banner_principal unam_morelos
2018-06-24  20:55 hrs.

Möbius, Klein, Riemann y la conformidad.

Angel Rodriguez
Benemérita Universidad Autónoma de Puebla


Los subgrupos discretos de transformaciones Möbius o mejor conocidos como grupos Kleinianos que actúan en la Esfera de Riemann, son una clase de grupos que sirven como herramienta para la representación de Superficies de Riemann y además son grupos de Lie. En está platica se desarrollan estos tópicos de manera elemental, partiendo desde el estudio de las propiedades algebraicas, analíticas y geométricas de las transformaciones  Mobius y de la acción de estas en $\hat{\mathbb{C}}$ y sus subgrupos que dejan invariante a los dominios canónicos $\mathbb{C},\;\Delta = \{z\in \mathbb{C}:\;|z| \textless 1 \}$ $ y $\mathbb{H}^{2} = \{z\in \mathbb{C}|\; \mathrm{Im}(z)>0\}$.

 

Esto permitirá definir lo que es grupo Kleiniano y dar las propiedades con las cuales se puede representar a las superficie de Riemann mediante tales grupos, y de manera natural se evidenciará que tales grupos son grupos de Lie y con esto se hablará un poco de las $G$-variedades.


 
 
 

Aula 2 -- Martes 13 de marzo de 2018, 16:00 horas


unam campus morelos Unam Campus Morelos IBT CCG CIE FIS CRIM MATCUER
Unidad Cuernavaca del Instituto de Matemáticas UNAM