#### Enrique Artal Bartolo

Universidad de Zaragoza

### Resumen:

Given a simplicial graph, its associated right-angled Artin group is a group generated by the vertices and such that two vertices commute if they are joined by an edge; the kernel of an epimorphism onto the infinite cyclic group (non vanishing on the vertices) is called an Artin kernel and its homology is in a natural way a module over a ring of Laurent polynomials. We study the module structure of this homology which can be interpreted as the homology of the Milnor fiber of a monomial function on a highly singular space for which a version of the Monodromy Theorem can be stated. It is joint work in progress with J.I. Cogolludo and D. Matei.

### Video:

### Presentación:

Descargar