germs \((X, 0)\)
Morphisms : local bilipschitz homeomorphisms \((X, 0) \to (X', 0)\)

Analytical type \(\to\) outer lipschitz geometry \(\to\) inner lipschitz geometry

Definition. \((X, 0)\) is *normally embedded* if inner and outer metrics on \((X, 0)\) are bilipschitz equivalent, i.e., exists \(K \geq 1\),

\[d_{inn}(x, y) \leq K \ d_{out}(x, y)\]
Motivation 1

Describing singularities satisfying remarkable metric properties.

Theorem. (Birbrair, Fernandes, Lê, Sampaio, 2014) Lipschitz regular germs of complex algebraic sets are smooth.

Normal surfaces:

Theorem. (Pedersen, 2011) Complete description of rational singularities which are metrically conical.

Theorem. (Neumann, Pedersen, -, 2014) The rational singularities which are normally embedded are the minimal singularities
Describing singularities satisfying remarkable metric properties.

Theorem. (Birbrair, Fernandes, Lê, Sampaio, 2014) Lipschitz regular germs of complex algebraic sets are smooth.

Normal surfaces:

Theorem. (Pedersen, 2011) Complete description of rational singularities which are metrically conical.

Theorem. (Neumann, Pedersen, -, 2014) The rational singularities which are normally embedded are the minimal singularities
Describing singularities satisfying remarkable metric properties.

Theorem. (Birbrair, Fernandes, Lê, Sampaio, 2014) Lipschitz regular germs of complex algebraic sets are smooth.

Normal surfaces:

Theorem. (Pedersen, 2011) Complete description of rational singularities which are metrically conical.

Theorem. (Neumann, Pedersen, -, 2014) The rational singularities which are normally embedded are the minimal singularities
Motivation 1

Describing singularities satisfying remarkable metric properties.

Theorem. (Birbrair, Fernandes, Lê, Sampaio, 2014) Lipschitz regular germs of complex algebraic sets are smooth.

Normal surfaces:

Theorem. (Pedersen, 2011) Complete description of rational singularities which are metrically conical.

Theorem. (Neumann, Pedersen, -, 2014) The rational singularities which are normally embedded are the minimal singularities
Minimal singularities

Definition. (Kollár, 1985) A germ of analytic space \((S, 0)\) is *minimal* if it is reduced, Cohen-Macaulay, if its tangent cone is reduced, and if Abyankar’s inequality

\[
m(S, 0) \geq edim(S, 0) - dim(S, 0) + 1
\]

is an equality.

Proposition. A germ of reduced curve \((C, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it consists of \(n\) smooth transversal components whose tangent lines span an \(n\)-dimensional vector space.

Proposition. A normal surface singularity \((S, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it is rational with a reduced fundamental cycle, i.e., if \(\pi: S' \to S\) is the minimal resolution, \(\pi^{-1}(0) = \bigcup E_i\), and if \(h: (S, 0) \to (\mathbb{C}, 0)\) is a general linear form then the multiplicity of \(h \circ \pi\) along each \(E_i\) equals 1.
Minimal singularities

Definition. (Kollár, 1985) A germ of analytic space \((S, 0)\) is *minimal* if it is reduced, Cohen-Macaulay, if its tangent cone is reduced, and if Abyankar’s inequality

\[
m(S, 0) \geq edim(S, 0) - dim(S, 0) + 1
\]

is an equality.

Proposition. A germ of reduced curve \((C, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it consists of \(n\) smooth transversal components whose tangent lines span an \(n\)-dimensional vector space.

Proposition. A normal surface singularity \((S, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it is rational with a reduced fundamental cycle, i.e., if \(\pi: S' \to S\) is the minimal resolution, \(\pi^{-1}(0) = \bigcup E_i\), and if \(h: (S, 0) \to (\mathbb{C}, 0)\) is a general linear form then the multiplicity of \(h \circ \pi\) along each \(E_i\) equals 1.
Minimal singularities

Definition. (Kollár, 1985) A germ of analytic space \((S, 0)\) is *minimal* if it is reduced, Cohen-Macaulay, if its tangent cone is reduced, and if Abyankar’s inequality

\[
m(S, 0) \geq edim(S, 0) - dim(S, 0) + 1
\]

is an equality.

Proposition. A germ of reduced curve \((C, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it consists of \(n\) smooth transversal components whose tangent lines span an \(n\)-dimensional vector space.

Proposition. A normal surface singularity \((S, 0) \subset (\mathbb{C}^n, 0)\) is minimal if it is rational with a reduced fundamental cycle, i.e., if \(\pi: S' \to S\) is the minimal resolution, \(\pi^{-1}(0) = \bigcup E_i\), and if \(h: (S, 0) \to (\mathbb{C}, 0)\) is a general linear form then the multiplicity of \(h \circ \pi\) along each \(E_i\) equals 1.
Resolution

Theorem. (Hironaka, 1964) Any algebraic variety on an algebraically closed field with characteristic zero admits a resolution.

Surface case:

Theorem. (Walker, with Jung’s method, 1935) Any algebraic surface admits a resolution.

Theorem. (Zariski, 1939) Any algebraic surface admits a resolution which is a finite composition of normalized blow-ups of points.

Theorem. (Spivakovsky, 1980) Any algebraic surface admits a resolution which is a finite composition of normalized Nash transforms.

Minimal surface singularities play here a key role.
Resolution

Theorem. (Hironaka, 1964) Any algebraic variety on an algebraically closed field with characteristic zero admits a resolution.

Surface case:

Theorem. (Walker, with Jung’s method, 1935) Any algebraic surface admits a resolution.

Theorem. (Zariski, 1939) Any algebraic surface admits a resolution which is a finite composition of **normalized blow-ups of points**.

Theorem. (Spivakovsky, 1980) Any algebraic surface admits a resolution which is a finite composition of **normalized Nash transforms**.

Minimal surface singularities play here a key role.
Resolution

Theorem. (Hironaka, 1964) Any algebraic variety on an algebraically closed field with characteristic zero admits a resolution.

Surface case:

Theorem. (Walker, with Jung’s method, 1935) Any algebraic surface admits a resolution.

Theorem. (Zariski, 1939) Any algebraic surface admits a resolution which is a finite composition of *normalized blow-ups of points*.

Theorem. (Spivakovsky, 1980) Any algebraic surface admits a resolution which is a finite composition of *normalized Nash transforms*.

Minimal surface singularities play here a key role.
Resolution

Theorem. (Hironaka, 1964) Any algebraic variety on an algebraically closed field with characteristic zero admits a resolution.

Surface case:

Theorem. (Walker, with Jung’s method, 1935) Any algebraic surface admits a resolution.

Theorem. (Zariski, 1939) Any algebraic surface admits a resolution which is a finite composition of normalized blow-ups of points.

Theorem. (Spivakovsky, 1980) Any algebraic surface admits a resolution which is a finite composition of normalized Nash transforms.

Minimal surface singularities play here a key role.

Idea of the proof: Consider the pair \((m(S, 0), \eta(S, 0))\) where \(m(S, 0)\) is the multiplicity of the surface and \(\eta(S, 0)\) the multiplicity of the discriminant \(\Delta\) of a generic projection \(\ell: (S, 0) \to (\mathbb{C}^2, 0)\). After a finite number of normalized blow-ups, one obtains a surface whose all singularities have pairs \((m, \eta)\) strictly less than the initial \((m(S, 0), \eta(S, 0))\).

The case of **minimal singularities** is special and has to be treated independently.
Partial Jung resolution with generic projections

If \(m(S_1, p_1) = m(S, 0) \) then \(\ell: (S_1, p_1) \to (U_1, \ell(p_1)) \) is a generic projection. Then one iterates the process.

\[
\begin{array}{c}
(S_f, p_f) \xrightarrow{e'_{f-1}} \cdots \\
\downarrow \ell_f \\
U_f \xrightarrow{e'_{f-1}} \cdots \\
\end{array}
\quad
\begin{array}{c}
(S_2, p_2) \xrightarrow{e'_1} (S_1, p_1) \xrightarrow{e'_0} (S, 0) \\
\downarrow \ell_2 \\
U_2 \xrightarrow{e_1} U_1 \xrightarrow{e_0} U_0 \\
\end{array}
\]

If \(m(S_f, p_f) = \cdots = m(S_1, p_1) = m(S, 0) \) and the strict transform of \(\Delta \) at \(\ell(p_f) \) is smooth, then either \(\eta(S_f, p_f) < \eta(S, 0) \) or \((S, 0) \) is minimal.
Duality question (Lê)

Resolution by normalized blow-ups
- Minimal singularities
- Generic hyperplane sections

Resolution by normalized Nash transforms
- Minimal singularities
- Polar curves of generic projections
Duality question (Lê)

Resolution by normalized blow-ups
- Minimal singularities
- Generic hyperplane sections

Resolution by normalized Nash transforms
- Minimal singularities
- Polar curves of generic projections
Duality question (Lê)

Resolution by normalized blow-ups
- Minimal singularities
- Generic hyperplane sections

Resolution by normalized Nash transforms
- Minimal singularities
- Polar curves of generic projections
Lipschitz geometry of curves

Let \((C', 0) \subset (\mathbb{C}^n, 0)\) be a complex curve.

Theorem. \((C', 0)\) is inner bilipschitz equivalent to the cone over its link. (*inner metrically conical*).

Theorem. (Teissier) Let \(p: \mathbb{C}^n \to \mathbb{C}^2\) be a generic projection for \((C', 0)\). Then \((C', 0)\) is outer Lipschitz equivalent to the plane curve \((p(C'), 0)\).

Theorem. (Pham, Teissier, 1969) Let \((C, 0)\) be a plane curve germ. The outer Lipschitz geometry of \((C, 0)\) determines and is determined by the embedded topology of \((C, 0)\).
Lipschitz geometry of curves

Let \((C', 0) \subset (\mathbb{C}^n, 0)\) be a complex curve.

Theorem. \((C', 0)\) is inner bilipschitz equivalent to the cone over its link. (*inner metrically conical*).

Theorem. (Teissier) Let \(p: \mathbb{C}^n \to \mathbb{C}^2\) be a generic projection for \((C', 0)\). Then \((C', 0)\) is outer Lipschitz equivalent to the plane curve \((p(C'), 0)\).

Theorem. (Pham, Teissier, 1969) Let \((C, 0)\) be a plane curve germ. The outer Lipschitz geometry of \((C, 0)\) determines and is determined by the embedded topology of \((C, 0)\).
Lipschitz geometry of curves

Let $(C', 0) \subset (\mathbb{C}^n, 0)$ be a complex curve.

Theorem. $(C', 0)$ is inner bilipschitz equivalent to the cone over its link. *(inner metrically conical).*

Theorem. (Teissier) Let $p: \mathbb{C}^n \to \mathbb{C}^2$ be a generic projection for $(C', 0)$. Then $(C', 0)$ is outer Lipschitz equivalent to the plane curve $(p(C'), 0)$.

Theorem. (Pham, Teissier, 1969) Let $(C, 0)$ be a plane curve germ. The outer Lipschitz geometry of $(C, 0)$ determines and is determined by the embedded topology of $(C, 0)$.
Lipschitz geometry of curves: an example
Lipschitz geometry of curves: an example

Take a generic projection on a complex line $\ell: C \to \mathbb{C}$. **Inner metric** is Lipschitz equivalent to the lifted metric from the complex line. So $(C, 0)$ ismetrically conical. **Outer geometry** determines the characteristic exponents of $(C, 0)$, so the embedded topology of $(C, 0)$.
Lipschitz geometry of curves: an example

Take a generic projection on a complex line $\ell: \mathbb{C} \to \mathbb{C}$.

Inner metric is Lipschitz equivalent to the lifted metric from the complex line. So $(C, 0)$ is metrically conical.

Outer geometry determines the characteristic exponents of $(C, 0)$, so the embedded topology of $(C, 0)$.
Lipschitz geometry of curves: an example

Take a generic projection on a complex line \(\ell : C \to \mathbb{C} \).

Inner metric is Lipschitz equivalent to the lifted metric from the complex line. So \((C, 0)\) is metrically conical.

Outer geometry determines the characteristic exponents of \((C, 0)\), so the embedded topology of \((C, 0)\).
Lemma. Outer geometry of \((C, 0)\) is determined by inner geometry + distance between vertically aligned points with respect to a generic projection \(\ell: (C, 0) \rightarrow (\mathbb{C}, 0)\).

So outer geometry is determined by embedded topology.
Proposition. An irreducible curve is normally embedded iff it is smooth.

proof. Assume \((C, 0)\) is not smooth. Let \(q\) be a characteristic exponent of \(C, 0\). Consider a radial arc \(\gamma : [0, 1) \subset \mathbb{C}\). There exist two arcs \(\gamma_1 : [0, 1) \to S\) and \(\gamma_2 : [0, 1) \to S\) such that \(\ell \circ \gamma_i = \gamma\) and \(d_{out}(\gamma_1(t), \gamma_2(t)) = O(t^q)\). Since \(d_{inn}(\gamma_1(t), \gamma_2(t)) = O(t)\), we then have

\[
\lim_{t \to 0} \frac{d_{out}(\gamma_1(t), \gamma_2(t))}{d_{inn}(\gamma_1(t), \gamma_2(t))} = 0
\]

which implies that \((C, 0)\) is not normally embedded.
Geometry of surfaces

Again,

Lemma. Outer geometry of \((S, 0)\) is determined by inner geometry + distance between vertically aligned points with respect to a generic projection \(\ell: (S, 0) \to (\mathbb{C}^2, 0)\).
Why is a minimal surface normally embedded?

A hint

Abyankar inequality

\[m(S, 0) \geq edim(S, 0) - 1 \]

is an equality.

There is “enough room” in the ambient space so that the \(m(S, 0) \) sheets of a generic projection \(\ell : (S, 0) \to (\mathbb{C}^2, 0) \) are far from each other.
Measuring outer distances

Lemma. Outer Lipschitz geometry of \((S, 0)\) is determined by inner geometry + distance between vertically aligned points with respect to a generic projection \(\ell: (S, 0) \to (\mathbb{C}^2, 0)\).

Inner distance: \(\ell\) is bilipschitz outside a zone around the polar curve. So outside the polar zone, inner distance is measured by distance in \(\mathbb{C}^2\). Geometric decomposition (Birbrair, Neumann, -, Acta Math. 2014)

Distance between vertically aligned points:

Definition. A **test curve** is an irreducible plane curve which is not a branch of \(\Delta\).

Distance between vertically aligned points over a point \(p \in \mathbb{C}^2\) is measured by Lipschitz geometry of the liftings \(\ell^{-1}(\gamma)\) of test curves \(\gamma\).

Only a selection of test curves is needed: they are related with resolution of the discriminant curve \(\Delta\).

Particular test curves are the generic lines. Their liftings are **generic hyperplane sections** of the surface.
Ingredients of the proof

Theorem. \((S, 0)\) minimal is normally embedded.

1. A characterization of normal embedding using lifting of test curves.
2. The description of \(\Delta\) by R. Bondil as a union of \(A_n\)-curves.
3. A description of liftings of test curves through resolution of \((S, 0)\) by Jung’s method.

First step. Let \(\ell: (S, 0) \to (\mathbb{C}^2, 0)\) be a generic projection and let \(\gamma\) be a generic line in \(\mathbb{C}^2\). Then \(\ell^{-1}(\gamma)\) is a generic hyperplane section of \((S, 0)\).

Theorem. (Kollár, 1985) Any generic hyperplane section of a minimal singularity is minimal.

Consequence: The curve germ \((\ell^{-1}(\gamma), 0)\) has a minimal singularity, so it is a union of transversal tangent lines. Therefore the outer distance between two vertically aligned points on \((\ell^{-1}(\gamma), 0)\) at distance \(t\) from the origin is \(O(t)\) as well as their inner distance.
Ingredients of the proof

Theorem. \((S, 0)\) minimal is normally embedded.

1. A characterization of normal embedding using lifting of test curves.
2. The description of \(\Delta\) by R. Bondil as a union of \(A_n\)-curves.
3. A description of liftings of test curves through resolution of \((S, 0)\) by Jung’s method.

First step. Let \(\ell: (S, 0) \to (\mathbb{C}^2, 0)\) be a generic projection and let \(\gamma\) be a generic line in \(\mathbb{C}^2\). Then \(\ell^{-1}(\gamma)\) is a generic hyperplane section of \((S, 0)\).

Theorem. (Kollár, 1985) Any generic hyperplane section of a minimal singularity is minimal.

Consequence: The curve germ \((\ell^{-1}(\gamma), 0)\) has a minimal singularity, so it is a union of transversal tangent lines. Therefore the outer distance between two vertically aligned points on \((\ell^{-1}(\gamma), 0)\) at distance \(t\) from the origin is \(O(t)\) as well as their inner distance.
Joyeux anniversaire, Pepe !!!